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A B S T R A C T   

Background: Magnetic Resonance Imaging (MRI) visible perivascular spaces (PVS) have been associated with age, 
decline in cognitive abilities, interrupted sleep, and markers of small vessel disease. But the limits of validity of 
their quantification have not been established. 
New method: We use a purpose-built digital reference object to construct an in-silico phantom for addressing this 
need, and validate it using a physical phantom. We use cylinders of different sizes as models for PVS. We also 
evaluate the influence of ‘PVS’ orientation, and different sets of parameters of the two vesselness filters that have 
been used for enhancing tubular structures, namely Frangi and RORPO filters, in the measurements’ accuracy. 
Results: PVS measurements in MRI are only a proxy of their true dimensions, as the boundaries of their repre-
sentation are consistently overestimated. The success in the use of the Frangi filter relies on a careful tuning of 
several parameters. Alpha= 0.5, beta= 0.5 and c= 500 yielded the best results. RORPO does not have these 
requirements and allows detecting smaller cylinders in their entirety more consistently in the absence of noise 
and confounding artefacts. The Frangi filter seems to be best suited for voxel sizes equal or larger than 0.4 mm- 
isotropic and cylinders larger than 1 mm diameter and 2 mm length. ‘PVS’ orientation did not affect measure-
ments in data with isotropic voxels. 
Comparison with existent methods: Does not apply. 
Conclusions: The in-silico and physical phantoms presented are useful for establishing the validity of quantifi-
cation methods of tubular small structures.   

1. Introduction 

Perivascular spaces (PVS), eponymously named Virchow-Robin 
spaces after the 19th-century anatomists and pathologists Rudolf 
Virchow and Charles Philippe Robin, are fluid-filled spaces that sur-
round the walls of the blood vessels. PVS in the brain have attracted the 
attention from the scientific community due to their suspected role in 
waste clearance and thus their potential value as an imaging biomarker 
of brain health function (Wardlaw et al., 2020; Donahue et al., 2021; 

Sepehrband et al., 2021). Their increase in size to diameters from 1 to 3 
mm and lengths from 3 to 5 mm (Valdés Hernández et al., 2013), 
prompting their visibility in magnetic resonance images (MRI), has been 
associated with cognitive dysfunction in the elderly (Hilal et al., 2018; 
Passiak et al., 2019) possibly even more strongly than other markers of 
small vessel disease (Passiak et al., 2019), sleep dysfunction (Aribisala 
et al., 2020; Baril et al., 2022; Berezuk et al., 2015; Del Brutto et al., 
2019), inflammatory markers (Aribisala et al., 2014), hypertension 
(Dubost et al., 2019), ageing, brain lacunes, and microbleeds (Francis 
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et al., 2019). PVS burden has also been associated with the speed of 
white matter deterioration in older adults, and partially mediating the 
effect of sleep in white matter health (Aribisala et al., 2023). It is 
therefore not surprising that several methods for assessing PVS from 
magnetic resonance images (MRI) have been developed, ranging from 
visual scoring systems (Patankar et al., 2005; Potter et al., 2015) to 
fully-automated computational approaches (Pham et al., 2022; Barisano 
et al., 2022). 

While neuroradiological scoring has been largely considered the 
reference standard, advances in scientific and research methodologies 
have made large-scale research a norm. Large databases that combine 
clinical, demographic, genetic and imaging data (e.g., https://imaging. 
cancer.gov/informatics/cancer_imaging_archive.htm) are rapidly 
emerging to underpin and advance clinical research, but they are only 
partially annotated, and expert visual assessment at such scale is 
implausible. Also, due to the nature (i.e., void spaces once dissected) and 
size of this features (i.e., wide range in microscopic scale) and post- 
mortem tissue collapse, comparison of in-vivo MRI measurements with 
histology will be imprecise. Automatic methods to assess brain enlarged 
PVS would enable analyses of very large studies. However, they have 
been evaluated against neuroradiological ratings and manually- 
annotated images in only one slice per region of interest or in only 
few cases (Pham et al., 2022). Moreover, the limits of validity of these 
techniques and accuracy levels in measuring PVS are still not known. 
MRI from the human brain alone is unlikely to provide this information 
as measurements of small brain structures are compromised by image 
resolution, confounding pathologies, and artefactual effects, the CSF 
pulsation due to the heartbeat being one of them. Previous study pre-
sented a Digital Reference Object (DRO) designed for this purpose 
(Bernal et al., 2022) and evaluated the performance of three image 
enhancement methods under various spatiotemporal imaging consid-
erations including sampling, motion artefacts, and Rician noise. We here 
use this previously developed DRO as part of an in-silico phantom, and 
use it together with a physical phantom to inform on a) the influence of 
the choice of filter parameters in the measurements b) how the spatial 
resolution of the image influences the PVS diameter measured, c) the 
influence of PVS orientation in the accuracy of the measurements, d) the 
differences introduced by the choice of filtering methods (in absence of 
noise and confounding artefacts), and e) the detectability of PVS in 
research protocols using MRI scans with 1 mm3 isotropic voxels. 

