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Summary
Estimating pre-operative mortality risk may inform clinical decision-making for peri-operative care. However,
pre-operative mortality risk prediction models are rarely implemented in routine clinical practice. High
predictive accuracy and clinical usability are essential for acceptance and clinical implementation. In this
systematic review, we identified and appraised prediction models for 30-day postoperative mortality in non-
cardiac surgical cohorts. PubMed and Embase were searched up to December 2022 for studies investigating
pre-operative prediction models for 30-day mortality. We assessed predictive performance in terms of
discrimination and calibration. Risk of bias was evaluated using a tool to assess the risk of bias and applicability
of predictionmodel studies. To further informpotential adoption, we also assessed clinical usability for selected
models. In all, 15 studies evaluating 10 prediction models were included. Discrimination ranged from a c-
statistic of 0.82 (MySurgeryRisk) to 0.96 (extreme gradient boosting machine learning model). Calibration was
reported in only six studies. Model performance was highest for the surgical outcome risk tool (SORT) and its
external validations. Clinical usability was highest for the surgical risk pre-operative assessment system. The
SORT and risk quantification index also scored high on clinical usability. We found unclear or high risk of bias in
the development of all models. The SORT showed the best combination of predictive performance and clinical
usability and has been externally validated in several heterogeneous cohorts. To improve clinical uptake, full
integration of reliablemodels with sufficient face validity within the electronic health record is imperative.
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Introduction
Globally, over 300 million surgical procedures are performed

annually [1]. Early postoperative mortality rates vary from 1% to

22% in patients undergoing a wide range of non-cardiac

surgical procedures in Europe [2, 3]. High-risk patients

who require non-cardiac surgical procedures account for 84%

of postoperative deaths [4]. Reliable pre-operative risk

prediction for high-risk surgical patients is needed to promote

pre-operative optimisation and appropriate resource

allocation, including elective postoperative admission to critical

care [5, 6]. Furthermore, pre-operative risk prediction may

improve peri-operative clinical decision-making including

informed consent discussions and shared decision-making

with the multidisciplinary team [7]. The European Society for

Cardiology, the American College of Cardiologists, the

American Heart Association and the Canadian Society of

Anesthesiologists recommend using pre-operative prediction

models to estimate peri-operative mortality risk [8–11].

However, the use of pre-operative prediction models in clinical

practice remains limited [7, 12–15]. Before implementation of

pre-operative prediction models, internal and external

validation are required to demonstrate acceptable predictive

performance in relevant populations [16, 17]. Furthermore,

good clinical usability is essential for clinical uptake, including

low burden of data collection; ease of use and non-proprietary,

reliablemodels [17]. The objective of this systematic reviewwas

to identify, describe and appraise reliability and clinical usability

of pre-operative prediction models for 30-day postoperative

all-causemortality in adult non-cardiac surgery patients.

Methods
We used the preferred reporting items for systematic

reviews andmeta-analyses [18, 19] and the critical appraisal

and data extraction for systematic reviews of prediction

modelling studies (CHARMS) checklist to report the

systematic review, respectively[20]. This review was

registeredwith PROSPERO (CRD42020155049).

All original research reports on the development,

updates to, or external validation of a pre-operative risk

model to predict 30-day mortality for surgical cohorts with

more than two surgical subspecialties other than cardiac

surgery were included. Studies that only reported on the

prediction of in-hospital mortality, conference abstracts and

studies published in languages other than English, German

or Dutch were excluded. Whilst in-hospital mortality is

easier to assess, we used 30-day mortality as this metric is

more accurate and comparable, facilitating both early at-

home and institutionalmortality [21].

PubMed and Embase were searched from inception to

14 December 2022, using search terms to identify articles

reporting on the development, update or external

validation of prediction models to predict 30-day peri-

operative mortality. The search terms consisted of the Ingui

filter (with additional string) to identify prognostic and

diagnostic models [22], combined with terms related to

surgery and postoperative complications (online

Supporting Information Table S1). For Embase, the PubMed

searchwas adapted according to the rules for adaptation.

Two reviewers independently assessed eligibility

based on the title and abstract (SG and JV). Disagreements

were resolved by a third investigator (JG). Two reviewers

(JG and JV) than screened publication for potential

inclusion in the review. Again, disagreements were resolved

by a third investigator (NK). Subsequently, we searched

SCOPUS for manuscripts citing the retrieved models and

hand-searched the reference lists of included studies for

potentiallymissedpublications.

