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Early qualitative and quantitative amplitude-integrated 
electroencephalogram and raw electroencephalogram for 
predicting long-term neurodevelopmental outcomes in 
extremely preterm infants in the Netherlands: a 10-year 
cohort study
Xiaowan Wang*, Chiara Trabatti*, Lauren Weeke, Jeroen Dudink, Henriette Swanenburg de Veye, Rian M J C Eijsermans, 
Corine Koopman-Esseboom, Manon J N L Benders, Maria Luisa Tataranno

Summary
Background Extremely preterm infants (<28 weeks of gestation) are at great risk of long-term neurodevelopmental 
impairments. Early amplitude-integrated electroencephalogram (aEEG) accompanied by raw EEG traces (aEEG−
EEG) has potential for predicting subsequent outcomes in preterm infants. We aimed to determine whether and 
which qualitative and quantitative aEEG–EEG features obtained within the first postnatal days predict 
neurodevelopmental outcomes in extremely preterm infants.

Methods This study retrospectively analysed a cohort of extremely preterm infants (born before 28 weeks and 0 days 
of gestation) who underwent continuous two-channel aEEG–EEG monitoring during their first 3 postnatal days at 
Wilhelmina Children’s Hospital, Utrecht, the Netherlands, between June 1, 2008, and Sept 30, 2018. Only infants who 
did not have genetic or metabolic diseases or major congenital malformations were eligible for inclusion. Features 
were extracted from preprocessed aEEG–EEG signals, comprising qualitative parameters grouped in three types 
(background pattern, sleep–wake cycling, and seizure activity) and quantitative metrics grouped in four categories 
(spectral content, amplitude, connectivity, and discontinuity). Machine learning-based regression and classification 
models were used to evaluate the predictive value of the extracted aEEG–EEG features for 13 outcomes, including 
cognitive, motor, and behavioural problem outcomes, at 2–3 years and 5–7 years. Potential confounders (gestational 
age at birth, maternal education, illness severity, morphine cumulative dose, the presence of severe brain injury, and 
the administration of antiseizure, sedative, or anaesthetic medications) were controlled for in all prediction analyses.

Findings 369 infants were included and an extensive set of 339 aEEG–EEG features was extracted, comprising nine 
qualitative parameters and 330 quantitative metrics. The machine learning-based regression models showed 
significant but relatively weak predictive performance (ranging from r=0·13 to r=0·23) for nine of 13 outcomes. 
However, the machine learning-based classifiers exhibited acceptable performance in identifying infants with 
intellectual impairments from those with optimal outcomes at age 5–7 years, achieving balanced accuracies of 0·77 
(95% CI 0·62–0·90; p=0·0020) for full-scale intelligence quotient score and 0·81 (0·65–0·96; p=0·0010) for verbal 
intelligence quotient score. Both classifiers maintained identical performance when solely using quantitative features, 
achieving balanced accuracies of 0∙77 (95% CI 0∙63–0∙91; p=0∙0030) for full-scale intelligence quotient score and  
0∙81 (0∙65–0∙96; p=0∙0010) for verbal intelligence quotient score.

Interpretation These findings highlight the potential benefits of using early postnatal aEEG–EEG features to 
automatically recognise extremely preterm infants with poor outcomes, facilitating the development of an interpretable 
prognostic tool that aids in decision making and therapy planning.

Funding European Commission Horizon 2020.

Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 
license.

Introduction
Survival rates of extremely preterm infants (born at 
<28 weeks of gestation) have seen enormous improve­
ments thanks to advanced obstetric and neonatal care 
over the past three decades.1–3 Nevertheless, surviving 
infants still face a high risk of long-term 

neurodevelopmental impairments, such as cognitive and 
motor deficits.4,5

Adverse outcomes in extremely preterm infants largely 
arise from brain abnormalities acquired during their 
premature extrauterine life.6 To mitigate long-term 
morbidity in these infants, targeted care and timely 
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interventions are vital to protect their vulnerable 
developing brains.7 For this reason, there is a heightened 
interest in developing reliable brain-based markers to 
predict future outcomes in these infants at the earliest 
possible stage during their stay in the neonatal intensive 
care unit (NICU).8