2. Materials and methods 

2.1. PVS DRO 

PVS are seen in MRI as thin linear or small punctate structures 
depending on the visualisation axis, with signal intensity similar to that 
of CSF (Valdés Hernández et al., 2013; Wardlaw et al., 2013). Using this 
description, Bernal et al. (2022) choose a cylinder as a geometric model 
of PVS. The parametric equation of a cylinder is given by: 

d2

4
≥ x2 + y2, (1)  

for − l/2 ≤ z ≤ l/2, where x, y and z are the 3D coordinates, l is the 
cylinder length and d is the diameter of the cylinder. The volume of the 
cylinder is calculated using 

v = πl
d2

4
. (2)  

2.2. In-silico phantom 

We define our PVS binary mask (1: if the voxel is inside the cylinder; 
and 0: otherwise) using Eq. (1) and consider it a PVS representation in 
high resolution. We, then, reduce the resolution using a linear interpo-
lation to simulate PVS in a lower-resolved image and introduce partial 

volume effects. The intensity of the voxel in a given coordinate (x,y,z) of 
the image space is then modelled via the following equation: 

f (x, y, z) = M(x, y, z)(1 − P(x, y, z) )+ aP(x, y, z), (3)  

where M is the intensity of the background (usually white matter in-
tensity), P is the proportion of PVS in the voxel (i.e., the full PVS “body” 
or a border with partial volume), and a is the intensity of the CSF in the 
scan (i.e., equal to the intensity of the simulated PVS). 

We generate several “PVS” in our in-silico phantom by varying the 
diameter, length and orientation of the cylinders. In particular, we vary 
the diameter from 0.2 to 3 mm, the length from 1.02 to 13 mm, and we 
rotate the cylinders around the x-axis from 0◦ to 180◦ and the z-axis from 
− 45◦ to 45◦. We confine each cylinder within a space of 
15 × 15 × 15 mm3 as per maximum length definition (Valdés Hernán-
dez et al., 2013; Wardlaw et al., 2013), and to avoid them being too close 
to each other. We constructed our in-silico PVS phantom by placing 
together all the cubes of 15 × 15 × 15 mm3, as can be seen in Fig. 2. 

2.3. UMC Utrecht PVS phantom 

We analysed images from a physical phantom built at the Utrecht 
University Medical Centre with the primary purpose of investigating the 
influence of spatial resolution, orientation, and image analysis method, 
on the accuracy of measurements of PVS in a 7 T MRI scan, in parallel to 
validate our in-silico phantom. The UMC Utrecht PVS phantom consists 
of a Perspex plate with holes of diameters ranging from 0.2 to 3 mm, 
filled with water, and scanned with a T2-weighted contrast using a turbo 
spin-echo sequence in a 7 T MRI scanner (Fig. 4). Water-filled cylinders 
were checked to ensure absence of any curvature. The acquisition was 
similar to the acquisition used in previous work on imaging PVS in 
human volunteers (Bouvy et al., 2014), but slightly adjusted to the small 
phantom size, and adjusted to yield protocols for multiple isotropic 
resolutions. See Supplementary Table S1 for an overview of the scan 
parameters. Subsequently in this paper, we will mention the recon-
structed voxel sizes while referring to the resolution of the images unless 
stated otherwise to facilitate the analyses and interpretation of the re-
sults. These are larger than the acquired voxel sizes. The acquisition 
resolution for each of the reconstructed images can be seen in Supple-
mentary Table S1. In addition to the default orientations (i.e., coronal, 
sagittal and transverse), the field-of-view was also rotated 15o, 30o, and 
45o around the ’feet-head’ axis, which yields the most unfavourable 
positioning (i.e. these are rotations around an axis that is perpendicular 
to the centerlines of the holes). 