According to recommendations in the CHARMS

checklist, one author (JV) extracted the data following a

preconstructed data extraction form [20]. Items extracted

were as follows: patient characteristics; the number and

type of candidate predictors; the predictors in the

prediction model described; the sample size of the

development or external validation cohort; the number of

patients with the outcome of interest (i.e. 30-day

postoperative mortality); the number of hospitals involved

in the study; the number of missing data and handling

of missing values; the method of modelling, including

shrinkage methods; performance measures regarding

discrimination (e.g. c-statistic), calibration (e.g. calibration

plot and Hosmer–Lemeshow test); and overall performance

(Brier score, net reclassification index). Risk of bias

and concerns for applicability were assessed using the

prediction model risk of bias assessment tool [23, 24]. Risk

of bias assessment was executed per model (development,

validation or update). Assessment of risk of bias and

concern of applicability for the retrieved studies were

performed independently by two researchers (JG/LV and

JV) [23]. Conflicts were resolved by a third reviewer (NK).

A pre-operative mortality risk prediction model is

designed to guide clinical decision-making. Good clinical

usability is necessary to improve clinical implementation

of the model. Since guidance on scoring the clinical

usability of prediction models does not exist, we followed

recommendations as previously described [7, 15–17, 25].

Items assessed include the burden of data collection;

integration in electronic health records; objectivity in

predictor definitions; whether the predictive model has

been externally validated and whether the model is

periodically updated [7, 15–17, 25]. We used all items to
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develop a scoring system for clinical usability. Definitions

and grading of these items are presented in Table 1. The

definitions of the items on clinical usability are explained in

further detail in onlineSupporting InformationAppendix S1.

Results were summarised using descriptive statistics.

We assessed the models on discrimination and calibration.

For discriminative predictive performance, c-statistics were

collected. We considered a c-statistic of ≤ 0.7 as showing

poor predictive performance, 0.7–0.9 as moderate

predictive performance and a c-statistic > 0.9 as showing

high predictive performance as defined before [29]. For the

calibration measures, including the Hosmer–Lemeshow

test, a p value of > 0.05 was considered to indicate that

there was no evidence of a lack of model fit. Overall

performance was reported with a Brier score, a combination

of discrimination and calibration properties of a model. A

Brier score of 0 means perfect accuracy, and a Brier score of

1 means total inaccuracy. Reclassification was assessed

using the net reclassification index [30].

Results
In total, 31,436 records were identified through database

and hand-searching. After removal of duplicates, 18,090

records were screened on title and abstract, fromwhich 106

full-text articles were retrieved. After the full-text articles

were screened, 15 were included in this review reporting

on 10 prediction models (Fig. 1 and online Supporting

Information Table S2). Included articles describe the

development [25, 31–36] (seven studies); a combination of

a new model and its external validation [37] (one study); the

external validation [38–40] (three studies); a combination of

an external validation of a current model combined with the

development of a new model [12, 41] (two studies); or an

update of a current prediction model [42, 43] (two studies).

Prediction models identified were the surgical outcome risk

tool (SORT) [31]; NewZealandRISK (NZRISK) [41]; SORT

clinical judgement [12]; surgical risk pre-operative

assessment system (SURPAS) [25]; surgical risk calculator

(SRC) [32]; risk quantification index (RQI) [34]; surgical

mortality probability model (S-MPM) [33]; MySurgeryRisk

[36]; Pythia [35]; and the extreme gradient boosting (XGB)

machine learning model by Choi et al. [37]. Five studies

reported according to the TRIPOD guidelines [12, 35, 36, 40,

41, 44]. More detailed information on the prediction models

is presented inonline Supporting InformationAppendix S2.

In all, 10 of the 15 identified studies were multicentre

(Table 2). The cohorts varied in sample size, with a median

(IWR [range]) of 168,442 36,451–792,450 [11,129–

4,600,000]) patients. The patient inclusion period varied

from 1 week [12, 31] to 10 years [42]. Data were collected

between 2005 and 2021. Seven studies used data from the

American College of Surgeons National Surgical Quality

Improvement Program (ACS NSQIP) (online Supporting

Information Table S2); one used the New Zealand National

Minimal Dataset [41]; another used the second Sprint

National Anaesthesia Project: epidemiology of critical care

provision after surgery (SNAP-2; EPICCS) [12]; and seven

used a mix of administrative and hospital data [35–38, 40].

