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SUMMARY
Coronary artery disease (CAD) is characterized by atherosclerotic plaque formation in the arterial wall. CAD
progression involves complex interactions and phenotypic plasticity among vascular and immune cell line-
ages. Single-cell RNA-seq (scRNA-seq) studies have highlighted lineage-specific transcriptomic signatures,
but human cell phenotypes remain controversial. Here, we perform an integratedmeta-analysis of 22 scRNA-
seq libraries to generate a comprehensive map of human atherosclerosis with 118,578 cells. Besides char-
acterizing granular cell-type diversity and communication, we leverage this atlas to provide insights into
smoothmuscle cell (SMC)modulation.We integrate genome-wide association study data and uncover a crit-
ical role for modulated SMC phenotypes in CAD,myocardial infarction, and coronary calcification. Finally, we
identify fibromyocyte/fibrochondrogenic SMC markers (LTBP1 and CRTAC1) as proxies of atherosclerosis
progression and validate these through omics and spatial imaging analyses. Altogether, we create a unified
atlas of human atherosclerosis informing cell state-specific mechanistic and translational studies of cardio-
vascular diseases.
INTRODUCTION

Cardiovascular diseases (CVDs), such as coronary artery dis-

ease (CAD), are the leading global causes of mortality and

morbidity.1 The pathological hallmark of CAD is atherosclerosis,

a chronic build-up of plaque inside arterial walls, which can lead
Ce
This is an open access article under the CC BY-N
to thrombus formation and myocardial infarction (MI) or

stroke.2–5 This process involves a complex interplay of both im-

mune and vascular cell types and cell state transitions along a

continuum.6,7 In response to injury of the inner vessel wall layer,

contractile smooth muscle cells (SMCs) transition to a more

proliferative and migratory state8,9 and endothelial cells to a
ll Reports 42, 113380, November 28, 2023 ª 2023 The Author(s). 1
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mesenchymal state in early and advanced atherosclerosis.10,11

Thus, a thorough assessment of cell heterogeneity and plasticity

within the vessel wall is paramount to uncover new knowledge

regarding atherosclerosis development and progression.

The advent of single-cell sequencing technologies has

enabled study of gene expression and regulation in disease

and development at the single-cell level. For instance, single-

cell RNA sequencing (scRNA-seq) studies have resolved the

cellular diversity and gene signatures in human and murine

atherosclerotic lesions12–16 aswell as non-lesion arteries.17 Line-

age-tracing and scRNA-seq studies have shown that SMCs

readily transform into a multipotent ‘‘pioneer’’ cell type in

response to pro-atherogenic stimuli.18–20 However, their post-

transition fate remains controversial, with a few studies agreeing

they can become fibroblast-like (fibromyocytes)18 or osteo-

genic-like (fibrochondrocytes; FCs),19 while others suggest

they adopt pro-inflammatory or macrophage-like properties.8,20

Biological interpretation of these individual studies could be

potentially confounded by limited sample sizes, experimental

design, or other technical factors. Thus, there remains a need

for a consensus single-cell reference21–23 that spans atheroscle-

rotic disease stages in humans.

Here, we harmonize and meta-analyze four single-cell

studies of human atherosclerosis using extensive bench-

marking for optimal batch-correction method, encompassing

both early and advanced lesion and non-lesion samples (Fig-

ure 1A; Table S1). We generate a streamlined analysis pipeline

available as an R package (scRNAutils). The resulting atlas of

118,578 high-quality cells enables discovery of previously

missed vascular and immune cell types and clarifies markers

for known disease-relevant immune cells (e.g., foamy macro-

phages). We perform integrative downstream analyses and

genome-wide association study (GWAS) trait enrichment to

define CVD-relevant etiologic cell types with their correspond-

ing effector genes. We further validate SMC phenotypes iden-

tified in lineage-tracing studies, reveal underrepresented SMC

states from individual scRNA-seq studies, and highlight

CRTAC1 and LTBP1 as candidate markers of synthetic/pro-

calcifying SMCs and plaque stability in humans. This map of

cell diversity in human atherosclerosis provides a critical step

toward translating mechanistic knowledge and developing

more targeted interventions.

RESULTS

Integration of lesion and non-lesion artery datasets
We sought to build a comprehensive single-cell reference to

further investigate complex vascular processes such as SMC

phenotypic modulation. To achieve proper representation of

mural cells and immune types and to span the continuum of

CAD risk, we used four human datasets including atherosclerotic

lesions (Wirka et al.,18 Pan et al.,19 and Alsaigh et al.16) and from

non-lesion coronary arteries17 (Table S1). While carotid lesion

samples16,19 were obtained from carotid endarterectomies,

lesion coronary samples18 were dissected from explanted hearts

of transplant recipients. Control coronary samples17 were ob-

tained from patients with end-stage heart failure but with no

discernible atherosclerotic lesions.
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We established a standardized pipeline for quality control (Fig-

ures 1 and S1A) and processing of the 22 raw sequencing

libraries, and we observed improved separation and cohesion

of cell clusters post filtering (Figure S1B). We benchmarked

top-performing integration tools (Figure S1B; method de-

tails)26,29,33–35 on a subset of the libraries16,18,19 and found that

reciprocal PCA (rPCA) and Harmony outperformed the other

tools in terms of running time. Beyond confirming proper batch

mixing through uniform manifold approximation and projection

(UMAP) embedding visualization, we also evaluated the effec-

tiveness of batch removal, biological variation conservation,

and clustering purity using local inverse Simpson index (LISI)

scores, k-nearest neighbors batch effect test (kBET), principal

components regression,30 and average width silhouette scores

(cASW) (Figures S1B–S1G; method details).28 We found that

rPCA achieved the best balance in terms of running time, batch

mixing, separation of unique cell types, and clustering purity

across tested granularity parameters (Figure S1H). Integration

of libraries with rPCA yielded a total of 118,578 high-quality cells

and 41 Louvain clusters. We inspected reference UMAP embed-

dings and found mixing across the four studies for the major cell

compartments confirming proper batch removal (Figure S1I).

Weannotated our clusters by first labeling cells inUMAPspace

with broad cell lineage names (level 1) and resolved cell subtypes

by combining manual and automated approaches (level 2). We

defined level 1 annotations by reprocessing and transferring

cell-type labels from the Tabula Sapiens (TS) vasculature sin-

gle-cell atlas.31 We found that labels were assigned with remark-

ably high confidence scores (Figure S2A). These annotations

were supported by the expression of well-established marker

genes in corresponding level 1 clusters (Figures 2A and 2B).

We observed a balanced number of cells labeled as macro-

phages and endothelial cells across studies. However, there

were slightly more SMCs in Pan et al.19 and T/natural killer (NK)

cells in Alsaigh et al.16 and slight biases from small clusters

(e.g., plasma cells, B cells) between studies (Figures 2C and

S2B). We observed overrepresented fibroblasts from coronary

datasets (Wirka et al.18 and Hu et al.17), as expected given the

intact coronary vessel wall layers compared to carotid plaques.

Across disease status, we observed a greater proportion of B

cells, plasma cells, and plasmacytoid dendritic cells (pDCs) in

lesion samples (Figures 2C and 2D). While cell-type variability

across different studies or libraries of a single study could be bio-

logically meaningful, it could also represent technical artifacts

from library preparation or single-cell suspension procedures.

For instance, foamy macrophages are highly sensitive to sin-

gle-cell suspension procedures and could be underrepresented

in some samples.37

Differentially expressed (DE) genes for each cluster (Table S2;

method details) were used to run Gene Ontology (GO) enrich-

ment analyses. We found enrichment for terms in their expected

clusters, such as ‘‘muscle contraction’’ in SMCs and ‘‘endothe-

lial development’’ in endothelial cells (ECs). We observed over-

representation of terms such as ‘‘extracellular matrix organiza-

tion’’ in SMCs, likely due to the presence of phenotypically

modulated SMCs9 (Figure S2C; Table S3). In contrast, myeloid

and lymphoid clusters were enriched for immune-related terms

such as ‘‘antigen processing and presentation’’ and ‘‘regulation



Figure 1. Pipeline devised to build the integrated scRNA atlas for human atherosclerosis

Doublets within individual scRNA-seq libraries were identified using scDblFinder,24 while ambient RNA was removed using decontX.25 Decontaminated matrices

were used for downstream filtering of cells based on (1) detected gene number, (2) UMI number, (3) percent reads mapping to mitochondrial genome, and (4)

percent reads mapping to hemoglobin genes using Seurat.26 Libraries were normalized using SCTransform,27 and a subset was used for benchmarking of four

batch correction approaches: canonical correlation analysis + mutual nearest neighbors (CCA+MNN), reciprocal PCA (rPCA),26 Harmony,28 and Scanorama.29

Besides running time, PCA embeddings were used for calculating the following metrics: integration and cell-type local inverse Simpson’s Index (iLISI and cLISI)

scores, k-nearest-neighbors batch effect test (kBET) rejection rates,30 principal component (PC) regression coefficients,30 and cluster average silhouette widths

(cASW). rPCAwas used to harmonize the 22 libraries, and level 1 annotationswere added using transfer learning with the Tabula Sapiens vasculature dataset31 as

reference. Finally, automated32 andmanual curation enabled identification of granular cell subtypes (level 2 annotations). PCA, principal component analysis. See

also method details, Figure S1, and Table S1.
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of T cell activation.’’ These results confirmed the accuracy of our

level 1 annotations.

Defining candidate etiologic cell types for complex traits
As done previously,38,39 we leveraged cell-type-specific gene

signatures and GWAS summary statistics to define etiologic

cell types for disease. The underlying assumption is that genetic

association signals are enriched in genes for cell types closely

related to the particular trait. We computed numeric estimates

(ESm) of gene expression specificity36 (method details) and

show the robustness of this score by inspecting several canon-

ical cell markers, e.g., CD68 in macrophages and PECAM1 in

ECs (Figure 2E). We then applied two different genetic prioritiza-

tion models: LD score regression (LDSC-SEG40 and MAGMA41)

to specifically expressed genes in level 1 annotated cell

types using GWAS summary statistics for CVD and non-CVD

traits42–48 as input (method details; Table S4).
Both LDSC-SEG and MAGMA showed that SMC and pericyte

gene signatures were significantly enriched (FDR < 0.05) for CV

traits such as CAD,42,48 coronary artery calcification (CAC),49

and MI43 (Figures 2F and S3A; Table S4), while EC signatures

were enriched for carotid plaque associations (Figure 2F).

Consistent with our previous work,50 we observed level 1 macro-

phage annotations were themost highly enriched for Alzheimer’s

disease and white blood cell count (WBC) GWAS-tagged herita-

bility (Figure 2E). While level 1 annotations from the lesion and

non-lesion samples showed similar LDSC enrichments for most

traits, we observed that SMCs from lesions were predominantly

enriched for CAC (Figure S3B; Table S4). Lastly, by intersecting

highly specific SMC genes (highest ESm values) with MAGMA-

defined GWAS candidate genes, we identified both known and

less-characterized SMC effector genes driving the CAD/MI en-

richments43 (Figure S3C; Table S4), thus providing further in-

sights into the contribution of SMCs underlying CAD/MI.
Cell Reports 42, 113380, November 28, 2023 3



Figure 2. Integration of single-cell data identifies major cell compartments in human atherosclerosis

(A) UMAP embeddings of 118,578 cells based on reciprocal PCA (rPCA) integration of 22 sequencing libraries. Dot colors depict broad cell lineage annotations

(level 1).

(legend continued on next page)
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Defining cell subtype heterogeneity in human
atherosclerosis
Next, we surveyed the 41 clusters using a combination of auto-

mated and manual annotation (method details). Manual annota-

tions includedmarkers of lymphoid, myeloid, and endothelial cell

subtypes from the literature21–23,51–56 that were verified using the

CellTypist machine learning classifier32 resulting in a more gran-

ular map of cell diversity in human atherosclerosis (Figure 3A).

We summarize some of the most representative cell subpopula-

tions and markers below.

Endothelial diversity

We identified cells highly expressing classical endothelial

markers (PECAM1, CLDN5), intimal ECs defined by expression

of homeostatic EC marker genes (e.g., RAMP2),57 and pro-

angiogenic ECs with upregulated vasa vasorum or angiogenic

genes (e.g., ACKR1,AQP1 and FABP4).58–60 Interestingly, we

identified a cluster likely reflecting a pro-inflammatory state

with elevated expression of chemokine and adhesion molecules

(SELE, CCL2) (Figures 3A and 3B).61 Endothelial-to-mesen-

chymal transition (EndoMT) ECs62 were defined by the expres-

sion of ECMgenes (COL1A2, FN1) and contractile genes. Finally,

we defined a small subcluster of lymphatic ECs based on

expression of LYVE1 and CCL21.63

Myeloid diversity

We distinguished inflammatory macrophages expressing known

‘‘M1-polarized’’ macrophage markers (e.g., IL1B, TNF) (Fig-

ures 3A and 3B) and foamy macrophages by higher expression

of lipid genes (APOE and FABP5) and lower inflammatory

genes.15,21,23 We also identified resident macrophages (LYVE1,

FOLR2), classical monocytes (S100A8, S100A9, LYZ), and

conventional dendritic cells (CD1C, CLEC10A).64–66 Importantly,

we resolved critical smaller myeloid populations, including

pDCs67,68 and neutrophils (NAMPT, S100A8), overlooked by

previous individual human scRNA-seq datasets. Consistently,

we found more prevalent monocytes, foamy macrophages,

and other myeloid populations in lesion-containing libraries

(Figures 3C and 3D).