Fig. 5 shows the images obtained. Holes of 0.2 and 0.3 mm diameters 
could not be filled with water. Therefore, they are not visible. Holes with 
diameters smaller than the voxel size are visible but attenuated due to 
partial volume effect. The PVS measured diameter in a scan depends on 
the location of the PVS relative to the voxel. Preferably, a PVS would run 
exactly through several voxels, but often it is located on the edge of two 
or various voxels or pass diagonally through a set of voxels. Here the 
holes representing PVS can appear enlarged as usually they are not 
aligned to the centre of the voxels they cross. The oblique length in the 

Fig. 1. Cylinder representing a linear PVS or a linear section of it, defined by 
Eq. (1) with length l and diameter d. The origin of the 3D space coordinates (x,
y, z) to place this digital reference object is at the object’s centre. 
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plane (l2D) and the length of the body diagonal (l3D) can be calculated 
as the square root of the sum of squares of the voxel dimensions (i.e., l2D 
= sqrt(x2 + x2) and l3D = sqrt(x2 + x2 + x2) for isotropic voxels of 
dimension x). In such way, for different settings, the lengths of the holes 
representing PVS can differ (see Supplementary Table S2). 

2.4. Robustness of the physical phantom against geometric distortions 

Geometric distortions induced mainly by the nonlinearities of the 
gradient field, enhanced by susceptibility differences at objects’ 
boundaries (i.e., proportionate to the magnetic field strength, 7 T in this 
case) were present in the physical phantom as Fig. 4 shows. Although the 
central position of the fluid-filled cylinders assessed makes the impact of 
geometric distortions unlikely, we measured the geometric distortions 
using the method recommended by AAPM (Price et al., 1990) and the 
Institute of Physics and Engineering in Medicine in UK (Lerski et al., 
1998; Wang and Doddrell, 2005) and compared the distances measured 
between the centres of the cylinders in the 2D orthogonal planes, with 
the correspondent ones in the phantom’s design. Between adjacent 
cylinders no geometric distortions were found, and between the cylin-
ders located at the extremes of the phantom, the geometric distortion 
was less than 0.8%. 

2.5. Automatic PVS segmentation 

We evaluate the performance of one of the fully-automated image 
processing/analysis methods most widely used in clinical research at 
present for segmenting PVS, which consists of enhancing PVS-like 
structures using a “vesselness” filter, thresholding the resulting “ves-
selness” likelihood map, and analysing the morphology of the 
segmented PVS. We evaluate two “vesselness” filtering methods, which 
are representative of the two classes of filters mostly used: 1) Hessian- 
based filters that rely on information provided by the Hessian matrix 
of the image, and 2) the morphological-based filters that rely on the 
mathematical morphology of the image intensities. We use the Hessian- 
based Frangi filter (Frangi et al., 1998), firstly used for PVS segmenta-
tion by Ballerini et al. (2018), and the morphological-based Ranking 
Orientation Responses of Path Operators (RORPO) (Merveille et al., 
2018), firstly used for PVS segmentation by Bernal et al. (2022), which 
also evaluated the Jerman filter (Jerman et al., 2015). Looking at the 
results from Bernal et al. (2022) it can be noticed that the performance of 
Jerman and Frangi filters was very similar, but with Frangi always 
yielding better results. This, partly, is owed to the wider descriptive 
capabilities of the objects’ geometry by Frangi (i.e., blobness, flatness 
and saliency) vs. those from Jerman (blobness only). 

We explore the influence of the filter parameters in the segmenta-
tion, and further analyse the limits of validity and expectations of ac-
curacy in the measurements of PVS-like structures using the optimal 
thresholds and the parameters previously published after these being 
validated in the corresponding pioneer publications. As such, for these 
analyses, the parameters of the Frangi filter were set as suggested in 
(Ballerini et al., 2016, 2018) α = 0.5, β = 0.5 and c = 500, as we show in 
the analyses of the parameters of the Frangi filter that these values yield 
the best results. The scales of each filter were tuned for the image res-
olution. The intensities of each image were normalised to values from 
0 to 255 only considering the region of interest (ROI). The filters were 
also applied to the images from the UMC Utrecht physical phantom. The 
optimum threshold applied to the resultant “vesselness” map was the 
one which allowed capturing holes across the whole (or most of the) 
range of diameters, and it was selected only on the image with the 
highest resolution and applied to the rest. The resulting segmentation 
mask was used to compute the results. Please note that we chose the 
threshold based on the physically acquired scans, because they have 
noise and artefacts that are not reflected in our in-silico phantom. 