Amplitude-integrated electroencephalogram (aEEG), 
in conjunction with its corresponding raw EEG traces 
(collectively referred to as aEEG–EEG), has gained 
increasing popularity worldwide as a useful bedside tool 
for monitoring the brain function of infants admitted to 
NICUs.9,10 As a simplified alternative to conventional 
multichannel EEG, the aEEG–EEG uses only one or two 
channels and is easy to set up.10 It can be started upon a 
neonate’s admission to the NICU, enabling early 
detection and intervention of brain dysfunction. 
Moreover, both qualitative and quantitative aEEG–EEG 
parameters have shown great potential in predicting 
long-term outcomes for preterm infants.9,11–18 When 
compared with neuroimaging markers such as brain 
MRI, aEEG–EEG shows similar performance in future 
outcome prediction19 and allows the identification of 
preterm infants without any overt brain injury but at risk 
of poor outcomes.20

Despite the ever-growing body of literature exploring 
the role of aEEG–EEG in predicting outcomes for 
preterm infants, several crucial aspects require further 
investigation to enhance our understanding of this topic. 

One of the primary concerns is the scarcity of research in 
extremely preterm infants.13 In existing studies, these 
infants are often merely incorporated as a subgroup, and 
the sample size is relatively small. Considering the 
weekly evolution of aEEG–EEG characteristics during 
the preterm period,21 findings from other age groups 
cannot be directly applied to these infants.

The diversity in procedural and analytical approaches 
among existing studies adds complexity to drawing 
consistent conclusions.22 One notable issue lies in 
outcome measurement: the assessment time varies 
across studies, and the use of internationally standardised 
scales is not guaranteed. Another complication is the 
inconsistency in the timing of aEEG–EEG data collection. 
To identify the earliest possible brain-based markers, 
assessing the predictive value of aEEG–EEG features 
within the first postnatal days could be of value.

Furthermore, previous research often focuses on 
a specific aEEG–EEG feature, ignoring the comp­
lementarity between different feature types. This 
oversight could potentially hinder the improvement of 
outcome prediction performance.23 With the advent of 
machine learning prediction algorithms, we can now 
process an extensive set of input features. Unlike 
conventional statistical inferences (eg, group difference 
or in-sample association), which dominated previous 
research on the relationship between aEEG–EEG and 
outcomes, the machine learning algorithms enable 

Research in context

Evidence before this study
We searched PubMed from database inception to May 24, 2022, 
using the terms (“aEEG” OR “two-channel EEG” OR “single-
channel EEG”) AND (“neurodevelopmental outcomes” OR 
“outcome”) AND “extremely preterm” NOT “review”, with no 
language restrictions. Our search yielded 13 results, of which 
four original studies were identified using features extracted 
from amplitude-integrated electroencephalogram (aEEG) 
accompanied by raw EEG traces (aEEG–EEG) to predict long-
term neurodevelopmental outcomes for extremely preterm 
infants (<28 weeks of gestation). These studies had relatively 
small sample sizes, ranging from 22 to 65. Of these studies, 
one study calculated EEG power, whereas the other three used 
distinct types of qualitative features. No studies were identified 
using machine learning-based prediction models or combining 
different types of aEEG–EEG features for outcome prediction in 
extremely preterm infants.

Added value of this study
In this study, we used a large, homogeneous retrospective 
cohort of extremely preterm infants, with aEEG–EEG data 
collected routinely over a 10-year period and applied machine 
learning-based regression and classification models to evaluate 
the predictive ability of an extensive set of qualitative and 
quantitative aEEG–EEG features on multiple long-term 

outcome measurements. By focusing on routine aEEG–EEG 
monitoring in the first 3 postnatal days, we had the opportunity 
to investigate whether it is feasible to detect extremely preterm 
infants with poor outcomes as early as possible. We found that 
the classification models showed acceptable performance at 
identifying infants with intellectual disabilities at early school 
age (5–7 years). Remarkably, these classifiers maintained the 
same level of performance when solely using quantitative 
features. Our findings contribute towards understanding the 
role of qualitative and quantitative aEEG–EEG features in 
predicting subsequent neurodevelopmental outcomes for 
extremely preterm infants.

Implications of all the available evidence
The current findings strengthen existing evidence and support 
the possibility of using early aEEG–EEG to automatically identify 
extremely preterm neonates at risk of long-term 
neurodevelopmental impairments. This could enable clinical 
teams to allocate more medical resources to newborn infants at 
high risk and implement appropriate and timely supportive 
care to facilitate optimal brain development. Furthermore, it is 
helpful in counselling parents about what to expect regarding 
their child’s development and needs, thereby preparing them 
emotionally and practically.
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making predictions on an individual level, which are 
sought after for future precision medicine.24

In this context, we aimed to examine whether aEEG–
EEG features obtained during the first 3 postnatal days 
could serve as early indicators for neurodevelopmental 
outcomes at preschool and early school age within a 
large, homogeneous cohort of extremely preterm infants. 
A comprehensive set of qualitative and quantitative 
aEEG–EEG features was extracted and fed into machine 
learning-based regression and classification models to 
evaluate their predictive value for future outcomes. The 
machine learning regression models were used to 
explore the relationships between aEEG–EEG features 
and outcomes. The machine learning-based classification 
models were used to distinguish between infants with 
optimal and impaired outcomes, aiming to make the 
findings clinically applicable.