Lymphoid diversity

We identified NK and several subpopulations of T cells based

on differential expression of CD6969 and CD8A/B, among

others (Figures 3A, 3B, and S2D). Specifically, we identified

markers of early activated and memory/naive CD8 cytotoxic

T cells (CTLs),70,71 terminally differentiated CTLs, Th17 and

Th2 helper cells, and regulatory T cells (Figure S2D). Finally,

we defined clusters of B cells (CD79A, CD79B) and plasma

cells (IGLC2, IGHM, JCHAIN). While all lymphoid populations

showed larger frequencies in lesions, we found that B cells,
(B) Dot plot of top five marker genes by major cell lineage compartment. Dot size

(C) Stacked bar plot showing the distribution of level 1-annotated cells across inc

lesion).

(D) UMAP embeddings of level 1-annotated cells across lesion status.

(E) Heatmap showing ESm values for establishedmarkers ofmural and immune lev

Wilcoxon rank-sum test in (B).

(F) LD score regression applied to specific genes (LDSC-SEG) andMAGMA analy

and non-cardiovascular GWAS traits. LDSC-SEG- and MAGMA-based regressio

with CELLEX.36 The black line depicts the FDR significance threshold (FDR < 0

Figures S2 and S3 and Tables S2 and S4.
plasma cells, and pDCs were highly depleted in non-lesion li-

braries (Figure S2E).

Fibroblast diversity

Defining fibroblast diversity in atherosclerosis is particularly

challenging given the low specificity of known fibroblast

markers.55 Although most cells expressed traditional fibroblast

ECM markers such as LUM and DCN (Table S2), we dissected

a subset of fibroblasts that upregulated the contractile marker

ACTA2 (Figure 3B) and complement genes (C3 and C7). These

likely represent activated fibroblasts (myofibroblasts) known to

adopt increased contractile, ECM-producing, and pro-inflam-

matory states in response to injury or atherosclerotic stimuli.55,62

We also identified a group of cells strongly expressing APOE in

addition to the chemokine ligands CXCL12 and CXCL14 and

complement genes, which we termed APOE fibroblasts.

Characterization of SMC phenotypes in human
atherosclerosis
To refine the role of human SMC phenotypes, we next compared

our human scRNA reference to a recent scRNAmeta-analysis of

murine vascular SMCs.22 We subsetted the full human atlas to

include only SMCs, pericytes, and a subset of fibroblasts and as-

sessed enrichment of lineage-traced murine SMC genemodules

on a per-cell basis using the UCell R package72 (method details).

We showed a progressive loss of the murine SMC contractile

signature within a portion of the human subset, coincident

with a gain in the Lgals3+ transitional gene signature (Figure 4A),

supporting a transitional SMC signature in humans. Further,

we detected an enriched signature of the murine calcification-

promoting fibrochondrocytes distinct from non-SMC-derived

fibroblasts. DE markers for each cluster and UCell module

enrichment scores were used to guide SMC annotation as con-

tractile, ECM-rich transitional SMCs, fibromyocytes, and FCs

(Figures 4B, 4C, and S4B).

We observed similar proportions of contractile, transitional

SMCs and fibromyocytes across arterial beds and lesion status,

consistent with previous reports.74 However, concordantly with

their role in calcification, FCs predominated in lesions compared

to non-lesion samples. The FC annotation was further supported

by higher ESm values for SOX9 and RUNX2 (Figure S4C), known

master regulators of SMC osteochondrogenic transitions.75

Globally, SMCs, transitional SMCs, fibromyocytes, and FCs

were enriched for relevant biological processes, thus validating

our annotation approach (Table S3). We also identified a cluster

enriched for the transitional SMC gene signature and expressing

lipid metabolism genes (APOE, APOC1, AGT), which we termed

‘‘foam-like’’ SMCs (Figures 4B, 4C, and S4D and Table S2).
represents the portion of cells expressing the gene per level 1 compartment.

luded studies, arterial beds (coronary/carotids), and lesion status (lesion, non-

el 1 cell annotations previously identified as differentially expressed (DE) using a

ses prioritizing the contribution of level 1-annotated cell types to cardiovascular

n analyses were carried out using an expression specificity matrix generated

.05 at –log10(p) = 1.301). GWAS, genome-wide association study. See also

Cell Reports 42, 113380, November 28, 2023 5



Figure 3. Atherosclerosis cell subpopulations (level 2) and distribution of myeloid subtypes across disease status

(A) UMAP embeddings of cell subtypes (level 2 annotations) within the largest level 1 cell compartments (T/NK, macrophage, endothelial, fibroblast).

(B) UMAP embeddings of canonical marker genes delineating immune and non-immune cell subtypes. SCTransform-normalized gene expression is indicated by

color.

(C) UMAP embeddings and bar plot of level 2 myeloid subtypes according to lesion status. Frequencies for each subtype are normalized to the total number of

cells in each condition (N lesion cells = 59,691; N non-lesion cells = 58,887) and shown as percentages. See also Figure S2.
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These cells expressed ECM-remodeling genes such as TIMP1

and pro-inflammatory genes CCL19, CCL2, and IGFBP3,

consistent with a potential role in leukocyte recruitment.76

Definition of etiologic SMC and immune phenotypes
We leveraged the above-defined granular SMC labels to investi-

gate the disease relevance of distinct modulated phenotypes.

Using both LDSC-SEG and MAGMA, fibromyocytes were the

most highly enriched SMC phenotype for CAD/MI traits (Fig-

ure 4D; Table S4). However, FCs were highly enriched for

CAC,49 further supporting the biology of CAC through this

SMC phenotype. While not significant, we observed trends of

CAD and CAC enrichment in foam-like SMC and contractile

SMCs, respectively.

Given the limitations of relying solely on cluster-specific

genes, we used an orthogonal approach to determine GWAS
6 Cell Reports 42, 113380, November 28, 2023
trait enrichment at single-cell resolution. Overall, estimation of

single-cell disease relevance scores (scDRSs)73 corroborated

our findings using level 1 annotations but also prioritized pro-in-

flammatory macrophages and foamy macrophages in WBC

counts and Alzheimer’s disease (AD), respectively (Figure 4E).

Beyond showing that fibromyocytes and foam-like SMCs had

slightly larger weights compared to other SMC clusters, this

analysis also revealed CAD enrichments in ECs and foamy mac-

rophages, which could have been previously missed when

surveying only highly specific genes. Among ECs, we found a

gradient in CAD where intimal and EndoMT ECs were slightly

more enriched than pro-inflammatory ECs.

Cell crosstalk in human atherosclerosis
To interrogate paracrine signaling in atherosclerosis, we

dissected cellular crosstalk from our level 1 and 2 annotations



(legend on next page)
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across lesion status using CellChat.77 We observed strong inter-

actions between SMCs and fibroblasts in non-lesion samples,

while SMC and EC interactions with macrophages and T/NK

were stronger in lesions (Figure 5A). Differential signaling

pathway enrichment analysis between SMCs and macrophages

revealed tumor necrosis factor alpha (TNFa) and platelet-derived

growth factor signaling pathways enriched in non-lesion

samples, whereas tumor necrosis factor-like weak inducer of

apoptosis (TWEAK)- and osteopontin (SPP1)-mediated signaling

pathways were enriched in lesion samples (Figure 5B; Table S5).

Signaling involving SPP1 specifically targeted SMCs and was

mostly driven by macrophage foam cell clusters (Figure 5C).

This is consistent with previous studies implicating these

signals in myeloid-SMC-mediated vascular inflammation and

calcification.

Leveraging our SMC subtype annotations, we observed more

TWEAK-mediated interactions between contractile/transitional

SMCs and distinct myeloid subtypes in lesion samples (Fig-

ure S5A). Instead, SPP1 signals from foamy macrophage cells

(foamy mac1) specifically targeted contractile and transitional

SMCs (Figures 5D and S5B). Using ligand-receptor interaction

analyses, we also found that myeloid-expressing genes encod-

ing SPP1 ligand preferentially signal to fibromyocyte and foam-

like SMCs via the heterodimeric ITGA8/ITGB1 receptor

(Figures 5E and S5C; Table S5).

Modeling of SMC gene expression across pseudotime
Current evidence suggests that SMCs transition into fibromyo-

cytes/FCs through an Lgals3+ transitional state.19,20 We

modeled SMC de-differentiation via pseudotime analysis using

Monocle 3,78 in which we definedMYH11-expressing contractile

SMCs as the starting point of phenotypic modulation, and we

predicted transitional SMCs to adopt either a fibromyocyte or

FC fate (Figure 6A). Moreover, we observed more FCs in lesion

samples toward late pseudotime, consistent with calcification

in advanced lesions (Figure S6A). We found similar densities of

SMCs from carotid/coronary arteries across pseudotime, sug-

gesting that SMCs from different vascular beds adopt a common

transitional state before ECM-rich phenotypes (Figure S6A).

We next investigated changes in gene expression programs

during SMC de-differentiation (method details) and found that

canonical contractile markers, such as ACTA2, were active early

in pseudotime. This coincided with expression of CAD GWAS

effector genes expressed early (e.g., TNS1 and FHL5), while
Figure 4. Characterization of etiologic SMC phenotypes for cardiovasc

(A) UCell72 enrichment of meta-analyzed SMCmurine genemodules (contractile, L

level 1 SMC compartment. A subset of human fibroblasts and pericytes were use

calculated using the Mann-Whitney U statistic.

(B) UMAP embeddings of SMC level 2 annotations in addition to pericytes and su

differentiation state in addition to differentially expressed markers from Louvain

(C) Dot plot showing expression of top marker genes after SCTransform norma

expressing the gene.

(D) LDSC-SEG and MAGMA analyses prioritizing the contribution of SMC phenoty

and AD were used as negative controls. The black line depicts the FDR significa

(E) Meta-analysis UMAP embeddings showing normalized scDRS73 scores for CA

in level 1 myeloid annotations. Red indicates cells enriched for the above-ment

muscle cell; GWAS, genome-wide association study; WBC, white blood cell; AD

Figure S4 and Tables S2 and S3.
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effector genes such as COL4A1/2, CDH13, and AGT were ex-

pressed late in pseudotime (Figures 6B and S3C). Pseudotime

DE genes were then grouped into modules specific to transi-

tional SMC (modules 5 and 10), fibromyocytes (module 4), and

FCs (module 9) to investigate genes relevant for each phenotypic

transition (Figure S6B; method details). Transitional SMC mod-

ules harbored genes involved in early SMC investment in athero-

sclerotic lesions (e.g., LGALS3),20 as well as cell division and

proliferation (e.g., TUBA1B and SIRT6)81 and ECM remodeling

(e.g., KRT8 and SPARC). As expected, fibromyocyte module 4

included known markers (e.g., FN1, VCAN, COL4A1/2,

PDGFRB). In contrast, the FC module 9 harbored chondro-

cyte-related genes such as BMP4,82 WISP2, and SPRY183 in

addition to known ECM genes LUM and DCN.

Wemodeled the expression dynamics of pseudotime-variable

fibromyocyte and FC genes along the SMC-transitional-fibro-

myocyte and SMC-transitional-FC axis (Figures 6B, 6C, and

S6C). Some fibromyocyte markers (e.g., FN1, AEBP1, and

LTBP1) and pioneer marker LGALS3 showed a steady increase

with adoption of the transitional state (Figure 6B), while genes

such as PDGFRB were active later, suggesting a role in SMC

transition toward fibromyocytes (Figure 6B). In parallel, evalua-

tion of FC markers and genes from module 9 revealed a steady

increase in COL1A2 and MMP2, whereas IBSP, CRTAC1, and

COMP were increased at later pseudotime stages, presumably

as transitional SMCs adopt an FC fate (Figure 6C).

TF activity inference analysis
We next investigated the upstream transcription factors (TFs)

driving cell-specific expression changes using TF activity infer-

ence with VIPER79 and the DoRothEA collection of human regu-

lons.80 This analysis corroborated known regulators of fibromyo-

cytes and FCs such as TCF21 and SOX9 (Figure 6D). We also

detected changes in AP-1 (e.g., JUN), TEAD, ETV, and ETS fac-

tor activity in fibromyocytes vs. FCs. We observed increased

regulon activity of the TGF-b signaling mediator SMAD3 in fibro-

myocytes and FCs compared to contractile and transitional

SMCs, with FCs showing the highest activity. We then interro-

gated our coronary artery single-nucleus assay for transpo-

sase-accessible chromatin using sequencing (snATAC-seq)

data84 using ArchR85 and confirmed increased accessibility of

AP1 factors; notably, we found that accessible regions in the

ECM-rich SMC cluster were specifically and highly enriched for

SMAD3 motifs compared to contractile SMCs (Figures S6D
ular traits and diseases

gals3+ transitional, fibrochondrocytes) and non-SMC-derived fibroblasts in the

d as negative enrichment controls for murine SMCmodules. UCell scores were

bset of fibroblasts. Annotations were defined using UCell scores to guide SMC

clusters.

lization for SMC level 2 annotations. Dot size represents the portion of cells

pes, pericytes, and fibroblasts to cardiovascular GWAS traits. Type 2 diabetes

nce threshold (FDR < 0.05 at –log10(p) = 1.301).