Fig. 2. In-silico PVS phantom constructed by placing together cubes of 15 x 15 x 
15 mm3, each containing a cylinder (i.e., DRO) with different widths, lengths 
and orientations. 

Fig. 3. Transversal cut of an example of PVS DRO with diameter 3 mm in isotropic voxels of 0.3 × 0.3 × 0.3 mm3. (Left) Intensity image (Right) Segmentation mask. 
The red circle (i.e., thin perimeter line in the intensity image) indicates the true boundaries of the DRO, the green voxels are the voxels where the DRO occupies at 
least 30% of the voxels and the blue voxels are the surface of the DRO. The boundaries of the PVS representation, i.e., the measured dimensions, may be over-
estimated due to the partial volume effect (Fig. 3), as per Bernal et al. (2022). 
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2.6. Image analyses 

Using the in-silico phantom, we simulated the UMC Utrecht PVS 
(physical) phantom with voxel sizes varying from 0.3 to 0.5 mm 

(Supplementary Fig. S1), and calculated the diameters of the cylinders in 
both phantoms using the “PrincipalAxisLength” parameter from the 
MATLAB built-in function regionprops3. This function approximates an 
ellipsoid and returns the length of the principal axes. Since the objects 

Fig. 4. UMC Utrecht physical phantom scanned in axial (transverse) orientation (i.e., R-L x A-P plane) with the field-of-view rotated at different angles. (Left) 15 
degrees, (Centre) 0 degrees, (Right) 45 degrees. 

Fig. 5. Transversal slices from the UMC Utrecht phantom acquired with different resolutions. From left to right, reconstructed voxel sizes: 0.3, 0.35, 0.4, 0.45 and 
0.5 mm-isotropic. (the acquired “physical” resolution was 0.6, 0.7, 0.8, 0.9 and 1.0 mm isotropic, respectively, see Suppl. Table S1). From top to bottom in upper 
panels hole diameters 3, 2.5, 2, 1.8, 1.6 and 1.2 mm; and 1, 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4 mm in bottom panels. Please note that k-space ringing artefacts are more 
apparent with larger voxel sizes. 
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are straight, it is a good approximation for the dimensions of a cylinder. 
We use the highest value as length and the second largest as diameter. 
We plotted the segmentation and the results obtained from each filtering 
method for each phantom (i.e., in-silico and physical) to illustrate the 
expectations in accuracy of the PVS segmentation in absence of noise 
and confounding artefacts for each spatial resolution, and to evaluate 
the fidelity with which our in-silico phantom can be used to represent a 
physical MRI phantom for evaluating the accuracy of PVS segmenta-
tions. We also analysed the impact of PVS orientation in the measure-
ment accuracy at voxel sizes of 0.35 × 0.35 × 0.35 mm3 in both 
phantoms. We further analysed the limits of validity of the computa-
tional measurements that use the two filtering methods evaluated, in 
images with 1 mm-isotropic voxels, as this is the spatial resolution 
commonly used in medical research imaging protocols. For this, in our 
in-silico phantom, we generated cylinders from 0.1–3 mm diameter and 
from 0.1–10 mm length with different orientations and plotted the re-
sults. If at least 1 voxel inside a cylinder could be identified, then it was 
considered as detected. Otherwise, it was considered as not detected. 

2.7. Statistical analyses 

Differences between all the cylinder diameters’ measurements at 
each voxel size were investigated using box plots. The average mea-
surements, range, and absolute differences from the real measurements 
(i.e., ideal values, physically measured using a hole gage and a calliper 
in the physical phantom, or derived from the cylinder equation in the in- 
silico phantom) of the cylinders obtained from using each filtering 
method were compared using the paired Wilcoxon sign rank test. Bland- 
Altman analyses of the diameters’ measurements were also performed, 
but excluding the undetected cylinders (i.e., those for which the mea-
surement diameter equalled zero). 

2.8. Data availability statement 

The data and source code correspondent to the analyses contained in 
this manuscript are publicly available from https://doi.org/10.7488 
/ds/7454. 