Table 1 Grading of clinical usability qualities of 30-daymortality risk predictionmodels.

Qualities Definition andgrading

Lowburden of data collection [7, 25] ≤11predictors = 2 points
>11predictors = 0points (exceptmachine learningmodels)

Automated predictionmodel built into electronic health
record [26]

At least one example = 2points
Partially = 1 point
No = 0points

Uses objective data
Objectivedatawere defined as data basedon facts (e.g.
age, laboratorymeasurements), unlikely to be influenced
bypersonal interpretation; subjective data: data prone to
interpretation, such asASAphysical status, dependency,
surgical complexity

Only objective data = 2 points
Mix of subjective (basedon interpretation) andobjective data = 1 point
Subjectivedata only = 0 points

Be updatedperiodically [25]
Since healthcare performance andpatient outcome change
over time, regression coefficients should be adapted every
5 years

Yes = 2points; No = 0 points

Transparency of risk equation [27] The risk equation is
available in the public domain

Yes = 2point; No = 0points

External validation on heterogeneous noncardiac cohorts
[17, 28]

Yes = 2points; No = 0 points

For an explanationof awardingof points, see online Supporting InformationAppendix S1.Maximum score is 12 points.
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The patient characteristics from the different studies are

presented in online Supporting Information Table S3. The

studies that reported on sex included more women than

men (median (IQr [range]) female patients 52.8% 49.4–56.8%

[41.9–65%])). The mean (SD) reported age was 56.5 (4.2) y.

Most of the studies included patients that underwent surgery

from one of the following non-cardiac surgery subspecialties:

vascular surgery; abdominal surgery; thoracic surgery;

neurosurgery; musculoskeletal surgery; plastic surgery;

urology; gynaecology; orthopaedics; otolaryngology and

other surgery (online Supporting Information Table S2). Three

studies additionally included patients that underwent cardiac

surgery [35, 36, 43] (online Supporting Information Table S2).

Six studies didnot report onurgencyof surgery [34, 35, 37, 38,

42, 43]. Among the studies that did report on urgency, reports

ranged from 88.3% elective surgery procedures [32] to

emergency surgery procedures only [39] (online Supporting

Information Table S2). Four studies included elective and

emergency surgery; in those studies, patients were more

often classified as ASA physical status 3 and 4 compared with

studies where patients only underwent elective surgery [25,

32, 35, 42]. One study included only emergency surgery [39].

Day-case surgery was not included in six studies [12, 31, 35,

36, 38, 40, 41] (online Supporting Information Table S2). Some

of the publications did not report on the included

subspecialties (Online Supporting Information Table S2). The

studies that did not report on surgical severity used the

current procedure terminology code; the work relative value

unit; the procedure specific score for severity of the surgical

intervention [25, 33, 34, 38, 39, 42, 43] or reported no surgical

procedure (but non-cardiac) at all [37]. None of the studies

conducted subgroup validations per subspecialty (online

Supporting Information Table S2).

Most studies used multivariable logistic regression to

develop the prediction model. However, four usedmachine

learning techniques [35–37, 40] (online Supporting

Figure 1 Study flowdiagramof database searches.
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Table 2 Characteristics and performancemeasures of pre-operative 30-daymortality risk predictionmodels.

Model Study Mortality EPV

Size
development
set (no. of
events)

No of
variables
(candidate
variables)

Discrimination
[CI] Calibration

Performance
overall

SORT Protopapa [31] 1.4% 3.5 11,219 (158) 6 (45) 0.91 [0.88–0.94] HL = 12.16,
p = 0.204

SORT external
validation

Campbell [41] 0.7% 210 270,105 (2053) 6 (6) 0.91 [0.90–0.92] Intercept =
�0.007
Slope = 5.32

NZRISK SORT
update

Campbell [41] 0.7% 236 270,105 (2053)
Internal
validation:
90,035 (684)

8 (6) 0.92 [0.91–0.93] Intercept =
�0.001
Slope = 1.12

SORT external
validation

Wong [12] 1.4% 53 22,361 (317) 6 0.90 [0.88–0.92] HL > p < 0.001 NRI; 0.073 (p < 0.309);
decision curve
analysis and net
benefit calculated

SORT update
clinical
judgement

Wong [12] 1.05% 27 17,845 (188) 7 0.92 [0.90–0.94] HL� > p < 0.001 NRI: 0.130 (p < 0.001);
DecisionCurve
Analysis andNet
benefit calculated.