D and immune traits (WBC count and AD) previously shown as highly enriched

ioned traits, while non-relevant cells are denoted in dark blue. SMC, smooth

, Alzheimer’s disease; scDRS, single-cell disease relevance score. See also
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and S6E). This suggests that SMAD3 activity is critical as SMCs

transdifferentiate toward more synthetic phenotypes.

CRTAC1 and LTBP1 as candidate markers of FC and
fibromyocytes in human atherosclerosis
Fibromyocytes and FCs play major roles in atherosclerotic lesion

stability.18,20 However, there is limited characterization of

distinct markers for these SMC subtypes in humans. In addition

to validating known markers of FCs (CYTL1, COMP, COL1A1/

2),22,86 we found that cartilage acidic protein (CRTAC1) was ex-

pressed 3-fold higher relative to other SMC clusters (Table S2).

CRTAC1 is a specific marker of human chondrocytes during

ossification,82,87 and it is implicated in osteoarthritis.88 However,

it has not been identified in mouse atherosclerosis studies,

potentially suggesting specificity for human SMCs. The top fi-

bromyocyte markers (Figure 4C; Table S2) also revealed latent

transforming growth factor binding protein 1 (LTBP1), a key

regulator of TGF-beta secretion and activation,89 which may

also contribute to SMC modulation and plaque stability but re-

mains underexplored in atherosclerosis.

Both CRTAC1 and LTBP1 are enriched in artery tissues

compared to other tissues in GTEx and predominantly ex-

pressed in SMCs from level 1 annotations (Figure S7A). We

also observed expression of CRTAC1 in SMCs enriched for the

murine FC gene signature (Figures 4A and S7B) along with the

calcification marker, IBSP,20,75,86,90 while LTBP1 showed

gradual upregulation from contractile SMCs to fibromyocytes,

consistent with our previous pseudotime results (Figure 6B).

Both CRTAC1 and LTBP1 were positively correlated with known

osteochondrogenic or fibromyocyte markers, respectively

(Figures 7B and 7C), but CRTAC1 was more negatively corre-

lated with canonical SMC markers. This suggests SMC expres-

sion of these genes is associated with a progressive loss of the

contractile phenotype and gain of synthetic and pro-calcification

gene programs.91,92

To validate CRTAC1 and LTBP1 markers of human athero-

sclerosis, we queried in-house and public bulk transcriptomic

datasets.93 We found that CRTAC1 expression was significantly

upregulated in advanced coronary lesions compared to non-

lesion control/subclinical samples, while LTBP1 expression

was downregulated in advanced lesions, similar to known fibro-

myocyte genes TCF21 and VCAN (Figure 7D). Based on these

findings, we also performed differential expression analysis in

meta-analyzed SMCs according to lesion category (method de-

tails). Similar to our bulk coronary results, LTBP1 was signifi-

cantly downregulated in lesion SMCs, whereasCRTAC1was up-
Figure 5. Summary of cell crosstalk in human atherosclerosis

(A) Circle plots depicting aggregated cell-cell communication network for level

include secreted signaling and ECM-receptor and cell-cell contacts. Interactions w

30% of interactions are shown in the plot.

(B) Stacked bar plot showing conserved and disease status-specific signaling pa

(sum of communication probability among all pairs of cell groups in the inferred

(p < 0.05) enrichments in each disease condition.

(C) Circle plot depicting sources and targets for SPP1 signaling using level 2 ann

(D) Circle plot depicting SPP1 signaling sources and targets for level 2 myeloid a

(E) Summary dot plot of ligand-receptor interactions for level 2 myeloid and SMC

were defined as signaling targets. Width of the edges in the circle plot depicts the

See also Figure S5 and Table S5.
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regulated in SMCs from samples with evidence of

atherosclerosis (Figure S7C). Furthermore, CRTAC1 was upre-

gulated in unstable versus stable carotid plaque regions in a

bulk RNA-seq carotid dataset,93 whereas LTBP1 and other fibro-

myocyte genes showed the opposite trend (Figure S7D).

Next, we queried the Stockholm-Tartu Atherosclerosis

Reverse Network Engineering Task (STARNET) gene regulatory

networks across seven cardiometabolic tissues.94 CRTAC1

was identified as a significant key driver within its co-expression

module (Table S6), which was highly associated with CAD

genes, C-reactive protein, and LDL cholesterol (Figure 7E). The

CRTAC1 module was enriched for calcification-related GO

terms, whereas the LTBP1 module was enriched for cholesterol

traits and ECM remodeling terms (Figure S7E; Table S6). Thus,

our findings implicate LTBP1 in earlier stages of SMCmodulation

as well as plaque stability concomitant with lesion progression.

Our analyses also postulate CRTAC1 as a candidate human-

specificmarker of osteogenic SMCs in advanced atherosclerotic

lesions.

Ex vivo validation of LTBP1 and CRTAC1 in
atherosclerotic coronary arteries
We validated the protein localization of these candidate markers

by immunostaining in atherosclerotic human coronary arteries.

Immunofluorescence results showed LTBP1 localized in medial

and fibrous neointimal regions of early lesions (Figures 7F and

S8A–S8C). Remarkably, we observed a more uniform neointimal

expression in subclinical lesions compared to advanced lesions,

which showedmore heterogeneous expression along the vulner-

able and lipid-rich shoulder regions from representative sam-

ples. We also observed LTBP1+ cells in the fibrous cap of

advanced coronary lesions (Figure S8C). Immunohistochemistry

and RNAscope in situ hybridization further confirmed LTBP1

localization to medial and intimal regions of control/subclinical

coronary segments, while CRTAC1 was only detected in the

lesion area of advanced atherosclerotic samples (Figures 7G,

S9A, and S9B).

Finally, we validated the expression of LTBP1 and CRTAC1 in

contractile and modulated SMCs, respectively, by reprocessing

an external human carotid plaque scRNA-seq dataset95 (Fig-

ure S9C), further confirming the relevance of these genes across

atheroprone arterial beds. These data together support the po-

tential role of LTBP1 and CRTAC1 as markers of plaque stability

and/or lesion progression in fibromyocytes and FC, respectively,

which could be further investigated in genetic models of athero-

sclerosis or plaque rupture.
1 cell compartments leveraging the CellChat77 human database. Interactions

ere calculated separately across disease status (lesion vs. non-lesion). The top

thways. Signaling enrichment is based on pathway information flow changes

network). Pathways in bold denote those that showed statistically significant

otations for myeloid cells and level 1 SMC annotations.

nd SMC annotations.

annotations. Myeloid subtypes were defined as signaling sources, while SMCs

weight/strength of the interactions in (A), (C), and (D). ECM, extracellular matrix.
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DISCUSSION

This study generates a comprehensive single-cell transcriptomic

atlas of human atherosclerosis including 118,578 high-quality

cells from atherosclerotic coronary and carotid arteries. By per-

forming systematic benchmarking of integration methods, we

mitigated data overcorrection while separating major cell line-

ages (Figures S1C–S1H; method details). Notably, we define

cell subtypes that have not been previously identified from indi-

vidual human atherosclerosis scRNA-seq studies. We leverage

this scRNA-seq reference to investigate SMC phenotypic modu-

lation in humans and identify etiologic SMC subtypes for CVD

GWAS traits, including CAD and CAC. We derive insights into

SMC-myeloid cell crosstalk and gene regulatory networks in

atherosclerotic lesions. Finally, we uncover two candidate SMC

subtype-specific markers of plaque stability and calcification.

An inherent challenge in single-cell studies is cell cluster label-

ing, particularly when defining cell states/phenotypes. Our sys-

tematic labeling approach allowed corroboration of reported

SMCmurine phenotypes,18–20 but it also unveiled rare SMCclus-

ters including a ‘‘foam-like’’ state, supporting previous evidence

of an SMC-derived foam-like phenotype upon exposure to lipo-

proteins96,97 and in human lesions.98 Tissue digestion and/or sin-

gle-cell isolation procedures may explain the low abundance of

foam-like SMCs in individual studies. Foam-like cells expressed

lipid metabolism genes (e.g., APOE, APOC1) but not other tradi-

tional foamy macrophage markers, in line with previous find-

ings.98 Expression of ECM genes such as TIMP1 suggests

SMC-derived foam cells may acquire a unique gene signature,

suggesting that modulated SMCs accumulate lipids in plaques

without adopting monocyte-derived foam macrophage tran-

scriptional signatures.18

Previous work from our group and others50,95,99 established a

substantial contribution of SMCs toward CAD risk. Our granular

SMC annotations now refine etiologic SMC phenotypes for CVD

traits. We further deconvolve the SMC signal to prioritize fibro-

myocytes, transitional SMCs, and foam-like SMCs underlying

CAD. Using GWAS-based heritability, we demonstrate enrich-

ment of a fibromyocyte-specific transcriptional signature for

MIs, supporting their role in plaque stability, and the importance

of targeting this SMC phenotype for future therapeutic interven-

tions. We also link SMC-derived FCs to CAC, an established

pathological hallmark of subclinical and advanced atheroscle-

rotic lesions.100 These findings highlight the power of integrating

single-cell and human genetic data to discover atherosclerosis-

relevant cell states/phenotypes such as fibromyocytes and FCs.
Figure 6. Pseudotime and TF inference activity for ECM-rich SMC phe
(A) UMAP embeddings showing the contractile-to-modulated SMC pseudotim

included contractile, transitional SMCs, fibromyocytes, and fibrochondrocytes (F

SMC subset with highest MYH11 expression.

(B) Heatmap showing the top 500 SMC differentially expressed (DE) genes acro

entially expressed across pseudotime. The black arrow indicates a gradual incre

(C and D) Cubic spline interpolation of SCTransform-normalized gene expressio

Seurat DE tests (FDR < 0.05). Genes from SMCs to fibromyocytes trajectory: FN

IBSP, CRTAC1, COMP, MMP2.

(E) TF activity prediction with VIPER79 leveraging DoRothEA regulons80 for SMC p

analysis. Highly variable TFs were selected for plotting, and scale indicates relat

ciation study; CAD, coronary artery disease; TF, transcription factor. See also m
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Though fibromyocytes and FCs originate from SMCs,18–20,101

these two ECM-producing phenotypes play distinct roles in

plaque stability9 and may follow shared or unique fates. Using

pseudotime analysis, we infer transitional SMCs could adopt

either fibromyocyte or FC fates. This, however, does not pre-

clude the possibility that fibromyocytes could be primed to

become FCs as Cheng et al.76 and our TF activity inference re-

sults suggest, but it implies an alternative modulation path.

However, additional lineage-tracing experiments are needed

to address this possibility. To refine the SMC regulatory land-

scape, we validated known vascular TFs such as TCF21 and

SOX9 but also mitogenic TFs such as MYC in transitional

SMCs and AP-1 and TEAD factors across fibromyocytes and

FCs. We also observed higher motif accessibility of the CAD-

associated gene SMAD399,102 in ECM-rich SMCs (fibromyo-

cytes/FCs) compared to contractile SMCs in our snATAC

data.84

The precise causal mechanism of SMAD3 in SMC calcification

and CAD risk remains inconclusive. It has been shown that

SMAD3 can stimulate chondrogenesis in mesenchymal stem

cells by enhancing SOX9 transcriptional activity103,104 and is up-

regulated in murine FCs along with other key bone factors such

as BMP2 and SOX9.86 Concordantly, our TF regulon and snA-

TAC-seq analyses confirmed increased SMAD3 activity along

the transitional SMC-fibromyocyte-FC continuum. We note

that although these results point toward a potential association

between increased SMAD3 expression and CAD risk through

an SMC osteochondrogenic transition, prior murine studies

showed that an SMC-specific Smad3 knockout increased pla-

que burden.76 This discrepancy may be attributed to distinct

roles across different states of the SMC modulation continuum

and differences intrinsic to species and/or vascular beds, which

further reinforces the importance ofmore in-depth human single-

cell studies.

Our integrative analyses also revealed a potential role for

LTBP1 in SMCs. Early studies demonstrated a critical role

for LTBP1 in intimal thickening and promoting SMC migration

in diabetic rat aortas.105 Expression quantitative trait loci

(eQTL) studies have also identified regulatory variants associ-

ated with LTBP1 expression in cultured SMCs106 and aortic

tissue.107 Here, we showed LTBP1 expression in native con-

tractile SMCs in the medial layer of coronary arteries and

also in the fibrous neointima. Furthermore, LTBP1 expression

in the fibrous cap of coronary lesions in addition to upregula-

tion in stable regions of carotid plaques93 and the meta-

analyzed fibromyocyte cluster suggests a protective role
notypes
e trajectory calculated with Monocle3.78 SMC phenotypes for this analysis

Cs). The numbered circle depicts the trajectory root defined as the contractile

ss pseudotime. Bolded genes depict GWAS CAD SMC effector genes differ-

ase in pseudotime toward the right.

n as a function of pseudotime. Genes plotted include hits from Monocle3 and

1, LGALS3, AEBP1, LTBP1, PDGFRB. From SMCs to FC trajectory: COL1A2,

henotypes. Only regulons with high confidence scores (A–C) were used for this

ive predicted activity. SMC, smooth muscle cell; GWAS, genome-wide asso-

ethod details and Figures S3 and S6.
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Figure 7. CRTAC1 and LTBP1 are candidate markers of atherosclerosis progression

(A) UMAP embeddings of CRTAC1 and LTBP1 expression within the subset defined in Figure 4A. IBSP and VCAN are provided as calcification and fibromyocyte

markers, respectively.