Methods 
Study design and population 
This retrospective cohort study examined extremely 
preterm infants (born before 28 weeks and 0 days of 
gestation) admitted to the NICU of the Wilhelmina 
Children’s Hospital (WKZ), Utrecht, the Netherlands, 
between June 1, 2008, and Sept 30, 2018. Only infants 
who received continuous two-channel aEEG–EEG 
monitoring within the first 3 postnatal days and did not 
have genetic or metabolic diseases or major congenital 
malformations were eligible for inclusion. Permission to 
use the patient data was obtained from the Medical 
Research Ethics Committee of the University Medical 
Centre Utrecht (protocol number 20-660-C). Because all 
data used in this study were collected as part of standard 
medical care and the analysis was retrospective, written 

parental consent was not required. All data were 
pseudonymised and de-identified before analysis.

Procedures
As part of standard care for extremely preterm infants 
admitted to the NICU of the WKZ, two-channel aEEG–
EEG monitoring was started as soon as possible after a 
neonate’s admission and maintained at the bedside for 
the first 3 postnatal days. The BrainZ monitor (BRM2 or 
BRM3; Natus Medical, Seattle, WA, USA) was used for 
the aEEG–EEG recording. Raw EEG signals were 
recorded from pairs of needle electrodes subcutaneously 
placed over the frontoparietal cortex (left channel: F3-P3, 
right channel: F4-P4) at a sampling rate of 256 Hz and 
were subsequently processed to generate aEEG traces. 
Additionally, a reference electrode was placed over the 
vertex (Cz).

All aEEG–EEG traces were first reviewed by experienced 
clinicians (CT, LW, and MLT) using Analyze Research 
software (version 2.0, BrainZ Instruments). For each of 
the 3 days, a so-called best hour period of aEEG–EEG 
data, characterised by more mature patterns and fewer 
artifacts, was manually selected within specific time 
periods: 20–24 h for day 1, 44–48 h for day 2, and 68–72 h 
for day 3. The best hour of aEEG–EEG data was used for 
subsequent qualitative background pattern assessment 
and quantitative feature calculation due to the sensitivity 
of these features to artifacts (figure 1).

The experienced clinicians (CT, LW, and MLT) further 
conducted qualitative aEEG–EEG analysis using the 
Hellström-Westas classification system.25 To ensure the 
accuracy and reliability of the qualitative classification, at 
least two clinicians jointly reviewed and evaluated aEEG–
EEG traces during each analysis, while remaining 

Two-channel aEEG
with raw EEG traces

Qualitative analysis
• Sleep–wake cycling
• Seizure activity
• Background pattern

Automatic artifact removal

• Continuous zeros
• High-amplitude activities
• Continuous rows of constant values
• Sudden jumps

Neurodevelopmental 
outcomes

At preschool age
• Cognitive
• Motor (total, fine, gross)
• CBCL total

At early school age
• Cognitive (full-scale IQ, verbal 

IQ, performance IQ, processing 
speed)

• Motor (total, manual dexterity, 
aiming and catching, balance)

A best hour period 
of aEEG–EEG data 
per day per patient 
(1078 h in total) 

Visual review
Machine learning-based
prediction analysis

• Regression
• Classification

Prediction
performance

Quantitative analysis

• Spectral content
• Amplitude
• Connectivity
• Discontinuity

Figure 1: Overview of the entire analysis pipeline
aEEG=amplitude-integrated electroencephalogram. CBCL=Child Behavior Checklist. EEG=electroencephalogram. IQ=intelligence quotient.
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masked to patients’ clinical characteristics and outcomes 
throughout the process.

The qualitative analysis involved three different feature 
types: background pattern, sleep–wake cycling, and 

seizure activity. During background pattern evaluation, 
the selected best hour of aEEG–EEG data for each 
corresponding day was segmented into six discrete 
epochs, each lasting 10 min. From these epochs, the most 
prevalent category was extracted and used for further 
analysis. The evaluation of sleep–wake cycling and seizure 
activity was conducted using complete data for each day.