SURPAS update
SRC

Meguid [25] 1.4% 631 2,275,240
(31,853)

8 (28) 0.93 [0.93–0.93] Brier = 0.012

SURPAS update Henderson [42] 1.2% 2187 4,600,000
(55,300)

8 (8) 0.93 [0.93–0.93] Brier = 0.010

SURPAS external
validation

Rozeboom [39] 8.8% 2266 66,720
(18,133)

8 0.86 [0.85–0.86] Brier = 0.068

SRC Bilimoria [32] 1.3% 875 1,414,006
(18,909)

21 (24) 0.94 [0.94–0.94] Brier = 0.011

SRC update Liu [43] 1.3% 1019 987,744
(12,840)

21 (21) 0.94 [0.94–0.94] HL p-value = 0

RQI Dalton [34] 1.6% 390 585,265 (9363) 3 (24) 0.92 [0.91–0.92]

RQI external
validation

Sigakis [38] 1.9% 386 62,640 (1190) 3 (3) 0.89 [0.88–0.90] Brier = 0.017

S-MPM Glance [33] 1.3% 1334 298,772 (4004) 3 (3) 0.90 [0.90–0.90] HL = 11.8,
p value = 0.04

MySurgeryRisk
machine
learning

Bihorac [36] 3.4% 6 41,148 (1750) 285 (285) 0.83 [0.81–0.85] Sensitivity = 0.39
Specificity = 0.93
PPV= 0.18
NPV = 0.98
Accuracy = 0.92

MySurgeryRisk
update

Ren [40] 1.9% 3 19,132 (429) 135 0.82 [0.80–0.84] Sensitivity = 0.76
Specificity = 0.8
PPV= 0.06
NPV = 1.0

XGBmodel
machine
learning
development

Choi [37] 0.16% 13 276,341 (442) 31 0.96 [0.94–0.98] ICI = 0.0044 Sensitivity = 0.89
Specificity = 0.91
PPV= 0.08
NPV = 0.99
Brier = 0.0015

XGBMachine
learning
External
validation

Choi [37] 0.34% 6 63,384 (101) 31 0.93 [0.92–0.95] ICI = 0.0017 Sensitivity = 0.87
Specificity = 0.85
PPV= 0.17
NPV = 0.99
Brier = 0.0036

Pythia
machine
learning

Corey [35] 0.51% 2 66,370 (338) 194 (194) 0.92 [0.88–0.95] Sensitivity = 0.92
Specificity = 0.59
PPV= 0.3

EPV, Events per variable; SORT, surgical outcome risk tool; HL, Hosmer–Lemeshow test; NZRISK, New Zealand Risk Calculator; NRI, net
reclassification index; SURPAS, surgical preoperative assessment system; SRC, surgical risk calculator; RQI, risk quantification index; S-
MPM, surgical mortality probability model; PPV, positive predictive value; NPV, negative predictive value; XGB, extreme gradient
boosting; ICI, integrated calibration index.
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Information Table S2). Updating (applying the model to a

new population and adjusting the regression coefficients

to obtain a new model) was performed for SRC and SORT,

and recalibration for SURPAS [42]. Ren et al. updated

MySurgeryRisk with an application on a mobile phone [40].

Except for the SRC and its update, all development studies

conducted internal validation [32, 43]. Table 2 shows the

number of candidate variables considered for inclusion

in the prediction models, median (IQR [range]) 8 (6–31 [3–

286]). The median (IQR [range]) number of variables while

excluding machine learning models [35–37, 40] was 7 (5–8

[3–21]).