(B) Pearson correlation plot of CRTAC1 versus all genes across contractile SMC and FC clusters. Examples of osteochondrogenic and contractile genes are

shown.

(legend continued on next page)
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mediated by SMCs transitioning toward a more synthetic

state. However, we note LTBP1 is not an established CAD

GWAS locus, and regulatory variants found in QTL studies

may be associated with disease progression rather than

initiation. We also identified CRTAC1 as a previously unchar-

acterized FC marker with increased RNA and protein expres-

sion observed in advanced coronary lesions. Importantly,

CRTAC1 has been recently established as a novel CAD

GWAS locus in participants of European ancestry,48 and our

results suggest a potential mechanism of action through

SMC modulation into an osteochondrogenic phenotype.
Limitations of the study
We acknowledge some limitations in our study related to lesion

status comparisons and the challenges of annotating cell sub-

types using transcriptomics data. The limitation arises from the

sourced datasets included in this meta-analysis (e.g., non-lesion

samples came from patients with non-ischemic dilated cardio-

myopathies,17 and inflammatory cell populations could be con-

sequences of myocardial inflammation or secondary subclinical

diffuse intimal thickening), and while themajority of the cell types

were balanced across samples, it is difficult to disentangle bio-

logically meaningful processes or technical factors. The inherent

sparsity of scRNA-seq data presents a challenge when anno-

tating cell types with lower RNA, and future iterations of this

reference could explore the effects of imputing meta-analyzed

data and refining markers for less abundant cell types. Further-

more, while we performed careful level 2 annotations to identify

CRTAC1 and LTBP1 as promising SMC biomarkers, we

acknowledge the need for systematic protein-level and experi-

mental validation to confirm their precise functions in atheroscle-

rosis. Nonetheless, our atlas represents a valuable resource of

the most relevant atherosclerotic arterial beds providing a

comprehensive map of cell diversity in human lesions. With

newly generated single-cell datasets, there will be a need to

address the variability of reported phenotypes, and single-cell

meta-analyses are a powerful tool to do so. Capture of both

robust and subtle signals is expected to improve with future iter-

ations. Ultimately, this will catalyze mechanistic and translational

studies contributing toward innovative therapeutic strategies

for CAD.
(C) Pearson correlation plot of LTBP1 versus all genes across contractile SMC

upregulated during SMC modulation18 are shown.

(D) Bulk RNA-seq expression of CRTAC1, IBSP, LTBP1, and TCF21 in human co

represents normalized expression counts (TPMs). p values were calculated using

the inter-quartile (IQR) range with upper (75%) and lower (25%) quartiles shown,

(E) Clinical trait enrichment for CRTAC1-containing module in subclinical mamm

(gene level) were aggregated for each co-expression module using a two-sided

estimated by a hypergeometric test.

(F) Representative H&E and LTBP1 immunofluorescence staining in human athero

stage IV–V lesions (n = 4) (Stary classification). Two regions of interest (ROIs) per s

magnification, with LTBP1 (red), alpha-smooth muscle actin (a-SMA; green), and

0.1 mm (left) and 30 mm (right) in ROIs.

(G) Representative H&E andRNAscope staining of LTBP1 andCRTAC1 in human c

lesions (n = 4) (Stary classification). Two ROIs per condition are shown on the righ

DAPI-stained nuclei (blue). Pink arrows point to LTBP1+/LMOD1+ cells, while whit

(right) in ROIs in RNAscope. Scale bars represent 1mm for H&E images in (G) and (

and S7–S9 and Table S6.
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Antibodies

Rabbit polyclonal anti-LTBP1 (Latent

transforming growth factor b binding

protein 1)

Proteintech Cat# 26855-1-AP; RRID: AB_2880658

Mouse monoclonal anti-ACTA2-FITC

(Actin, a-Smooth Muscle-FITC)

Sigma-Aldrich Cat# F3777; RRID: AB_476977

Rabbit polyclonal anti-CRTAC1 (Cartilage

acidic protein 1)

Proteintech Cat# 13001-1-AP; RRID: AB_10638787

Donkey anti-Rabbit IgG (H + L) Highly

Cross-Adsorbed Secondary Antibody,

Alexa Fluor 555

Thermo Fisher Scientific Cat# A-31572; RRID: AB_162543

Critical commercial assays

RNAscope Multiplex Fluorescent Assay v2 Advanced Cell Diagnostics Cat# 323270

LMOD1 RNAscope probe Advanced Cell Diagnostics Cat# 444141

LTBP1 RNAscope probe Advanced Cell Diagnostics Cat# 523281

CRTAC1 RNAscope probe Advanced Cell Diagnostics Cat# 1094551

HybEz oven unit Advanced Cell Diagnostics Cat# 321710

Vulcan Fast Red Chromogen Kit 2 Biocare Medical Cat# FR805S

Peroxidase 1 Biocare Medical Cat# PX968H

MACH4 MP AP-Polymer Biocare Medical Cat# MRAP536G

Deposited data

scRNA-seq data for human coronary and

carotid tissues

Wirka et al.18; Pan et al.19;

Alsaigh et al.16; Hu et al.17;

Slenders et al.95

GEO: GSE131778 (Wirka), GSE155512

(Pan), GSE159677 (Alsaigh), Zenodo:

https://doi.org/10.5281/zenodo.6032099

(Hu) and Dataverse: https://dataverse.nl/

dataverse/umculab (Slenders)

Bulk human coronary RNA sequencing

(raw files and TPMs)

In-house GEO: GSE225650

snATAC sequencing (raw and

processed data)

In-house GEO: accession IDs GSE175621 and

GSE188422

Bulk human carotid RNA sequencing

(FPKMs)

Mahmoud et al.93 GEO: accession ID GSE120521

GWAS summary statistics for coronary

artery disease (CAD) - Multi-ancestry

Tcheandjieu et al.48 GWAS catalog: https://www.ebi.ac.uk/

gwas/studies/GCST90132305

GWAS summary statistics for

CAD - European ancestry

van der Harst et al.42 GWAS catalog: https://www.ebi.ac.uk/

gwas/studies/GCST005194

GWAS summary statistics for

myocardial infarction

Hartiala et al.43 GWAS catalog: https://www.ebi.ac.uk/

gwas/studies/GCST011365

GWAS summary statistics for

coronary artery calcification

Kavousi et al.49 GWAS catalog: https://www.ebi.ac.uk/

gwas/studies/GCST90278456

GWAS summary statistics for

carotid plaque

Franceschini et al.44 GWAS catalog: https://www.ebi.ac.uk/

gwas/studies/GCST001231

GWAS summary statistics for

pulse pressure

Giri et al.45 dbGaP: accession ID phs001672.v1.p1

GWAS summary statistics for

Alzheimer’s disease

Jansen et al.46 https://ctg.cncr.nl/software/

summary_statistics

GWAS summary statistics for

white blood cell count

Sudlow et al.47 http://www.nealelab.is/uk-biobank
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GWAS summary statistics for type 2

diabetes

Sudlow et al.47 http://www.nealelab.is/uk-biobank

GWAS summary statistics for

body mass index

Sudlow et al.47 http://www.nealelab.is/uk-biobank

Software and algorithms

Custom analysis scripts In-house https://github.com/MillerLab-CPHG/

Human_athero_scRNA_meta https://doi.

org/10.5281/Zenodo.8418736

Custom scRNA processing pipeline In-house https://github.com/MillerLab-CPHG/

scRNAutils https://doi.org/10.5281/

Zenodo.8418743

R 4.0.3 R Core Team https://www.r-project.org/

R package Seurat v4.1.0 Stuart et al.26 https://github.com/satijalab/seurat

R package sctransform v0.3.3 Hafemeister et al.27 https://github.com/satijalab/sctransform

R package scDblFinder v1.4.0 Germain et al.24 https://github.com/plger/scDblFinder

R package celda v1.6.1 Yang et al.25 https://github.com/campbio/celda

R package harmony v1.0.0 Korsunsky et al.28 https://github.com/immunogenomics/

harmony

R package scanorama v1.7.1 Hie et al.29 https://github.com/brianhie/scanorama

R package reticulate v1.18 CRAN https://rstudio.github.io/reticulate/

R package lisi v1.0.0 Korsunsky et al.28 https://github.com/immunogenomics/LISI

R package kBET v0.99.6 Buttner et al.30 https://github.com/theislab/kBET

R package DescTools v0.99.49 CRAN https://andrisignorell.github.io/DescTools/

R package cluster v2.1.0 CRAN https://cran.r-project.org/web/packages/

cluster/index.html

R package SeuratDisk v0.0.0.9019 Stuart et al.26 https://github.com/mojaveazure/

seurat-disk

Celltypist command line tool v1.0.0 Dominguez Conde et al.32 https://github.com/Teichlab/celltypist

R package biomaRt v2.46 Durinck et al.108 https://bioconductor.org/packages/

release/bioc/html/biomaRt.html

R package UCell v1.3.1 Andreatta et al.72 https://github.com/carmonalab/UCell

Python package CELLECT v1.3.0 Timshel et al.36 https://github.com/perslab/CELLECT

S-LDSC v1.0.0 Finucane et al.40 https://github.com/bulik/ldsc

MAGMA v1.0.7 De Leeuw et al.41 https://ctg.cncr.nl/software/magma

scDRS command line tool v1.0.2 Zhang et al.73 https://github.com/martinjzhang/scDRS

Python package scanpy v1.9.3 Wolf et al.109 https://github.com/scverse/scanpy

R package CellChat v1.5.0 Jin et al.77 https://github.com/sqjin/CellChat

R package Monocle3 v1.0.0 Cao et al.78 https://cole-trapnell-lab.github.io/

monocle3/

R package pheatmap v1.0.12 CRAN https://github.com/raivokolde/pheatmap

R package DoRothEA v1.8.0 Garcia-Alonso et al.80 https://saezlab.github.io/dorothea/

R package VIPER v1.24.0 Alvarez et al.79 https://bioconductor.org/packages/

release/bioc/html/viper.html

R package gProfiler2 v0.2.1 Kolberg et al.110 https://cran.r-project.org/web/packages/

gprofiler2/index.html

R package gosemsim v2.16.1 Yu et al.111 https://bioconductor.org/packages/

release/bioc/html/GOSemSim.html

STAR v2.7.3a Dobin et al.112 https://github.com/alexdobin/STAR/

releases

WASP v0.3.4 van de Geijn et al.113 https://github.com/bmvdgeijn/WASP

RSEM package Li and Dewey114 https://deweylab.github.io/RSEM/

README.html
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Cell Reports 42, 113380, November 28, 2023 21

Article
ll

OPEN ACCESS

http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
https://github.com/MillerLab-CPHG/Human_athero_scRNA_meta
https://github.com/MillerLab-CPHG/Human_athero_scRNA_meta
https://doi.org/10.5281/Zenodo.8418736
https://doi.org/10.5281/Zenodo.8418736
https://github.com/MillerLab-CPHG/scRNAutils
https://github.com/MillerLab-CPHG/scRNAutils
https://doi.org/10.5281/Zenodo.8418743
https://doi.org/10.5281/Zenodo.8418743
https://www.r-project.org/
https://github.com/satijalab/seurat
https://github.com/satijalab/sctransform
https://github.com/plger/scDblFinder
https://github.com/campbio/celda
https://github.com/immunogenomics/harmony
https://github.com/immunogenomics/harmony
https://github.com/brianhie/scanorama
https://rstudio.github.io/reticulate/
https://github.com/immunogenomics/LISI
https://github.com/theislab/kBET
https://andrisignorell.github.io/DescTools/
https://cran.r-project.org/web/packages/cluster/index.html
https://cran.r-project.org/web/packages/cluster/index.html
https://github.com/mojaveazure/seurat-disk
https://github.com/mojaveazure/seurat-disk
https://github.com/Teichlab/celltypist
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://github.com/carmonalab/UCell
https://github.com/perslab/CELLECT
https://github.com/bulik/ldsc
https://ctg.cncr.nl/software/magma
https://github.com/martinjzhang/scDRS
https://github.com/scverse/scanpy
https://github.com/sqjin/CellChat
https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/
https://github.com/raivokolde/pheatmap
https://saezlab.github.io/dorothea/
https://bioconductor.org/packages/release/bioc/html/viper.html
https://bioconductor.org/packages/release/bioc/html/viper.html
https://cran.r-project.org/web/packages/gprofiler2/index.html
https://cran.r-project.org/web/packages/gprofiler2/index.html
https://bioconductor.org/packages/release/bioc/html/GOSemSim.html
https://bioconductor.org/packages/release/bioc/html/GOSemSim.html
https://github.com/alexdobin/STAR/releases
https://github.com/alexdobin/STAR/releases
https://github.com/bmvdgeijn/WASP
https://deweylab.github.io/RSEM/README.html
https://deweylab.github.io/RSEM/README.html


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

WGCNA Langfelder and Horvath115 https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/

WGCNA/

GENIE3 Huynh et al.116 https://github.com/vahuynh/GENIE3

R package zinbwave v1.12.0 Van den Berge et al.117 https://github.com/drisso/zinbwave

R package DESeq2 v1.30.1 Love et al.118 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

CellRanger ATAC v1.2.0 10x Genomics https://support.10xgenomics.com/

single-cell-atac/software/pipelines/latest/

installation

R package ArchR v1.0.2 Granja et al.85 https://www.archrproject.com/

R package ChromVAR v1.12.0 Schep et al.119 https://github.com/GreenleafLab/

chromVAR
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr. Clint

Miller (clintm@virginia.edu).