Each of these features could be further classified as 
multiple subtypes (appendix p 2). However, not all these 
subtypes are commonly observed in extremely preterm 
infants. To focus on the most relevant information and 
facilitate comprehension, we converted the initial 
classification results of each feature into a binary form: 
normal or abnormal (appendix p 2).

The quantitative analysis relied on raw EEG signals 
and was performed using Matlab scripts (MathWorks, 
Natick, MA, USA) that were developed in-house, together 
with a Matlab software package NEURAL.26

Before extracting quantitative features, the visually 
selected periods of raw EEG data were preprocessed for 
automated artifact removal and noise reduction. Data 
segments containing obvious artefacts—continuous 
zeros, high-amplitude activities, continuous rows of 
constant values, and sudden jumps—were removed. 
Subsequently, a band-pass filter of 0·5–30 Hz was used 
to remove low-frequency and high-frequency noises, and 
a notch filter at 50 Hz was applied to attenuate power line 
interference.

From the preprocessed EEG data, a set of 110 quantitative 
features was computed. These features can be grouped 
into four distinct categories: spectral content (26 features), 
amplitude (56 features), connectivity (21 features), and 
discontinuity (seven features). The properties of these 
features are detailed in appendix (pp 3–5).

Both qualitative and quantitative aEEG–EEG features 
were calculated for each of the 3 days. 

Outcomes 
Neurodevelopmental outcomes for extremely preterm 
infants were measured during their regular follow-up 
visits at the outpatient clinic of the WKZ at preschool age 
(2–3 years) and early school age (5–7 years) by raters 
masked to patients’ aEEG–EEG characteristics.

At preschool age, the Bayley Scales of Infant and 
Toddler Development, Third Edition (BSID-III), were 
administered to evaluate cognitive and motor 
functioning.27 We used four index scores provided by the 
BSID-III—cognitive composite score, total motor 
composite score, and fine and gross motor subscaled 
scores. The Child Behavior Checklist (CBCL) was used to 
assess behavioural or emotional problems, yielding a 
total problem score.28

At early school age, the Wechsler Preschool & Primary 
Scale of Intelligence, Third Edition (WPPSI-III), was 
used to assess cognitive abilities by providing a full-scale 
intellectual quotient (IQ), and composite scores for 
verbal IQ, performance IQ, and processing speed.29 The 

See Online for appendix

Extremely preterm 
infants (n=369)

Maternal and demographic characteristics

Sex*

Female 164 (44%)

Male 205 (56%)

Gestational age at birth, weeks 26·4 (1·1; 23·9–27·9)

Birthweight†, g 880 (180)

Maternal education level

No education 1 (<1%)

Primary education 11 (3%)

Some secondary education 37 (10%)

Completed secondary education 80 (22%)

University education 96 (26%)

Missing 144 (39%)

Clinical characteristics during the NICU stay

Morphine

Yes 222 (60%)

No 142 (39%)

Missing 5 (1%)

Morphine cumulative dose‡, mg/kg 1·3 (2·3)

The administration of antiseizure, sedative, or anaesthetic medications§

Yes 140 (38%)

No 229 (62%)

Illness severity

Severe 183 (50%)

Mild 181 (49%)

Missing 5 (1%)

The presence of severe brain injury

Yes 118 (32%)

No 246 (67%)

Missing 5 (1%)

Apgar score

At 1st min after birth¶ 5 (3–7)

At 5th min after birth|| 8 (6–8)

At 10th min after birth** 8 (8–9)

Follow-up age

Age at the time of BSID-III administration, years 2·5 (0·2; 2·2–3·0)

Age at the time of CBCL administration, years 2·5 (0·2; 2·2–3·0)

Age at the time of WPPSI-III administration, years 5·9 (0·2; 5·1–6·8)

Age at the time of MABC-2 administration, years 5·9 (0·2; 5·1–7·0)

Data are n (%), mean (SD; range), mean (SD), or median (IQR). BSID-III=Bayley 
Scales of Infant and Toddler Development, Third Edition. CBCL=Child Behavior 
Checklist. MABC-2=Movement Assessment Battery for Children, Second Edition. 
NICU=neonatal intensive care unit. WPPSI-III=Wechsler Preschool & Primary Scale 
of Intelligence, Third Edition. *The use of “female” and “male” refers to sex 
assigned at birth. †One infant with missing data. ‡11 infants with missing data. 
§The antiseizure, sedative, or anaesthetic medications include phenobarbital, 
lidocaine, levetiracetam, clonazepam, midazolam, and other potential surgical 
anaesthetics. ¶Seven infants with missing data. ||Four infants with missing data. 
**86 infants with missing data. 