3. Results 

3.1. Accuracy of the PVS measurements at different spatial resolutions 

Fig. 6 shows the results from measuring the diameter of the cylinders 
of both phantoms at spatial voxel sizes of 0.3, 0.4 and 0.5 mm-isotropic, 
and Fig. 7 shows the Bland-Altman plots of the differences between the 
average diameter measurements from both filters and the ideal cylinder 
diameters at voxel sizes of 0.3, 0.35, 0.4, 0.45, and 0.5 mm-isotropic (see 
also Supplementary Fig. S2). The RORPO filter had increased sensitivity 
compared to the Frangi filter for detecting small cylinders, between 0.5 
and 2.0 mm diameters regardless of the voxel size, while the Frangi filter 
yielded better results when measuring diameters higher than 1.0 mm for 
voxels equal or bigger than 0.45 mm-isotropic (i.e., from the ones 
evaluated in these experiments) (See Supplementary Table S5). Mea-
surements obtained using RORPO showed a linear correspondence be-
tween the measured diameter and the real diameter (i.e., ideal value) 
across the range of diameters evaluated. For smaller voxel sizes (i.e., 0.3 
and 0.4 mm-isotropic), diameter measurements were closer to the ideal 
segmentation of the in-silico phantom considering all voxels of the cyl-
inders (i.e., including those with partial volume effects), while for voxel 
sizes of 0.5 mm-isotropic, they were closer to the ideal segmentation of 
the in-silico phantom considering voxels located at least 30% inside the 
cylinders (e.g., green masked area in Fig. 3 right panel). Deviations from 
the ideal measurements, e.g. non-uniformities of the filter output inside 
the objects, were also observed. The measured diameters in both (i.e., in- 
silico and physical) phantoms followed similar pattern across sizes when 
compared to the theoretical values, in addition of being close to each 

other, thus providing confidence in the use of our in-silico phantom 
model to establish the limits of validity of the PVS segmentation 
methods. As expected (see Fig. 3 and Supplementary Table S2), almost 
all measurements were larger than the real dimensions of the cylinders 
(Figs. 6 and 7). 

Supplementary Table S3 contains the values of the diameter mea-
surements in mm using the Frangi filter, the filtering method that has 
been most used in clinical research (Pham et al., 2022), to identify the 
cylinders of the physical phantom. The mean absolute differences be-
tween the real diameters and the measured ones for voxels of 
0.3 mm-isotropic was 0.76 (SD=0.37, range=[0.2, 1.24]) mm. For 
voxels of 0.35 mm-isotropic it was the same but with range extending up 
to 1.27 mm. For voxels of 0.4 mm-isotropic the mean absolute differ-
ences were the highest: 0.81, (SD=0.39, range=[0.2, 1.31]) mm, and 
then declined for voxels of 0.45 mm-isotropic (0.78 (SD=0.35, range=
[0.2, 1.27]) mm), to be the smallest (in average) for voxels of 
0.5 mm-isotropic (0.62 (SD=0.24, range=[0.2, 0.96]) mm). 

3.2. Effect of PVS orientation in measurements 

Fig. 8 illustrates the diameters measured only on coronal orientation 
(upper row), and combining the measurements obtained from quanti-
fying the cylinders placed (i.e., in the in-silico phantom) or scanned (i.e., 
in the UMC Utretch physical phantom) in different orientations. The true 
values slightly differ when the scan is acquired in a perpendicular or 
parallel plane to the cylinders with respect to those from when the im-
ages are acquired in oblique planes, but these differences were very 
small if the same image processing method (i.e., filter) was used (see 
Supplementary Fig. S3 and the dataset in https://doi.org/10.7488 
/ds/7454 for individual measurements and their average values in 
each orientation). 