Materials availability
This study did not generate new unique reagents. Commercially available reagents are listed in the key resources table.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table. All raw and processed bulk RNA-sequencing data are available in the Gene Expression Omnibus (GEO) database and are

publicly available as of the date of the publication under the GEO accession number GSE225650.

d All original code has been deposited on GitHub and is publicly available as of the date of publication. DOIs for the analysis and

pipeline repositories (Zenodo: https://doi.org/10.5281/Zenodo.8418736 and https://doi.org/10.5281/Zenodo.8418743) are

also listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Collection of human coronary artery samples for bulk RNA-seq data generation as well as histology and immunofluorescence/RNA-

scope analyses described in this manuscript complies with ethical guidelines for human subjects research under approved Institu-

tional Review Board (IRB) protocols at Stanford University (no. 4237 and no. 11925) and the University of Virginia (no. 20008), for the

procurement and use of human tissues and information, respectively. The mean age for individuals in the paired bulk transcriptomic

analyses was 51 ± 14 years. Furthermore, 27% of the included samples were female. Additional details about age, sex, and ancestry

for each individual can be found in Hodonsky et al.120 Additional information on coronary artery tissue collection can be found in

method details. Metadata from human samples used in the scRNA-seq meta-analysis can be found in Table S1.

METHOD DETAILS

Quality control and normalization of scRNA-seq sequencing libraries
Raw count matrices from each library across the 4 studies were downloaded from GEO and Zenodo (Table S1). Processing for each

of the 22 sequencing libraries was standardized in the following manner: Each library was loaded into the R programming environ-

ment (v4.0.3) using Seurat26 (v4.1.0). For each library we did a first pass of clustering with SCTransform normalization27 without

removing low-quality cells.

In order to remove doublets, we referred to a recent benchmark of doublet-removal tools121 and chose the scDblFinder R pack-

age24 (v1.4.0) given its superior accuracy compared to other tools. Seurat objects for each library were converted to

SingleCellExperiment objects and used as input to generate artificial doublets using the cluster-based modality of scDblFinder.

Briefly, scDblFinder creates a k-nearest-neighbors graph using the union of real cells and artificial doublets and estimates the density

of artificial doublets in the neighborhood of each cell. Since artificial-doublet generation approaches tend to display slight variance
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across different runs, we only kept consensus doublets from 3 iterations of the above-described process. Cell-barcodes that were

marked as doublets were then removed from each raw counts matrix.

Ambient RNA contamination is a key issue during 10x protocols and can negatively impact clustering and extraction of gene

markers. To filter out reads from ambient RNA, we ran DecontX25 within the celda R package (v1.6.1) in doublets-filtered raw counts

matrices using default parameters. The decontaminated raw count matrices output by DecontX were then added into each Seurat

object. We then set quality filters to keep cells that had 1)R 200 and% 4000 uniquely expressed genes 2)R 200 and% 20000 UMIs

3)% 10%of readsmapped to themitochondrial genome; cells with high percentages of readsmapped tomitochondrial genomes are

considered to be low quality as this indicates cell membrane breaches and 4) % 5% of reads mapped to hemoglobin genes since

these cells likely depict contaminating erythrocytes as done in Alencar et al., 2021.

Raw count matrices were then normalized using SCTransform27 with parameter (vst.flavor = v2), which accounts for sequencing

depth variability across cells. This omits the need for heuristic steps such as log-transformation and it has been shown to improve

variable gene selection, dimensionality reduction and differential expression.27 To avoid clustering results confounded by cell cycle

state, cell cycle variance was regressed out during SCTransform normalization. We then carried out dimensionality reduction of the

normalized counts matrix using PCA. The first 30 principal components (PCs) were used as input for clustering in Seurat, which relies

on a Shared-Nearest-Neighbors (SNN) and Louvain community detection approach. We then applied Uniform Manifold Approxima-

tion and Projection (UMAP) non-linear dimensionality reduction using the first 30 PCs. UMAP embeddings were used for visualization

of Louvain clustering results. Processed matrices were then stored as seurat objects for batch-correction.

Integration benchmark of scRNA libraries
The choice of single-cell integration approach highly depends on the context of the individual datasets, themagnitude of batch effect,

and cell number. In order to harmonize processed sequencing libraries, we selected the followingmethods recommended from three

recent benchmarks33,34,122 of single-cell transcriptomic data integration: Canonical Correlation Analysis +Mutual Nearest Neighbors

(CCA+MNN), reciprocal PCA (rPCA)26 (v4.1.0), Harmony28 (v1.0) and Scanorama29 (v1.7.1). For the benchmark, we used a subset of

the data including 3 studies: Wirka et al., 2019,18 Alsaigh et al., 202216 and Pan et al., 202019 Libraries from these studies were in-

tegrated as follows.

CCA+MNN

We created a list of selected Seurat objects and then selected 3000most highly variable genes. Integration with those variable genes

was done using the PrepSCTIntegration, FindIntegrationAnchors and IntegrateData functions. The batch-corrected expression ma-

trix was then used for PCA dimensionality reduction, creation of the shared-nearest-neighbors (SNN) graph using 30 PCs and visu-

alization with UMAP embeddings.

Harmony

Libraries were first stored into a list and highly variable genes extracted using the function SelectIntegrationFeatures. Libraries were

merged into a single Seurat object and the list of highly variable genes was used for PCA dimensionality reduction. We used the first

30 PCs as input for RunHarmony from the harmony package (v1.0.0), setting sequencing libraries (sample column inmetadata) as the

variables to correct for batch effects. Harmony embeddings were used for subsequent generation of the SNN graph, Louvain clus-

tering and visualization with UMAP by setting reduction = ’’Harmony’’ within the FindNeighbors and RunUMAP Seurat functions and

using the first 30 PCs.

Reciprocal PCA (rPCA)

we created a list of processed Seurat objects and extracted the 3000most highly variable genes using SelectIntegrationFeatures. We

then ran PCA across each library using the 3000 variable genes, identified integration anchors using FindIntegrationAnchors setting

reduction = ’’rpca’’ and harmonized datasets using IntegrateData. As done for CCA, the batch-corrected expression matrix was then

used for PCA dimensionality reduction, creation of the shared-nearest-neighbors (SNN) graph using 30 PCs, and Louvain clustering

followed by visualization with UMAP embeddings.

Scanorama

We used the reticulate R package (v1.18) to import the Scanorama python module (v1.7.1) into the R environment. We created a list

with Seurat objects containing the datasets to be integrated and stored normalized SCTransform-normalized counts and gene

names for each dataset into a new list. We then batch-corrected the data using the function using the correct function from the Sca-

norama package setting the following parameters (return_dimred = TRUE and return_dense = TRUE). The batch-corrected expres-

sion matrix output by correct() was used to create a new Seurat object and Scanorama-produced dimensionality-reduced embed-

dings were inserted into the Seurat object using the CreateDimReducObject function. Scanorama embeddings were subsequently

used to create a shared-nearest-neighbors (SNN) graph for Louvain clustering and for visualization with UMAP using the first 30 PCs.

Metrics used for benchmarking
After integrating libraries as described above, we then evaluated the efficiency of batch removal and conservation of biological signal

for each method using the following metrics.
Cell Reports 42, 113380, November 28, 2023 23



Article
ll

OPEN ACCESS
Running time measurements

Running times for each integration task were then measured using base R Sys.time functions. Sys.time was defined at the beginning

and the end of each integration task and then the time difference was calculated as end_time - start_time. From this benchmark, we

found that Harmony substantially outperformed the other 3 algorithms followed by rPCA (Figure S1C).

Local Inverse Simpson’s Index (LISI) scores

Briefly, integration LISI (iLISI) scores are a measure of the batch diversity within each cell neighborhood on a k-nearest-neighbor

(KNN) graph. Higher iLISI scores depict increased mixing of batches within a cell neighborhood and therefore suggest improved

removal of batch effects. For each of the integration methods above mentioned, we extracted PCA embeddings (30 first PCs)

from the corresponding integrated Seurat object. We then created a data framewith each row corresponding to one cell and columns

depicting batch variables (‘‘Study’’). We then computed iLISI scores for each cell using the compute_lisi function from the lisi R pack-

age28 (v1.0.0). Mean iLISI values were plotted and compared across different integration methods. iLISI scores showed CCA as the

top performer followed by rPCA (Figure S1D).

We also took into account conservation of biological signals since batch removal can sometimes lead to overcorrection of the data

(e.g., SMCs and Fibroblasts clustering together). We assumed that Louvain clusters should represent different cell types or subtypes,

and thus calculated cell type LISI (cLISI) scores tomeasure conservation of biological variation.With the assumption that each cluster

should generally harbor cells from the same broad lineage or subtype, we created a dataframe with each row corresponding to each

cell and a column depicting Louvain cluster identities. cLISI scores for each cell were calculated and plotted as described above.

Computation of cLISI scores revealed rPCA as the method with the highest conservation of biological signal (Figure S1E).

Principal component regression

Principal component analysis (PCA) is a widely used dimensionality reduction technique in single-cell analyses. PCA operates

through an orthogonal transformation of the counts matrix into a set of linearly correlated variables. PCs correspond to the eigenvec-

tors of the covariance matrix and are sorted according to the amount of explained variance of the data. The assumption of this

approach is that if a strong batch effect is present in the data, it contributes to a substantial amount of variance. and the correspond-

ing batch covariate should significantly correlate with some of the PCs. Therefore, we should obtain a strong effect size when re-

gressing the batch covariate B and the ith PC. This effect size, or regression coefficient is an approximation of the variance explained

by B in each PC (PC regression).

To perform PC regression, we extracted the PCA embeddings from each integrated object (n = 30 PCs) and created a batch vector

Bwith batch labels for each cell.We then fit a linear model of PCs explained variance and a batch variable B using the pcRegression

function from the kBET R package30 (v0.99.6) setting n_top = 30.We report the total contribution of the batch effect to the variance in

the data, which can be approximated by

Var ðCjBÞ =
XG

i = 1

VarðCjPCiÞ $ R2ðPCijBÞ

Where VarðCjPCiÞ is the variance of C explained by the ith PC and R2 the effect size of regressing each principal component PCi on

the batch variable B. Our PC regression analysis showed Harmony as the method where batch effects explained less of the variance

in the input PC embeddings (highest -Log10(R
2Var)). Harmony was followed by CCA and rPCA. Out of the 4 methods, Scanorama

displayed the largest amount of variance explained by batch effects (worst performer) (Figure S1F).

k-nearest-neighbors batch effect test (kBET)

The k-nearest-neighbors batch effect test (kBET) determineswhether the label composition of the k-nearest-neighborhood of a cell is

similar to the expected (global) label composition. This test is repeated for a random subset of cells and results are summarized as a

rejection rate over all tested neighborhoodswhere lower rejection rates represent an improvement in the removal of batch effects. For

each integration method, we extracted PCA embeddings (30 first PCs) from the corresponding Seurat object. We also created a ma-

trix containing batch labels for each cell. We calculated observed rejection rates by using PCA embeddings and the batch label matrix

as input using a custom wrapper for the kBET function from the kBET package30 (v0.99.6). It is known that observed rejection rates

output by kBET are highly sensitive to the choice of the cell’s neighborhood size (k). Therefore we controlled for this variable by calcu-

lating rejection rates across a wide range of k values from a minimum (k = 10) to a maximum k 0 defined by:

k0 =
1

4
ðAvgðBatch sizeÞÞ

This range was used as input for the k0 parameter of the kBET function. Since we provided our own k range and used PCA em-

beddings as input we set the parameters heuristics = FALSE and do.pca = FALSE. We found that for all the integration methods

tested, as k approached k0, rejection rates approached 1, an expected behavior according to the kBET authors. To get a more ac-

curate performance estimate across this k range, we further calculated the area under the curve (AUC) for each method separately.

AUC was determined through a natural cubic spline interpolation of the observed rejection rate across the k range and subsequent

numerical integration using the AUC function from the DescTools R package (v0.99.49) setting method = ’’spline’’. As lower rejection

rates imply well-mixed batches, we reasoned that a lower AUC would in turn represent a similar conclusion. We found that CCA

showed the smallest AUC (5.02). While Harmony and rPCA showed fairly comparable AUC values (5.18 and 5.22 respectively),
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Scanorama yielded the largest AUC (5.39), depicting a reduced performance in comparison to the other 3methods (Figure S1G). This

result is consistent with our iLISI and PC regression results.