Table 1: Patient characteristics
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Movement Assessment Battery for Children, Second 
Edition (MABC-2), was used to evaluate motor abilities 
by generating an overall estimate of the child’s motor 
performance and three subscaled scores: manual 
dexterity, aiming and catching, and balance.30

The administration of these outcome measurements 
was carried out using their Dutch versions. All outcome 
measurements are standardised, norm-referenced tests. 
Lower scores on the BSID-III, WPPSI-III, and MABC-2 
indicate poorer functioning, whereas higher scores on the 
CBCL indicate more behavioural or emotional problems. 
For classification purposes, each outcome was converted 
into a binary form (optimal vs impaired) using thresholds 
set at −2 SD or +2 SD from the normative mean value. For 
measurements with mean values of 100 (SD 15), including 
BSID-III composite scores and WPPSI-III scores, a score 
of 70 or less was categorised as impaired. More specifically, 
an IQ score of 70 or less on the WPPSI-III at age 5–7 years 
indicates intellectual disability. For measurements with 
mean values of 10 (SD 3), including BSID-III subscaled 
scores and MABC-2 scores, a score of 4 or less was 
categorised as impaired. For the CBCL total problem score 
with a mean value of 50 (SD 10), a score of 70 or higher 
was categorised as impaired.

Statistical analysis
The relationship between aEEG–EEG and outcomes can 
be affected by a range of patient-related factors. To 
accurately determine the inherent predictive value of 
aEEG–EEG for future outcomes, several crucial con­
founders were considered in subsequent prediction 
analysis. These confounders were gestational age at 
birth, maternal education, illness severity, morphine 
cumulative dose, the presence of severe brain injury, and 
the administration of antiseizure, sedative, or anaesthetic 
medications (appendix p 6). A Spearman’s correlation 
coefficient (rS) matrix was created to describe the 
relationship between each pair of the aEEG–EEG 
features, confounders, and outcomes. Before being fed 
into a prediction model, each aEEG–EEG feature was 
adjusted for confounders using ordinary least-squares 
regression. Missing values were imputed with the 
median (for continuous variables) or most frequent 
values (for categorical variables).

For each outcome measurement, a support vector 
regression model and a histogram-based gradient-
boosting classification model were built. Each prediction 
(regression or classification) model was trained through 
a nested 3-fold cross-validation procedure, in which a 
grid search was used to find the optimal hyperparameters. 
For classification models specifically, the folds were 
stratified to maintain the proportion of samples for each 
class. Moreover, we only built classification models for 
outcomes with a minimum of nine samples per class. 
This requirement ensured that each inner fold contained 
at least two samples, enabling a robust hyperparameter 
optimisation process.
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Figure 2: Distributions of neurodevelopmental outcomes at preschool age (A) and early school age (B)
On each violin plot, the central black dot denotes the mean, the vertical line through the dot represents the SD, and 
the horizontal dash line indicates the threshold of −2 SD or +2 SD from the normative mean value. The number of 
infants who had outcome measurements is indicated below each violin plot. IQ=intelligence quotient.
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Subsequently, a leave-one-subject-out cross-validation 
procedure was conducted to evaluate the out-of-sample 
predictive performance of each model with the best 
hyperparameters. The performance of regression 
models was measured by the Pearson’s correlation 
coefficient (r) and mean square error (MSE) between 
actual and predicted outcome scores. r ranges from −1 
to 1, where 1 indicates a perfect match, 0 implies a 
chance prediction, and a negative value suggests an even 
worse performance. The MSE ranges from 0 to infinity, 
where 0 represents a perfect fit, whereas increasing 
values mean decreasing performance. The performance 
of classification models was measured by balanced 
accuracy and the Fβ score. Both metrics range from 0 
(completely wrong) to 1 (completely correct), with higher 
values being better. A balanced accuracy of 0·5 is 
equivalent to random guessing. The Fβ score is a robust 
metric that considers both precision and recall by 
calculating a weighted harmonic mean of the two. We 

used a β value of 10 to assign more weight to recall than 
to precision.