3.3. Influence of the Frangi filter parameters 

A spatial resolution (i.e., voxel size) of 0.3 mm-isotropic was chosen 
to represent the effect of different values of α, β, c and scale parameters 
of the Frangi filter for the identification of the PVS-like structures. Alpha 
(α) controls the sensitivity of the filter in differentiating between tube- 
like and plate-like structures. Values of α that are too low allow more 
plate-like structures to be highlighted. As the length of the PVS of in-
terest (i.e., the ones that are enlarged) ranges between 3 to 5 mm, 
α = 0.5 was best suited to dismiss the smaller structures while increasing 
the sensitivity to distinguish elongated cylinders mimicking large PVS 
from wedge-like structures that could mimic typical lacunes (see results 
from α values of 0.1, 0.5 and 0.9 in Supplementary Fig. S4). Beta (β) 
controls the sensitivity of the filter in differentiating between tube-like 
and blob-like structures. Lower values of β reduce the sensitivity in 
detecting short cylinders and the filter response in the extremes of larger 
cylinders (Supplementary Fig. S5, left hand-side panel, β = 0.1). Values 
of β that are too high, allow more blob-like structures to be highlighted 
and cause a blob-like effect in the extremes of the cylinders (Supple-
mentary Fig. S5, right hand-side panel, β = 0.9). The parameter c con-
trols the sensitivity of the contrast between the bright/dark object (PVS) 
and the background (commonly normal-appearing brain tissue), but 
lower values of c could also increase false positives (see effects of values 
50, 500 and 100 in Supplementary Fig. S6). The maximum scale 
parameter controls the sensitivity to the size of the cylinders. In prin-
ciple, higher values of the maximum scale will detect bigger tubular 
objects (Supplementary Fig. S7), but it depends on the voxel size as well. 
Smaller voxel sizes require higher values compared with larger voxels to 
detect tubular structures of the same length. The scale ratio controls the 
sensitivity to detect cylinders of certain aspects’ ratios, complementing 
the maximum scale parameter, but at a cost in computational time. Finer 
scales detect better the tubular structures but increase the computa-
tional time. Coarse scales would reduce the computational time but at 
the cost of not detecting some of these structures (Supplementary 
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Fig. 6. Measurements of cylinder’s diameters using the Frangi (left hand-side graphs) and RORPO (right hand-side graphs) filters for their detection in both 
phantoms, with isotropic voxel sizes of 0.3, 0.4 and 0.5 mm-isotropic and acquired resolutions equal to twice the reconstructed voxel sizes. The red line corresponds 
to the theoretically correct diameters (i.e., when the measured diameter is equal to the true diameter), the black line corresponds to the voxel size of the images, the 
dark blue line corresponds to the ideal segmentation of the in-silico phantom considering all voxels of the cylinders, the green line corresponds to the ideal seg-
mentation of the in-silico phantom considering voxels located at least 30% inside the cylinders, the light blue line corresponds to the results for the in-silico phantom 
and the yellow line corresponds to the filter results for the physical phantom. 
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Fig. S8). Also, suboptimal scales can lead to either under or over- 
estimation of the size of the PVS. If there is over-estimation we could 
end up merging PVS that are close together altering the real count. 
Results from applying the Frangi filter to the physical phantom using 
different parameters, are shown in supplementary Figs. S10 to S13. 

3.4. Influence of RORPO filter parameters 

The RORPO filter only uses one parameter: the maximum scale 
representing the maximum length of the tubular objects to identify. 
Supplementary Fig. S9 illustrates the effect of this parameter for a spatial 
resolution of 0.3 mm-isotropic. In principle, higher values of the 
maximum scale will detect bigger tubular objects (Supplementary 
Fig. S9). The filter seems to be more sensitive to objects that are aligned 
to the Cartesian coordinates. The filter output inside the cylinders is 
more homogeneous than the output of the Frangi filter, thus explaining 
the more linear behaviour in Fig. 6. The impact of this parameter of the 
RORPO filter, in segmenting the water-filled cylinders of different di-
ameters from the physical phantom at different voxel sizes, is illustrated 
in the Supplementary Fig. S14 for the Smax values of 18 and 46. 

3.5. In-silico measurements in images with 1 mm3 isotropic voxels 

The limits in detecting cylinders of different diameters from both 
filters for voxels of 1 mm-isotropic can be seen in Fig. 9. With the given 
filter parameters and thresholds, the Frangi filter could detect cylinders 
with at least 2 mm of length and 1 mm diameter. The RORPO filter could 
detect narrower cylinders of 0.4 mm diameter. 

Fig. 10 shows the length and diameter obtained from applying each 
filter with their optimal parameters. Cylinders (i.e., PVS-DROs) that did 
not have the minimum dimensions for being detected by each filter (as 
per results shown in Fig. 8) were removed from this analysis. Mea-
surements with the Frangi filter were closer to the ideal segmentation of 
the in-silico phantom considering only voxels with at least 30% inside 
the cylinder, and overlapped with these ideal segmentations in length. 
Measurements using RORPO were closer to the ideal segmentation 
considering all voxels (i.e., either fully or partially) belonging to the 
cylinders. This can be explained by looking at the filters’ output in the 
Supplementary Figs. S6-S7, RORPO filter output is more uniform across 
the whole cylinders that it detects, and in consequence the segmentation 
by thresholding will capture better the whole shape of the object. The 
Frangi filter, on the other hand, was better than RORPO in detecting the 
inner voxels of the cylinders rather than the boundary, which is rather 
confounded by partial volume effects. From these results we can confi-
dently accept that a PVS grows in diameter and length if the change is at 
least twice the maximum standard deviation of the diameter regardless 
of the filtering method used. The maximum standard deviation of the 
diameter for the Frangi filter was 1.65 mm and for the RORPO filter it 

was 0.79 mm. RORPO lower standard deviation can be explained by the 
uniformity of the filter output throughout all diameters (Supplementary 
Fig. S9). Length measurements from using the Frangi filter were closer to 
the ideal segmentations (i.e., theoretical and considering voxels with at 
least 30% inside the cylinder) throughout the whole range analysed: 
2 mm to 10 mm. 