Cluster average silhouette widths (cASW)

Silhouette coefficients are widely used tomeasure the quality or ‘‘goodness’’ of clusters. Again, under the assumption that each clus-

ter should represent a cell type or subtype, we used this metric as another way tomeasure biological conservation. To compute clus-

ter average silhouette width (cASW) values, we extracted PCA embeddings from Seurat objects with CCA+MNN, rPCA, Harmony,

and Scanorama integration outputs keeping the first 30 PCs. We then used these embeddings to compute an Euclidean distance

matrix using the stats R package. Cluster IDs for each cell were obtained using the FindNeighbors and FindClusters functions

from Seurat across a range of clustering resolutions (0.8–1.8). We then used the Euclidean distance matrix and cluster IDs as input

to the silhouette function from the cluster R package (v2.1.0). Computing cASW values across a wide range of clustering resolutions

allowed us to 1) control for the granularity parameter and 2) find an optimal resolution range to avoid under/over clustering of the data.

We reasoned that a resolution of 0.8 was an appropriate starting point given the recommendation of the Seurat authors of using a

resolution of 0.2–0.4 when dealing with very small numbers of cells (2000–4000). Strikingly, rPCA attained the highest cASW values

across all of the resolutions tested (Figure S1H). On the other hand, Harmony obtained the lowest cASW scores across all clustering

resolutions, suggesting that this approach might be overcorrecting the data included in this study.

Aggregated benchmark results

While we previously highlighted Harmony and CCA+MNN as the top performers in terms of batch effects removal, their lower cLISI

and cASW scores suggest thesemethodsmight be overcorrecting the data to a higher degree. rPCA, on the other hand, yielded both

the highest cLISI score and cASWacross all the resolutions tested, suggesting improved conservation of biological signal. Therefore,

we chose rPCA as it achieved the best balance between running time, removal of batch effects, and conservation of biological signal.

Cell type annotations
To annotate cell types in the integrated reference, we used a systematic approach to define broad labels (level 1) as well as more

granular cell subtype labels (level 2).

Level 1 annotations

To define broad cell type partitions, we accessed public data from the Tabula Sapiens (TS) consortium (https://tabula-sapiens-portal.

ds.czbiohub.org/organs). To improve the specificity of annotations, we downloaded the vasculature subset of this transcriptomic

atlas. Upon downloading the TS vasculature h5ad file, this dataset was converted into a Seurat-compatible format using the

SeuratDisk R package (v0.0.0.9019). To match the normalization workflow described in the scRNA sequencing library processing

section, we extracted the TS vasculature raw counts matrix and normalized gene expression data using SCTransform. We then

applied Seurat’s reference-based transfer learning using the FindIntegrationAnchors and TransferData functions to annotate cells

in ourmeta-analyzed reference. In this case, the TS vasculature Seurat object with author-provided cell type annotationswas defined

as reference for label transfer. Confidence scores of predicted labels ranging from 0 to 1 (where 1 indicates that labels were anno-

tated in a fully unambiguous manner) were extracted from the output of TransferData and are shown in the Data Supplement. Gene

markers for level 1 annotations were obtained using the PrepSCTMarkers and FindAllMarkers functions from Seurat (v4.1.0) setting

the following thresholds: logFC = 0.25 and min.pct = 0.25.

Level 2 annotations for endothelial, fibroblasts and immune cells

To definemore granular cell subtypes for themeta-analyzed data, we used a combination of automated andmanual annotations. We

first annotated cell subtypes for endothelial, myeloid and lymphoid lineages usingmarkers from atherosclerosis murine scRNAmeta-

analyses of SMCs and immune cells as well as relevant human atherosclerosis scRNA studies.21–23,51–56 Annotations using curated

markers from the literature were corroborated with the assistance of experts at UVA. To further confirm and inspect immune cell sub-

type annotations in our reference, we used a logistic-regression with stochastic gradient-descent framework implemented by the

command-line tool CellTypist.32 CellTypist leverages a database of 20 different tissues and 19 reference datasets with a focus on

myeloid and lymphoid cells. Specifically, we applied CellTypist low-hierarchy classifiers (using the Immune_All_Low.pkl and Immu-

ne_All_AddPIP.pkl models which harbor 90 and 101 cell types, respectively) to our SCT-normalized reference counts matrix using

both default settings as well as the majority voting classifier. Gene markers for level 2 annotations were obtained using the

PrepSCTMarkers and FindAllMarkers functions fromSeurat (v4.1.0) setting the following thresholds: logFC = 0.25 andmin.pct = 0.25.

Level 2 annotations for SMCs

To explore SMC diversity in human atherosclerosis, we subset the main meta-analyzed reference to include only the pericyte-SMC-

fibroblast level1 partitions. This subset was then reclustered using Seurat (v.4.1.0) with a resolution of 0.9 based on an additional

silhouette width benchmark. Next, gene modules (encompassing top markers from differential expression analyses) specific to con-

tractile (n = 50), Lgals3+ pioneer (n = 50), and fibrochondrocyte (n = 50) SMC phenotypes were extracted from a recent SMC lineage-

tracedmurine scRNAmeta-analysis. We also extracted a non-SMC-derived fibroblast module (n = 50) as a negative enrichment con-

trol. Genes in eachmodule were ranked by Log2FC and then converted to human homologs nomenclature and filtered to keep those

with a one-to-one orthology relationship using customwrapper functions with the biomaRt R package108 (v2.46). We then calculated

the enrichment of murine genemodules on individual cells within the pericyte-SMC-Fibroblast human subset using the UCell R pack-

age72 (v1.3.1). In addition to the enrichment of murine gene modules, we also obtained gene markers for each of the 17 SNN-derived

clusters using the PrepSCTMarkers and FindAllMarkers functions from Seurat (v4.1.0) setting the following thresholds: logFC = 0.25
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andmin.pct = 0.1. Final annotations for SMC subtypes were derived based on the UCell enrichment scores along UMAP coordinates

and cluster markers.

Genetic prioritization of etiologic cell types for GWAS traits
Generation of gene expression specificity matrices

Integration of scRNA and GWAS summary statistics was performed using the CELLECT snakemake workflow.36 GWAS enrichment

per cell type was carried out using gene expression specificity values for each cell type as done by other studies.38,39 However, we

derived expression specificity estimates for each gene using the approach proposed by Timshel et al. within the CELLEX snakemake

workflow.36While previous approaches for genetic prioritization of cell types have used binary or discrete representations of cell type

expression,38,39 the CELLEX workflow uses a continuous representation of cell type expression. CELLEX combines 4 different

Expression Specificity (ES) metrics into a single specificity estimate. Briefly, gene expression specificity weights (ESW) were calcu-

lated separately for each of the following ES metrics: Gene Enrichment Score (GES),123 Expression Proportion (EP),39 Normalized

Specificity Index (NSI)124 and Differential Expression T-statistic (DET). ESW values were then averaged into a single ES estimate

(ESm), assuming equal weights for each metric. An ESm value represents the score that a gene is specifically expressed in a given

cell type. This combined metric has been shown to be more robust than single-expression specificity measures. Accordingly, we

extracted SCTransform-normalized counts for the counts matrix of interest and converted into sparse format to load into Python

3.8. Along with each matrix, we extracted a metadata matrix containing a label for each cell (level 1 or 2 annotations). We then

used the counts and metadata matrices to create a CELLEX ESObject and computed ESm values using the eso.compute function

with default settings.

Collection and pre-processing of GWAS summary statistics

We downloaded GWAS summary statistics for: CAD from Million Veterans Program48 (N sample size = 773268; N significant

loci = 194) and van der Harst et al.42 (N sample size = 296525; N significant loci = 161); Myocardial infarction43 (N sample

size = 639000; N significant loci = 80); Coronary Artery Calcification (CAC) multi-ancestry GWAS meta-analysis49 (N sample

size = 35776; N significant loci = 11), carotid artery plaques44 (N sample size = 48434; N significant loci = 5); pulse pressure from

the Million Veterans Program45 (N sample size = 318890; N significant loci = 331); Alzheimer disease46 (N sample size = 455258;

N significant loci = 29) type 2 diabetes (UK Biobank)47 (N sample size = 455607; N significant loci = 92); body mass index (UK Bio-

bank)47 (N sample size = 457824; N significant loci = 52);White blood cell count (UKBiobank)47 (N sample size = 444502; N significant

loci = 46). UK Biobank summary statistics were downloaded from https://alkesgroup.broadinstitute.org/UKBB/.

We used customR scripts (https://github.com/MillerLab-CPHG/Human_athero_scRNA_meta) as well as the providedmtag_mun-

ge.py python script (https://github.com/pascaltimshel/ldsc/tree/d869cfd1e9fe1abc03b65c00b8a672bd530d0617) to convert

GWAS summary statistics to a format compatible with that of the CELLECT S-LDSC and MAGMA wrappers.

LD score regression applied to specifically expressed genes (LDSC-SEG) prioritization of cell types

We then performed LDSC-SEGwith the gene expression specificity matrix for level 1 annotations across the above-describedGWAS

studies using the established CELLECT snakemake workflow as shown in https://github.com/perslab/CELLECT/wiki/

CELLECT-LDSC-Tutorial. Briefly, we used stratified S-LDSC40 (v.1.0.0) to prioritize cell types after transforming cell type ESm vectors

into S-LDSC annotations, which broadly follows three steps: generation of annotation files, computation of annotation LD scores and

fitting of annotation model coefficients. We created annotations for each cell type by assigning genes’ ESm values to genetic variants

utilizing a 100 kilobase (kb) window of the genes’ transcribed regions. When a variant overlapped with multiple genes within the 100

kb window, themaximumESm value was assigned. Given that themajority of trait-associated variants have been shown to be located

in non-coding regions,125 we chose a relatively large window size to capture the effects of nearby regulatory variants.

In line with recommendations from Finucane et al., we used an ‘‘all genes’’ annotation for each dataset tested, by assigning the

value 1 to variants within 100 kb windows of all genes. We used hg19 (Ensembl v.91) reference genome coordinates to map

SNPs to genes. For constructing annotations, we used 1000 Genomes Project SNPs126 as in the default S-LDSC baseline model.

We computed LD scores for cell-type annotations by using a 1-cM window (–ld-wind-cm 1). As recommended by S-LDSC authors,

we restricted computation of LD scores to Hapmap3 SNPs and excluded the major histocompatibility complex (MHC) region due to

its high gene density and unusual LD architecture.

For primary cell type prioritization, we jointly fit the following annotations: a) each cell type annotation b) all genes annotations c) the

S-LDSC baseline model. We then ran S-LDSC with default settings and reported p values for the one-tailed test of positive associ-

ation between trai heritability and cell type annotation ESm. We note that highly significant p values occur due to correlated cell types

with true signal, whereas those negatively correlated with true signal have p values near 1. For all results, we used Bonferroni correc-

tion within a trait and dataset to control for multiple testing. The regression effect size estimate for each cell type is reported, which

can be interpreted as the change in per-SNP heritability given the cell type annotation, beyond what can be explained by the ‘‘all

genes’’ and baseline model.

LDSC-SEG across disease categories

To determine whether heritability enrichment was driven by lesion status, we split our entire meta-analyzed count matrix according to

lesion category (lesion and non-lesion samples) along with the corresponding metadata. We then generated separate expression

specificity (level 1 annotations) matrices for each condition (N lesion cells = 59691; N non-lesion cells = 58887) and carried out

S-LDSC as detailed above.
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LDSC-SEG for SMC level 2 cell type annotations

We subset the whole meta-analyzed reference Seurat object to include only cells along the pericyte-SMC-Fibroblast partitions.

Metadata of this subset was used to generate the gene expression specificity matrix for level 2 annotations. Munging of GWAS sum-

mary statistics and subsequent S-LDSC analyses were performed as described above.

MAGMA-based prioritization of cell types

WeusedMulti-marker Analysis of GenoMic AnnotationMAGMA (v1.0.7),41 a leading software for gene set analysis to compute gene-

level association p values from GWAS summary statistics. We first mapped SNPs to genes using a 10-kb window size around the

gene body. We tested different window sizes (5, 10 and 100-kb) using data fromWirka et al. 2019 and found results to be consistent.

Gene-level association statistics were then computed using the default test of mean SNP association (model: snp-wise=mean). This

model allows one to combine SNP association p values in the specified window surrounding the gene into gene-level p values and

Z-statistics, while accounting for LD (computed using the 1000 Genomes Project phase 3 European panel). Gene-level Z-statistics

were corrected for the default MAGMA covariates: gene size, gene density, and inverse mean minor allele count as well as the log

value of these variables. Next, we fit a linear regression model using the CELLECT snakemake pipeline (https://github.com/perslab/

CELLECT/blob/master/cellect-magma.snakefile). This linear regression model used MAGMA gene-level Z-statistics as the depen-

dent variable and cell type ESm scores as the independent variable. Cell prioritization p values (from the linear regression model)

can be interpreted as the positive contribution of a cell type-specific expression program to a GWAS trait/disease gene-level

Z-statistics.

scDRS enrichment of GWAS-tagged heritability

We used the single-cell disease relevance score (scDRS) framework73 to identify cell subtypes driving the GWAS enrichments pre-

viously shown in level 1 annotations. scDRS integrates gene expression profiles from scRNA-seq with polygenic disease information

from GWASs to associate individual cells to disease by assessing the excess expression of GWAS putative disease genes in a given

cell relative to other genes with similar expression across all cells.