The significance of these performance metrics was 
evaluated using permutation tests, in which outcome 
scores were randomly shuffled 1000 times per test. The 
p value is calculated as (n + 1) divided by 1001, where n 
represents the number of times that randomised values 
yield results superior to the original result from the non-
permuted data. The significance level was set at p values of 
less than 0·05. For a regression model, significance in 
both r and MSE indicated better-than-chance performance, 
and for a classification model significance in both balanced 
accuracy and Fβ score indicated better-than-chance 
performance. We further estimated 95% CIs for their 
performance metrics based on 1000 bootstrap resamples. 
Finally, we used Shapley additive explanations (SHAP) to 
evaluate the contributions of each feature category and 
features from each day to outcome predictions, with higher 
SHAP values indicating greater contributions.

The descriptive statistical analysis and data visualisation 
were implemented using Python (version 3.10.9) and R 
(version 4.2.3) in RStudio (version 2023.03.0+386). The 
machine learning-based prediction analyses were 
implemented using scikit-learn (version 1.2.1) within 
Python (version 3.10.9).

Role of the funding source 
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results 
A total of 601 extremely preterm infants were screened. 
Of these infants, 108 were excluded due to the absence of 
aEEG–EEG data or the presence of congenital birth 
defects, and 124 were excluded due to insufficient, non-
valid, or poor-quality aEEG–EEG data. Ultimately, 
369 infants met the eligibility criteria and were included 
in this study. These infants’ demographics and clinical 
characteristics during their NICU stay are summarised 
in table 1.

343 (93%) of 369 enrolled infants had aEEG–EEG data 
available for all three time periods (ie, 20–24 h, 44–48 h, 
and 68–72 h), whereas the remaining infants had data 
available for one (three [1%]) or two (23 [6%]) of the time 
periods. In total, 1078 h of aEEG–EEG data with relatively 
good quality were obtained and used for feature extraction 
(figure 1). A total of 339 aEEG−EEG features—nine 
qualitative and 330 quantitative features—were obtained 
for each infant. The distributions of these features over 
the three periods are shown in the appendix (pp 7–8).

Of the 369 infants, a minimum of 227 (62%; total 
motor) and a maximum of 274 (74%; cognitive) had 
outcomes measured at preschool age and a minimum of 
186 (50%; full-scale IQ) and a maximum of 222 
(60%; aiming and catching) at early school age (figure 2). 
At preschool age, a range of three (1%) to 13 (6%) infants 

Figure 3: Spearman’s correlation coefficient matrix of aEEG–EEG features, confounders, and outcomes
Different types of aEEG–EEG features and outcomes are represented in different colours according to the colour 
bars located at the top and left side of the matrix. Within the matrix, red refers to positive and blue to negative 
Spearman’s correlation coefficient (rS) values. The intensity of the colour gradient corresponds to the strength of 
the correlation, with darker shades indicating stronger correlations and lighter shades indicating weaker 
correlations. aEEG=amplitude-integrated electroencephalogram. EEG=electroencephalogram.
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exhibited impaired outcomes, and at early school age a 
range of seven (4%) to 58 (26%) infants exhibited 
impaired outcomes. The age details at the time of 
outcome measurements are shown in table 1.

A 358 × 358 Spearman’s correlation coefficient matrix is 
shown in figure 3, illustrating the pairwise relationships 

between the 339 aEEG–EEG features, six confounders, 
and 13 outcomes. The correlations within the same 
category of aEEG–EEG features seemed to be stronger 
than the inter-category correlations. The correlations 
between individual aEEG–EEG features and outcomes 
were relatively weak (absolute values <0·29). Additionally, 
the confounders exhibited obvious correlations with both 
aEEG–EEG features and outcomes, indicating their 
potential effects on the relationships between aEEG–
EEG and outcomes.

In machine learning-based regression analyses, nine of 
13 outcome measurements were significantly predicted 
by aEEG–EEG features (table 2; appendix p 9). However, 
the prediction performance of the significant models was 
relatively low (ranging from r=0·13 to r=0·23).

Eight outcomes had sufficient infants per class (optimal 
and impaired) for robust hyperparameter optimisation in 
classification analysis (figure 2). Among them, gross 
motor and aiming and catching scores were not 
significantly predicted by aEEG–EEG features using 
regression models (table 2). Therefore, the two outcomes 
were excluded from further classification analysis, 
resulting in the development of six classification models 
(table 3). The classifiers for full-scale and verbal IQ scores 
achieved significant performance (table 3; figure 4A). 
The optimal hyperparameters for the two classifiers are 
detailed in the appendix (p 10).