4. Discussion 

4.1. Our contributions 

We have developed and made publicly available an in-silico phantom 
using the PVS-DROs presented by Bernal et al. (2022), for testing and 
evaluating methods and MRI-acquisition protocols that allow to assess 
PVS-like fluid-filled small tubular structures. The use of the in-silico and 
physical phantoms presented here can provide useful information on the 
accuracy and detectability of structures that can be considered a proxy 
for PVS visible in MRI, not only for brain studies, but for the study of PVS 
in any other body organ, as well as any fluid-filled small tubular struc-
ture. They can also be used to assess precision and performance of other 
PVS computational analysis methods. The PVS-DRO model as used in 
our in-silico phantom can be tuned to agree with the spin-echo 
T2-weighted images of the UMC Utrecht physical phantom scanned in 
a 7 T Phillips scanner with different voxel sizes and different orienta-
tions. Both phantoms represent the tubular shape of PVS using cylinders 
for easiness in their representation and manipulation. A more sophisti-
cated simulation can be achieved using Eq. (3) for the high-resolved 
image, and using the non-uniform Fourier transform to sample the 
k-space of the desired scan for simulating the low-resolution image. This 
would allow also to simulate more complex scenarios such as 
Rician-noise and ghosting, as per Bernal et al. (2022). We could define 
curved PVS using a parametric equation of the curved line and gener-
ating the PVS binary mask by setting to 1 all voxels that are inside the 
given radius of the PVS. However, such a representation would have 
introduced ambiguities in the interpretation of the results, as in such 
scenario a single “PVS” would had different orientations across its 
dimensionality. 

4.2. Accuracy of the quantitative PVS measurements from MRI 

The results presented show that in all cases, regardless of the filtering 
or image processing methods used, the boundaries of the PVS repre-
sentation are consistently overestimated due to a) the fact that these 
structures do not cross the voxels by their centre (Supplementary 
Table 1) and b) partial volume effect (as seen in Fig. 3; and in Bernal 
et al., 2022). Therefore, as with many other MRI measures (Gassenmaier 
et al., 2020; Keenan et al., 2021; Illán-Gala et al., 2022; Nousiainen and 
Mäkelä, 2020), PVS measures from MRI are only a proxy of the true PVS 

Fig. 7. Bland-Altman plots of the differences between the valid measurements from Frangi (left) and RORPO (right) at different voxel sizes (VS) and the real diameter 
of the cylinders of the physical phantom. Mean difference values for each voxel sizes are tabulated in Supplementary Table S5. 
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burden and individual dimensions, which depend on image resolution 
and processing methods, and which needs to be considered when 
comparing PVS measurements between scans. 

4.3. Influence of PVS orientation in the measurements’ accuracy 

Our results suggest that PVS orientation is not an influential factor in 
differences between measurements. However, it must be noted that the 

Fig. 8. Results of measuring the cylinders’ (PVS-DROs’) diameters in the in-silico and physical phantoms only in coronal orientation (upper row) and averaging the 
diameters’ measurements from four different orientations: coronal, and 15o, 30o and 45o foot-head with respect to the coronal (bottom row) using the Frangi filter 
(left hand side plot) and RORPO (right hand side plot). The voxel size is 0.35 × 0.35 × 035 mm3 and the acquired resolution was equal to twice the reconstructed 
voxel size. The red line corresponds to the theoretically correct diameters (i.e., when the measured diameter is equal to the true diameter), the black line corresponds 
to the voxel size of the scans, the dark blue line corresponds to the ideal segmentation of the PVS-DROs considering all their voxels, the green line corresponds to the 
ideal segmentation of the PVS-DROs considering voxels located at least 30% inside them, the light blue line corresponds to the results for the in-silico phantom, and 
the yellow line correspond to the filter results for the physical phantom. 
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use of the phantoms presented here with cylindrical DROs, but imaged 
with susceptibility-weighted sequences to represent blood-oxygen con-
tent in vessels would not yield the same conclusion. A study on the ac-
curacy of MRI-based susceptibility measurements using also cylindrical 
objects reported variations in the observed induced fields as a function 
of the cylinders’ orientation (Erdevig et al., 2017). 