For these analyses, we selected CAD as a representative cardiovascular trait and immune traits showing enrichment of level 1

Macrophage annotations (WBC count and Alzheimer’s disease) to better guide the specificity of CAD enrichments. To run scDRS,

we selected the top 1,000 MAGMA genes weighted by their Z-scores as putative disease gene sets. Munging of MAGMA gene sets

for scDRS was done through a combination of custom (https://github.com/MillerLab-CPHG/Human_athero_scRNA_meta/blob/

main/scDRS/prep_MAGMA_gs_for_munging.R) and scripts provided in the scDRS command line tool (v1.0.2). We ran the enrich-

ments in the entire meta-analyzed reference as it is recommended to use data harboring a diverse set of cells with varying relevance

to the GWAS traits of interest.

To prepare the count matrix, we extracted raw counts and metadata from the meta-analyzed Seurat object and created a.h5ad

object. Preprocessing of the data (scaling and log normalization) was done using Scanpy (v1.9.3).109 Prior to the computation of

normalized disease scores, we generated 250 control gene sets for each putative disease gene set (matching the mean and variance

of the disease gene set). Finally, we calculated normalized disease scores using the CLI with ‘‘scdrs compute-score’’ adding a co-

variate matrix including sex and disease status variables. Normalized disease scores for each cell in the reference were then added

back into the meta-analyzed Seurat object and plotted with Seurat’s FeaturePlot function.

MAGMA-based gene effector analysis

To identify effector genes driving the heritability enrichment by cell type, we utilized theMAGMA gene sets for CAD andMI generated

as described above and ranked genes according to their p values. We selected the top 1000 genes according to that ranking. Next,

we ranked genes in prioritized cell types according to their ESm values and retained the most highly specific genes (>90% percentile).

We then termed genes that were found in these two sets as ‘‘effector genes’’ driving the enrichment in a prioritized cell type.

Cell communication analyses
Cell communication analyses were carried out using the Cellchat R package77 (v1.5.0). We selected the CellChat human database

(Interactions considered include secreted signaling, ECM-receptor, and cell-cell contacts). First, we extracted SCTransform-normal-

ized counts from the integrated Seurat object. For the first round of analyses, we separated cells from each disease status (lesion and

non-lesion) and grouped them according to level 1 labels. We created a Cellchat object for matrices from each disease status using

the createCellChat() function.We subsequently identified overexpressed genes in each condition using the identifyOverExpressedIn-

teractions. Communication probabilities were estimated with computeCommunProb and aggregated cell communication networks

calculated with the aggregateNet function. We thenmerged lesion and non-lesion cellchat objects using themergeCellChat function.

In order to identify pathways between Myeloid cells and SMCs that were enriched in each condition compared to the other, we input

the merged Cellchat object to the function rankNet with parameters (mode = ’’comparison, sources.use = ’’Macrophage’’, target-

s.use = ’’SMC’’). Significantly enriched pathways were denoted as those with p < 0.05. To further explore differentially enriched path-

ways with increased granularity, we created a new CellChat object using normalized counts from Macrophages and SMCs from

lesions and grouped them using their respective level 2 annotations. We computed communication probabilities and aggregated

cell communication networks as described above. Circle plots for specific signaling pathways were generated with the netvisualAg-

gregate function. The top 30% of interactions (based on interaction weights/strength from computed communication probability)

were used for plotting interactions between level 1-annotated cell types. Given that we had a larger number of cell types when

deriving networks with level 2 labels, we chose to plot the top 15% of interactions.
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Pseudotime analyses for SMCs
Cells within the pericyte-SMC-fibroblast axis were subset to contain only contractile SMCs, transitional-ECM-SMCs, fibromyo-

cytes and fibrochondrocytes. Single-cell transcriptomic pseudotime analyses were performed using monocle378 (v1.0.0). Given

that gene expression within this subset was normalized, the SCTransform-normalized expression matrix and corresponding meta-

data were extracted from the corresponding Seurat object. Metadata and SCT counts were used to create a cell_data_set object.

In order to preserve clustering structure from previous analyses, we also extracted PCA/UMAP embeddings, cluster IDs, and cell

type annotations from the processed Seurat object and inserted those into the corresponding slots of the cell_data_set object. A

trajectory was then inferred using the learn_graph and order_cells functions setting contractile SMCs with the highest expression

of MYH11 as the root of the trajectory. DEGs across the trajectory were calculated with grapth_test and grouped into modules

using the find_gene_modules function. To model gene expression dynamics across pseudotime, we extracted pseudotime assign-

ment values for each cell in the trajectory as well as SCTransform-normalized expression values and cell type annotations from the

cell_data_set object. We then wrote a custom script to plot gene expression changes as a function of pseudotime where we

applied cubic spline interpolation to expression values using the geom_smooth function with parameters (method = ‘‘lm’’,

formula = y � splinesns(x, 3)).

To better resolve changes in gene expression as SMCs undergo phenotypicmodulation, we identified genes that were differentially

expressed across pseudotime using the graph_test function from monocle3 which leverages a statistic from spatial autocorrelation

analysis called Moran’s I. We kept only genes passing a significance threshold (FDR < 0.05). Genes were then ranked according to

their significance and we selected the top 500 genes. Pseudotime values were added back into the subclustered SMC Seurat object.

We then used the AverageExp function from Seurat to calculate the mean expression of the top 500 DE genes across different points

in pseudotime. Finally, we performed hierarchical clustering of the pseudotime-variable genes using Euclidean distances and plotted

their expression across pseudotime using the R package pheatmap (v1.0.12).

TF activity inference using DorothEA regulons
For inference of TF activity, we also used a subset of the main reference only including SMCs, transitional SMCs, fibromyocytes, and

FCs. We downloaded a collection of curated TF regulons from the DoRothEA R package80 (v1.8.0). We accessed human regulons

using the dorothea_hs function and only kept thosewith A, B andC confident scores for amore accurate prediction of regulon activity

on each cell. Confidence scores had been previously defined based on the number of supporting evidence for each regulon.80 TF

activities for each cell were then estimated with the R package VIPER (v1.24.0)79 providing the list of filtered regulons and the pro-

cessed Seurat object as input. Mean TF activities were then calculated across the SMC annotations of interest and the most variable

TFs were selected for plotting.

Human coronary artery tissue procurement
Freshly explanted hearts from orthopedic heart transplant recipients were obtained at Stanford University under approved Institu-

tional Review Board (IRB) protocols with the respective informed consents. Hearts were arrested in cardioplegic solution and rapidly

transported from the operating room to an adjacent laboratory on ice. The proximal 5–6 cm of three major coronary arteries (LAD,

LCX, RCA) were dissected from the epicardium, trimmed of surrounding adipose, rinsed in cold PBS, and snap-frozen in liquid ni-

trogen. Human coronary artery tissue specimens were also obtained at Stanford University from non-diseased donor hearts rejected

for orthotopic heart transplantation and processed following the same protocol as hearts for transplant. Reasons for rejected hearts

included size incompatibility, risk for cardiotoxicity or comorbidities. Tissues were de-identified and clinical and histopathology in-

formation was used to classify ischemic, non-ischemic hearts and lesion- and non-lesion-containing arteries. All normal arteries orig-

inated from hearts with left ventricular ejection fraction (LVEF) greater than 50%. Frozen tissues were transferred to the University of

Virginia through a material transfer agreement and IRB-approved protocols.

Coronary artery calcification GWAS meta-analysis data
The GWAS meta-analysis for coronary artery calcification (CAC) was conducted on 16 cohorts including 26,909 participants of Eu-

ropean ancestry and 8,867 participants of African ancestry. CAC scores were calculated from computed tomography imaging at

baseline or first examination as described.49 Genotyping quality control, imputation (1000 Genomes Phase 3), and variant filtering

was performed as described. A joint meta-analysis of all available CAC GWAS was performed using a fixed-effects meta-analysis

in METAL, using sample size weighted SNP P values. The summary statistics from each study were combined using an inverse vari-

ance-weighted meta-analysis.

Pearson correlation calculations and gene set enrichment analyses
Normalized counts for cell types of interest were extracted from the corresponding Seurat object. Matrices were transposed to define

genes as variables and then we calculated pairwise Pearson correlations for a gene of interest (e.g., CRTAC1) with all of the other

genes across the cell types of interest using apply and cor.test functions with parameters (method = ’’pearson’’) from the stats R

package (v4.0.3).

For gene set enrichment analyses, we calculated DE genes as described in the above section. We ranked genes by log2 fold

change values (log2FC) and extracted the top 100 hits per cell annotation. We then use the gost function within the R gProfiler2
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package110 (v.0.2.1) with parameters (order = TRUE) to weight genes according to their log2FC values. We then selected significant

GO:BP ontology terms (FDR < 0.05) and ranked them according to their adjusted p values for plotting using custom functions from

our scRNA_processing_utils.R script (https://github.com/MillerLab-CPHG/Human_athero_scRNA_meta). We found that the top

GO:BP terms for fibrochondrocytes were highly redundant. Therefore, we used the gosemsim package111 (v2.16.1) and a custom

script adapted from (https://github.com/YuLab-SMU/clusterProfiler/blob/master/R/simplify.R) in order to calculate semantic similar-

ity between GO:BP terms. We removed highly redundant terms accordingly.

Gene expression analysis in coronary artery datasets
RNA extraction and library construction

Total RNA was extracted from frozen coronary artery segments using the Qiagen miRNeasy Mini RNA Extraction kit (catalog

#217004). Approximately 50 mg of frozen tissue was pulverized using a mortar and pestle under liquid nitrogen. Tissue powder

was then further homogenized in Qiazol lysis buffer using stainless steel beads in a Bullet Blender (Next Advance) homogenizer, fol-

lowed by column-based purification. RNA concentration was determined using Qubit 3.0 and RNA quality was determined using Agi-

lent 4200 TapeStation. Samples with RNA Integrity Number (RIN) greater than 5.5 and Illumina DV200 values greater than 75 were

included for library construction. Total RNA libraries were constructed using the Illumina TruSeq Stranded Total RNAGold kit (catalog

#20020599) and barcoded using Illumina TruSeq RNA unique dual indexes (catalog # 20022371). After re-evaluating library quality

using TapeStation, individually barcoded libraries were sent to Novogene for next-generation sequencing. After passing additional

QC, libraries were multiplexed and subjected to paired-end 150 bp read sequencing on an Illumina NovaSeq S4 Flowcell to a median

depth of 100 million total reads (>30 G) per library.

RNA-seq processing and analysis

The raw passed filter sequencing reads obtained from Novogene were demultiplexed using the bcl2fastq script. The quality of the

reads was assessed using FASTQC and the adapter sequences were trimmed using trimgalore. Trimmed reads were aligned to

the hg38 human reference genome using STAR112 (v2.7.3a) according to theGATKBest Practices for RNA-seq. To increasemapping

efficiency and sensitivity, novel splice junctions discovered in a first alignment passwith high stringency, were used as annotation in a

second pass to permit lower stringency alignment and therefore increase sensitivity. PCR duplicates were marked using Picard and

WASP113 (v0.3.4) was used to filter reads prone tomapping bias. Total read counts and Transcripts permillion normalization (TPM) for

both genes and isoformswas calculated from individual bam files using the RSEM (https://deweylab.github.io/RSEM/README.html)

rsem-calculate-expression command with the paired-end option and gencode version 32 as a reference.114

Definition of disease categories for transcriptomic comparisons

Disease status of coronary artery segments was determined based on our previous publication.84 For the present study, samples that

are lesion-free (no evidence of atherosclerosis) or harbored subclinical/early lesions were included within the ‘‘non-lesion group’’.

Samples with evidence of advanced/complex atherosclerotic lesions were included in the ‘‘lesion’’ group for comparative transcrip-

tomic analyses.

STARNET regulatory networks and clinical trait enrichment analysis
Based on STARNET94 multi-tissue bulk RNA-seq data, tissue-specific and cross-tissue co-expression modules were inferred using

WGCNA.115 Enrichment for clinical traits was computed by aggregating Pearson’s correlation p values by co-expression module us-

ing Fisher’smethod. Enrichment for DE geneswas calculatedwith the hypergeometric test using DESeq2 called genes (30%change,

FDR < 0.01) adjusting for age and sex covariates. The gene regulatory network for CRTAC1 and LTBP1 co-expressed genes was

inferred using GENIE3.116 Weighted key driver analysis was then applied to identify hub or highly influential genes in the regulatory

network using the Mergeomics R package.127

Differential expression in SMCs
Differential expression analyses in single-cell data are often challenging due to the substantial sparsity of the data. It has been shown

that dedicated DE tools for scRNA-seq data do not provide additional benefits compared to traditional bulk RNA-seq tools.128 Thus,

we used the Zero-Inflated-based Negative Binomial Wanted Variation Extraction (ZINB-WaVE) strategy proposed by Van der Berge

et al., 2018117. This approach identifies excess zero counts and generates gene- and cell-specific observation weights to unlock bulk

RNA-seq DE pipelines such as DESeq2118 for zero-inflated data.117

To model zero inflation in our SMC scRNA-seq counts matrix, we generated observation-level weights using the R zinbwave pack-

age (v1.12.0). Given that popular bulk RNA-seq methods use generalized linear models (GLMs), which readily accommodate infer-

ence based on observation-level weights, we use ZINB-WaVE weights as input for DESeq2 (v1.30.1). This approach allows for the

DESeq2 inference to apply to the part of the data which is not due to zero inflation.