The highest contribution to the full-scale IQ classifier, 
indicated by mean absolute SHAP values, came from 
amplitude features, followed by discontinuity, spectral, 
connectivity, and qualitative features (figure 4B). 
Additionally, features from day 2 contributed most to the 
full-scale IQ classifier, followed by day 3 and day 1 
(figure 4C). For the verbal IQ classifier, only discontinuity 
features from day 3 played a part in making accurate 
predictions. 

We further trained classifiers based solely on 
quantitative features to predict full-scale and verbal IQ 
scores, which achieved identical performance as the 
complete feature set: for full-scale IQ, balanced accuracy 
was 0∙77 (95% CI 0∙63–0∙91, p=0∙0030) and the Fβ 

r Permutation 
p value for r

Mean 
square 
error

Permutation 
p value for 
mean square 
error

Outcomes at preschool age

BSID-III

Cognitive composite 
score

0·14 0·013 38·72 0·013

Total motor composite 
score

0·10 0·056 57·32 0·058

Fine motor scaled score 0·13 0·014 19·95 0·010

Gross motor scaled 
score

0·08 0·13 1·08 0·055

CBCL

Total behavioural 
problem score

0·13 0·023 7·55 0·022

Outcomes at early school age

WPPSI-III

Full-scale IQ score 0·22 0·0050 1·09 0·013

Verbal IQ score 0·23 0·0030 1·14 0·040

Performance IQ score 0·19 0·0080 1·17 0·057

Processing speed score 0·18 0·017 1·11 0·019

MABC-2

Total motor score 0·20 0·0010 4·75 0·0010

Manual dexterity score 0·21 0·0020 2·27 0·0030

Aiming and catching 
score

0·11 0·055 2·81 0·064

Balance score 0·17 0·0060 6·40 0·0060

BSID-III=Bayley Scales of Infant and Toddler Development, Third Edition. 
CBCL=Child Behavior Checklist. IQ=intelligence quotient. MABC-2=Movement 
Assessment Battery for Children, Second Edition. WPPSI-III=Wechsler Preschool & 
Primary Scale of Intelligence, Third Edition. 

Table 2: Prediction performance of machine learning-based regression 
models

Balanced accuracy 
(95% CI)

Permutation p value 
for balanced accuracy

Fβ score 
(95% CI)

Permutation 
p value for Fβ score

Precision 
(95% CI)

Recall (95% CI)

WPPSI-III

Full-scale IQ score 0·77 (0·62–0·90) 0·0020 0·61 (0·33–0·88) 0·0020 0·38 (0·17–0·61) 0·62 (0·33–0·89)

Verbal IQ score 0·81 (0·65–0·96) 0·0010 0·69 (0·37–0·98) 0·0010 0·35 (0·14–0·56) 0·70 (0·38–1.00)

Processing speed score 0·55 (0·47–0·63) 0·095 0·18 (0·04–0·35) 0·089 0·22 (0·05–0·43) 0·18 (0·04–0·35)

MABC-2

Total motor score 0·51 (0·46–0·57) 0·31 0·21 (0·10–0·32) 0·31 0·29 (0·16–0·44) 0·21 (0·10–0·32)

Manual dexterity score 0·54 (0·48–0·61) 0·11 0·20 (0·08–0·33) 0·12 0·28 (0·11–0·44) 0·20 (0·08–0·33)

Balance score 0·52 (0·46–0·59) 0·27 0·15 (0·04–0·27) 0·24 0·20 (0·05–0·37) 0·15 (0·04–0·27)

The Fβ score was calculated with a β value of 10. IQ=intelligence quotient. MABC-2=Movement Assessment Battery for Children, Second Edition. WPPSI-III=Wechsler 
Preschool and Primary Scale of Intelligence, Third Edition. 

Table 3: Prediction performance of machine learning-based classification models
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score was 0∙61 (95% CI 0∙33–0∙88, p=0∙0030); and for 
verbal IQ, balanced accuracy was 0∙81 (0∙65–0∙96, 
p=0∙0010) and the Fβ score was 0∙69 (0∙37–0∙98, 
p=0∙0010).

Discussion 
This study examined the predictive potential of qualitative 
and quantitative features extracted from two-channel 
aEEG–EEG within the first 3 postnatal days for long-term 
neurodevelopmental outcomes in a large cohort of 
extremely preterm neonates. Our results revealed that the 
aEEG–EEG features had significant but relatively weak 
predictive power for nine of 13 outcomes when using 

machine learning-based regression models. Nonetheless, 
machine learning-based classifiers exhibited good 
performance in distinguishing between infants with 
intellectual disabilities and those with optimal outcomes 
at early school age, reaching a balanced accuracy of 0·77 
for full-scale IQ and 0·81 for verbal IQ.