4.4. Frangi vs RORPO – recommendations on their use and limits of 
validity 

The success in the use of the Frangi filter in detecting PVS-like 
structures from MRI relies on a careful tuning of several parameters. 
The combination of parameters proposed by Ballerini et al., (2016, 
2018) α = 0.5, β = 0.5 and c= 500 (although c may change depending 

on the signal intensity of the input image), proved to yield the best re-
sults in all the simulations done so far (i.e., here, and in Bernal et al., 
2022), while the recommended scaling range and ratios may vary 
depending on the spatial resolution (i.e., voxel size) of the image and 
intensity contrast. RORPO, on the contrary, does not have these re-
quirements, and compared with Frangi, allows detecting smaller cylin-
ders in their entirety more accurately. The segmentation of the cylinders 
using the Frangi filter, however, seems to be best suited for voxel sizes 
equal or larger than 0.4 mm-isotropic and cylinders larger than 1 mm 
diameter and 2 mm length. Hence, although the use of the RORPO filter 
may seem to outperform that of the Frangi filter in most of the discussed 
scenarios, to establish either filter as a better choice, we need to analyse 
other factors such as voxel anisotropy, presence of Gibbs artefacts, 
Rician noise, curved PVS, presence of other imaging confounds as 

Fig. 9. Results from applying the Frangi (left) and RORPO (right) filters. Cylinders with diameter and lengths represented by the red crosses were not detected, 
whereas the ones represented by the blue circles were detected. Overlap in detection/not detection across the range of dimensions in the graphs is owed to the 
different spatial orientations of the cylinders. The cylinders with diameter greater than their length do not follow the definition of PVS and were not considered in 
the experiment. 

Fig. 10. Comparison of the computed diameters and lengths for both filters for the in-silico phantom of isotropic voxels of 1 mm3. (Left) Diameters (Right) Lengths. 
The red line corresponds to the theoretically correct diameters/lengths (i.e., when the measured magnitude is equal to the true magnitude), the black line corre-
sponds to the voxel size of the scans, the dark blue line corresponds to the ideal segmentation of the in-silico phantom considering voxel with any proportion of the 
cylinder, the green line corresponds to the ideal segmentation of the in-silico phantom considering voxels with at least 30% inside the cylinder, the light blue line 
corresponds to the Frangi filter results and the yellow line corresponds to the RORPO filter results. 
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lacunes and white matter hyperintensities, and grouping/clustering of 
PVS. Also, given that the PVS that are of interest clinically have larger 
sizes than the minimal dimensions for which Frangi seems to be best 
suited, in absence of artefacts or any confounding effects, the decision of 
whether to use one filtering method or the other comes down to the 
performance of the filter in the presence of these other factors. 

4.5. Limitations 

The phantoms have limitations in terms of their representation of the 
living brain. Importantly, they do not include the white matter hyper-
intensties, lacunes, varied background signal in normal-appearing white 
matter, etc., that are commonly associated with having more PVS. 
Therefore, a more realistic in-silico phantom mimicking spatial interac-
tion of the tubular structures with other lesion-like features represen-
tatives of white matter hyperintensities, strokes and lacunes, will be 
needed to ascertain the influence of these confounds in the segmentation 
of PVS-like structures and evaluate the capability of the image-
–processing methods to avoid false positives. While the discussed filters 
are designed to avoid objects that are not tube-like (e.g. blob-like and 
plate-like objects), the limits of these features needs to be further 
explored. 

4.6. Future improvements 

Although described as tubular structures, some PVS may intercon-
nect forming vessel-like more complex structures or have a curvilinear 
shape. In these cases, building-upon more complex vessel phantoms 
(Gasser, 2012; Gholami Bajestani et al., 2022) would be beneficial to 
ascertain the performance of current algorithms in such scenarios. In 
such cases, PVS morphometrics may not be accurately calculated using 
the ellipsoid approximation model implemented by the pegionprops3 
function in MATLAB, used here. The use of a cubic Bézier curve 
approximation model instead seems promising in such scenarios (Duarte 
Coello et al., 2023). 

Although deep learning methods are still to be established for PVS- 
segmentations, promising results of experimental schemes have been 
emerging (Pham et al., 2022; Barisano et al., 2022). Further evaluation 
of these architectures using the phantoms presented here will hopefully 
help in the standardisation of the PVS segmentation with views at 
cross-studies analyses to advance the knowledge about the role of these 
structures in brain health. 

CRediT authorship contribution statement 
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