Prior to calculating ZINB-WaVE weights, we identified the 3000most highly variable genes in the SMC subclustered data. We then

converted the SMCSeurat object into a SingleCellExperiment object and retained only variable features to tailor the analysis to SMCs

and speed up weights computation. Subsequently, we performed an additional round of filtering to remove genes with very low

counts. After this filtering step, we calculated ZINB-WaVE weights using the zinbwave function with the following parameters:

K = 0 and observationalWeights = TRUE. Weights were computed using a design matrix with sex, arterial origin and lesion category

as covariates. We then used the previously computed ZINB-WaVE weights to create an object of class DESeqDataSet. As with the
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generation of observation weights, we used a design formula where we added sex and arterial origin as covariates to avoid confound-

ing by these factors. Given that DESeq20 normalization procedure is based on the geometric means of counts, which are zero for

genes with at least a zero count, this constrains the number of genes that can be used as input for normalization in scRNA-seq

data.117 Therefore we used the PHYLOSEQ normalization procedure129 by setting argument type = ’’poscounts’’ within the DESeq2

function estimateSizeFactors.Taking into account recommendations for DE analysis for single-cell data, for which expected counts

might be very low, we used the likelihood ratio test as implemented in the nbinomLRT function setting the minimum expected count

parameter minmu = 1e-6 to identify DE genes (N lesion SMCs = 8725; N non-lesion SMCs = 12423). LTBP1 and CRTAC1 expression

across lesion categories were then plotted using custom scripts.

Image analysis of human coronary artery tissues
Histological staining

Human coronary artery tissues were obtained as described in the above section.

Briefly, coronary artery segments were isolated from control/subclinical and advanced atherosclerotic left and right coronary

artery branches. Tissues were embedded in OCT blocks, snap-frozen in liquid nitrogen, and stored at �80�C. Segments for his-

tological staining were chosen based on sample availability and bulk RNA-seq information. OCT-embedded human coronary ar-

tery segments were cryosectioned at �20�C and 8-mm thickness. A minimum of two sections per sample were placed on each

slide and then blindly stained with: Oil Red O (ORO), Picro-Sirius red (PSR) and Hematoxylin and Eosin (H&E) at the UVA Research

Histology Core. Briefly, for ORO staining, frozen sections were fixed in 10% Neutral Buffered Formalin solution, washed and

stained in Oil Red O solution (Polysciences #s2120) for 5 min. After washing, slides were stained in Hematoxylin solution (Richard

Allen #7221) for 1 min before rinsing and mounting with aqueous mounting medium. For H&E, slides were stained using Hema-

toxylin 360 reagents manufactured by Leica in an automated Gemini Stainer. For PSR staining, slides were placed in Picro-

Sirius red solution (Direct Red 80 in saturated aqueous solution of picric acid) for 1 h, rinsed in deionized water and washed twice

in acidified water. Slides were then dehydrated in ethanol, cleared in xylene and mounted. Whole slide images were then captured

at approximately 100,000 x 30,000 pixel resolution using a Hamamatsu NanoZoomer S360 Digital Slide Scanner C13220 at the

Biorepository and Tissue Research Facility at UVA.

Immunofluorescence staining

We performed immunofluorescence staining in tissue sections adjacent to those used for histology. Sections were processed for

immunostaining as follows: Sections were retrieved from the �80�C freezer and allowed to briefly come to room temperature for

1 min. Sections were then rehydrated in 1X PBS and then fixed in 4% formaldehyde for 10 min at room temperature (RT). This

was followed by three PBS washes. Sections were then permeabilized using 0.1% Triton X-100 for 10 min at room temperature.

Upon permeabilization, sections were washed with PBS and then protein blocking was done with 10% normal donkey serum for

1 h at RT. After blocking, slides were incubated with an anti-LTBP1 rabbit polyclonal antibody (Proteintech, 26855-1-AP; 1:250 in

antibody dilution solution (1% BSA)) overnight at 4�C or no antibody negative control (antibody dilution solution). Optimal dilution

concentration was determined with previous titrations with control tissues. Each slide had at least two sections stained with primary

antibody and one section used for the negative control. Sections were washedwith PBS and incubated with donkey anti-rabbit Alexa

Fluor 555 conjugated secondary antibody (Thermo Fisher, A31572; 1:1000) and aSMA conjugated to FITC (Sigma, F3777; clone 1A4;

1:500) for 1 h at room temperature. Slideswere thenwashedwith PBS and nuclear counter-staining was performedwith DAPI (0.1 mg/

ml) (MiltenyiBiotec, 130-111-570). Slides were subsequently coverslipped with aqueous mounting media. Stained sections were

visualized using an Olympus BX41 microscope under x10 and 320 objective magnifications. Images were obtained using a Nikon

color camera DS-Fi3 at an NIS Elements imaging software (v110.04.3707.E9).

Chromogen-based immunohistochemistry

Immunohistochemistry was performed on 7 um thick-frozen coronary artery sections using the Vulcan redChromogen kit 2 (FR805S).

Briefly, sections were fixed using 4% formaldehyde for 10 min, then peroxidase block was performed used peroxidase 1 (Biocare

PX968H) for 5min before a 15min permeabilization step using 0.1%Triton X-100 in TBS. Sections were then blocked using a solution

of 1% donkey serum in TBS for 1 h and then Background punisher (Biocare BP97AH) for 7 min. Sections were then incubated with

primary antibodies overnight at 4�C (1:500 CRTAC1, ProteinTech 13001-1-AP; 1:800 LTBP1 26855-1-AP). The day after, the sections

were incubated with the MACH4 MP AP-Polymer (Biocare MRAP536G) for 30 min before incubation with the Vulcan Fast Red solu-

tion (Biocare FR805S) for 5 to 10 min. Sections were then counterstained using Hematoxylin and mounted before microscopic eval-

uation.Whole slide imageswere captured at approximately 100,000 x 30,000 pixel resolution using a Hamamatsu NanoZoomer S360

Digital Slide Scanner C13220 and visualized and annotated within the PathcoreFlow workspace.

RNAscope in situ hybridization

Reagents for the RNAscope Multiplex Fluorescent Assay v2 were obtained from ACD Bio (Cat. No. 323270). Tissue section slides

were fixed with 4% Paraformaldehyde for 1 h at 4�C. Slides were then washed twice with 1X PBS for 5 min (each wash). Slides

were sequentially incubated in 50%, 70%, and 100% EtOH (5 min per incubation). Slides were then incubated in fresh 100%

EtOH for 5 additional minutes. Slides were air-dried for 5 min before drawing a hydrophobic barrier around each tissue section.

Next, hydrogen peroxide was added into each slide per manufacturer instructions and incubated for 10 min at RT. Slides were

then washed twice with Milli-Q water. Sections were incubated with protease III reagent for 15 min at RT and then washed twice

with Milli-Q water (2 min per wash). Probes for human LMOD1 (Cat. No. 444141), LTBP1 (Cat. No. 523281), and CRTAC1
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(Cat. No. 1094551) as well as negative control probes (dapB; Cat. No. 321831) were acquired from ACD Bio and diluted per manu-

facturer instructions (1:50). Probes were then incubated for 2 h at 40�Cwithin the proprietary HybEz oven unit from ACDBio (Cat. No.

321710). Slides were then washed twice with 1X Wash buffer and then stored slides in 5X Sodium Saline Citrate (SSC) overnight at

RT. Signal was amplified per manufacturer instructions by performing 3 subsequent incubations of Amplification (Amp1, Amp2, and

Amp3) reagents. Signal was then developed by incubating sections with horseradish peroxidase reagent (HRP) specific for each

channel for 15 min at 40�C, followed by incubation of the respective TSA vivid dye (TSA Vivid 650, TSA Vivid 570 and TSA Vivid

520) for 30 min at 40�C and then HRP-blocker to stop each reaction for 15 min at 40�C. Prior to the development of the signal, fluo-

rophores were diluted as follows: TSA Vivid 650 (1:1000), TSA Vivid 570 (1:1500), and TSA Vivid 520 (1:1500) in Multiplex TSA buffer.

Sections were then incubated with DAPI for 30 s at RT to counterstain nuclei and mounted using ProLong Gold Antifade Mountant

(Invitrogen, P36930). Image acquisition was carried out with a Nikon ECLIPSE Ti2 with a Plan Fluor 40x/1.30 oil-immersion objective

and four diode lasers centered at 405, 488, 561, and 640 nm. DIC H N2 (0.86 mm/px @ 512x512). Images were processed using the

NIS-Element and ImageJ software.

Human carotid plaque scRNA-seq data validation
Raw human carotid plaque scRNA-seq data was accessed through https://dataverse.nl/dataverse/umculab. Quality Control (QC),

normalization and dimensionality reduction of the matrix was done as described above using the pipeline within our scRNAutils R

package. Clusters were then labeled according to annotations provided in the original publication.95

Coronary artery snATAC-seq tissue processing and data analysis
Coronary artery samples processing and nuclei isolation for snATAC-seq

snATAC-seq data for human coronary arteries was generated as described in our previous publication.84 Briefly, isolated nuclei were

processed using the 10X Genomics Chromium Single Cell ATAC and fastq files were preprocessed using the 10X Genomics Cell-

ranger pipeline (CellRanger ATAC v1.2.0) using the hg38 reference genome and default parameters.

Dimensionality reduction, clustering of snATAC-seq data and generation of gene activity scores

Outputs from Cellranger were analyzed with the ArchR pipeline85 (v1.0.2). Fragment files for each of the 41 patients were used to

generate ArchR arrow files. We filtered low-quality cells with the following parameters: TSS enrichment >7, unique number of frag-

ments >10000 and a doublet ratio <1.5. The genome was then divided into 500bp windows and then fragments within each window

were used to generate a tile matrix (28316 cells x� 6million tiles). Iterative latent semantic index (LSI) was then used to reduce dimen-

sionality of the tile matrix. We checked for batch effects using Harmony (v1.0) and did not observe major differences in the data clus-

tering structure (clusters driven by individual samples). We then used the first 30 components output by LSI for running non-linear

dimensionality reduction (UMAP). Subsequent cell clustering was performed using the SNNmodularity optimization-based algorithm

as implemented in Seurat (v4.1.0). Chromatin accessibility (defined as the number of fragments within each tile) within gene bodies as

well as proximally/distally from the TSSwas used to infer gene expression bymeans of a gene activity score model. In this model, the

number of fragments inside tiles of gene bodies are considered as well as surrounding tiles. To account for the activity of putative

distal regulatory elements, an exponential weighting function is applied where tiles that reside further from genes TSS are assigned

lower weights. Additionally, this model imposes gene boundaries to minimize the contribution of unrelated regulatory elements to a

specific gene score.

TF motif enrichments

Enriched TF motifs for each cell type were predicted using the addMotifAnnotations() function in ArchR. Z deviation scores for each

TF were then estimated with the chromVAR R package119 (v1.12.0).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics for bulk transcriptomics data were performed using the stats R package. The mean age for individuals in bulk transcrip-

tomics analyses was 51 years with a standard deviation of 14 years. Furthermore, 27% of the included samples were female. To

compare levels of normalized gene expression in human coronary arteries across disease conditions (non-lesion vs. lesion), we

used a non-parametric Wilcoxon Rank-Sum Test. Significance tests for comparing stable and unstable carotid plaque regions

from the same donor were carried out using paired Student’s t-tests. The number of samples used in each analysis is indicated within

each figure legend. For each statistical test, normality of the data was checked by generating quantile-quantile plots and inspection

of sample variance. Variance of the data was inspected by plotting the distribution of gene expression values across samples using

the geom_density function from the ggplot R package. Wilcoxon Rank-Sum Tests and Student t-tests were performed with a signif-

icance threshold of p < 0.05.

Differentially expressed markers for each cell cluster in scRNA-seq analyses were obtained using a Wilcoxon Rank-Sum Test as

implemented in Seurat (v4.1.0). Differential expression analyses for SMCs across lesion categories were performed by generating cell

and gene-specific weights to account for zero inflation and then using the DESeq2 likelihood ratio test (LRT) with a significance

threshold of FDR < 0.05. The Pearson’s product moment correlation coefficients for comparing normalized gene expression were

calculated using the cor.test function within the stats R package. For calculations of Pearson correlations across the entire transcrip-

tome in the scRNA-seq data, p values from were adjusted for multiple testing using the Benjamini Hochberg correction as
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implemented in the stats package with the p.adjust function and parameters (method = ’’fdr’’). Additional sample size quantification

and details of each statistical analysis with their respective parameters are described in method details and Figure legends.

ADDITIONAL RESOURCES

The scRNA analysis pipeline and other utility functions used in thismanuscript have beenwrapped as a public R package available at:

https://github.com/MillerLab-CPHG/scRNAutils.
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