Our findings establish the clinical utility of aEEG–EEG 
features in the first few postnatal days. Different from 
previous work with small sample sizes,14–17 the current 
study enrolled a relatively large cohort of 369 extremely 
preterm infants, allowing for more robust evidence. By 
extracting a comprehensive set of features, we provided, 
for the first time, a fuller picture of aEEG–EEG feature 
distribution in the extremely preterm population and 
captured the relationships between these features. 
Furthermore, the large aEEG–EEG feature set allowed us 
to develop machine learning-based models for 
performing individual-level outcome predictions, paving 
the way for precision medicine.8,23

The results that classifiers of full-scale and verbal IQ 
scores using only quantitative features performed equiv­
alently to models using both qualitative and quantitative 
features carry substantial clinical implications. 
Quantitative aEEG–EEG features, compared with 
qualitative ones, have benefits such as objectivity, conven­
ience, and rapid availability.13,23 Therefore, our findings 
open up opportunities to develop a fully automated 
bedside tool that provides prognosis information, aiding 
clinicians in decision making and resource allocation. 
For example, based on predictions from the tool, 
clinicians can identify neonates at risk of neuro­
developmental impairments and initiate interventions 
aimed at safeguarding the developing brain at an early 
stage, ultimately leading to improved outcomes.

The contributions of features to the classification 
models were ranked using SHAP values. Here, it is 
worth mentioning that a SHAP value only measures the 
importance of a given feature to the developed model 
rather than its real-world importance. Given that 
predictions from the developed classifiers can be 
incorrect, SHAP values might not always accurately 
represent reality. Therefore, even though qualitative 
features had limited contribution to the IQ classifiers in 
this study, we should not dismiss their potential value in 
guiding the development of quantitative metrics and 
other clinical scenarios.

It is important to note that an extremely preterm infant’s 
future outcomes do not hinge entirely on their first few 
days of life. To enhance the chances of positive outcomes 
for these infants, applying outcome predictions at multiple 
timepoints could be beneficial. For example, longitudinal 
outcome prediction analyses can be carried out in the 
NICU, which allows a progressive adaptation of an infant’s 
care plan. Moreover, as an infant matures, a wider range 
of clinical, neuromonitoring, and neuroimaging data, 
such as MRI, cerebral ultrasound, and near-infrared 
spectroscopy, become available. Integrating aEEG–EEG 

Figure 4: Classification performance for full-scale IQ and verbal IQ
Confusion matrix of predicted and actual scores (optimal and impaired; A). The 
confusion matrix displays the count values of correct and incorrect predictions, 
visually represented using a gradient. Lighter shades indicate a smaller count, 
whereas darker shades indicate a larger count. Individual contributions of each 
feature category (B) and features from each day (C) are represented using SHAP 
values. Higher absolute SHAP values indicate more contributions to the 
classification models. IQ=intelligence quotient. SHAP=Shapley additive 
explanations. 
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with these modalities can assist in generating more robust 
predictions. Further research is needed to explore the 
feasibility of these proposed concepts.

The current work is limited by its monocentric nature. 
Although we used a relatively large cohort (n=369) 
together with a cross-validation procedure to improve 
statistical power, it would be helpful for future studies to 
use independent samples to validate our findings. 
Another concern relates to the challenge of identifying 
all potential confounders affecting the EEG–outcome 
relationship, especially post-NICU factors. In addition, 
although the two-channel aEEG–EEG is user friendly, it 
provides limited information about brain function, 
which could limit the outcome prediction performance. 
By contrast, conventional multichannel EEG offers more 
information, but its application to extremely preterm 
neonates can be challenging due to their tiny heads and 
fragile skin. Thus, future research should consider use of 
novel techniques, such as dry electrodes, to investigate 
the possibility of applying multichannel EEG during the 
first few postnatal days.

To summarise, we showed the value of two-channel 
aEEG–EEG features, gathered during the first 3 postnatal 
days, in predicting future neurodevelopmental outcomes 
of a large group of extremely preterm infants. Using 
machine learning-based models, we were, for the first 
time, able to combine and compare the performance of a 
comprehensive set of qualitative and quantitative aEEG–
EEG features in outcome predictions. The quantitative 
characteristics showed superior predictive power than 
the qualitative parameters. Our findings provide the 
possibility of creating an automated tool for long-term 
disability prognosis, which can guide early personalised 
treatment in the NICU.
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