All models, except the machine-learning-derived

MySurgeryRisk and Pythia, included ASA physical status as a

predictor. Instead, MySurgeryRisk and Pythia used

individual comorbidities as predictors for a measure of

physical status. The SRC combined comorbidities and ASA

physical status. All models except S-MPM included age as a

predictor. Surgical complexity was a predictor in all models

except for the study by Choi et al., and urgency was used in

all models except for RQI and the XGB model. Thirty-day

mortality was highest in the study by Rozeboom et al. [37]

(8.8%) and lowest in the study by Choi et al. (0.16%) [37]

(Table 2). The number of outcome events (30-day mortality)

reported, ranged from 158 [31] to 55,300 [42]. Only one of

the studies developing a prediction model, presented an

external validation of the model in the same publication

[37]. External validation in different geographical or

temporal heterogeneous surgical cohorts was performed

for the SORT [12, 41], RQI [38] and SURPAS [39, 42]

prediction models (online Supporting Information

Table S2).

C-statistic was reported as a measure of discrimination

in all studies, ranging from 0.82 to 0.96 (Fig. 2 and Table 2).

Discriminationwasmoderate inboth studiesonMySurgeryRisk

(c-statistic = 0.83, 95%CI 0.81–0.85) [36] and (c-statistic =

0.82, 95%CI 0.80–0.84) [40] and for the external validation

of SURPAS (c-statistic = 0.86, 95%CI 0.85–0.86) and RQI (c-

statistic = 0.89, 95%CI 0.88–0.90) [38, 42]. The other models

all scored high on discrimination (Fig. 2). The external

Figure 2 Forest plot of c-statistic for discussed predictionmodels. SORT, surgical outcome risk tool; SURPAS, surgical
preoperative assessment system; SRC, surgical risk calculator; RQI, risk quantification index.

612 © 2023 TheAuthors.Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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validations of SORT and the XGB model (as published by

Choi et al.) also showed high discrimination [12, 37, 41].

Calibration was less often described (6 out of 15 studies,

Table 2). Good calibration (based on the Hosmer-

Lemeshow test) was only reported for SORT [12, 41]. Choi et

al. reported calibration with the integrated calibration

index [37]. Wong et al. reported the net reclassification

index for the external validation of SORT compared to

clinical judgement alone: net reclassification index: 0.073

(95%CI 0.062–0.208); and the improvement for the

combination of SORT with the clinical judgement of the

team: net reclassification index: 0.130 (95%CI 0.057–0.202,

p < 0.001) [12].

The overall risk of bias was judged as either unclear [37,

41–43] or high [12, 25, 31–36, 38–41], primarily because of

the risk of bias in the analysis domain (Figs. 3–5). Reasons for

the high risk of bias were one or more of the following

aspects: not reporting any missing data or inappropriate

handling of missing data; no shrinkage techniques applied

inmodel development studies; no accounting for complexities

in the data; a low number of events per variable or no

calibration assessed at all [12, 31–36, 38–40, 42]. There

were concerns of applicability for the participants in one

study [37]. The clinical usability scoring showed that SRC,

MySurgeryRisk, Pythia and the XGB model include a large

number of predictors: 21, 285, 194 and 135, respectively

(Tables 1 and 3). As a result, SRC has a high burden for data

collection. MySurgeryRisk, Pythia and the XGB model are

machine learning models and therefore have a low data

collection burden, provided they are built into electronic

health records and have good data validity/accuracy. The

other models show a low burden for data collection. The

SURPAS model has been partially integrated into an

electronic health record [42] and for MySurgeryRisk, a

mobile phone applicationwas designed for clinical use [40].

All models use a mix of objective and subjective

variables for mortality risk prediction. We identified two

updates of SORT [12, 41], one of SURPAS [42], one of

SRC [43] and one of MySurgeryRisk [40]. We did not find a

model that had been structurally updated. For SRC and

MySurgeryRisk, the regression formula is not publicly

available for use, making external validation difficult [32,

36]. We found five external validations (SORT twice;

SURPAS, RQI and XGB once) on heterogeneous cohorts [12,

Figure 3 Risk of bias and applicability of pre-operative 30-daymortality riskmodels with PROBAST [24, 70]. Red, high risk;
Yellow, unclear; Green, low risk. Concerns of risk of bias: D1, participants; D2, predictors; D3, outcome; D4, analysis. Concerns
of applicability for the systematic review: D5, participants; D6, predictors; D7, outcome;Overall: overall risk of bias.
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37–39, 41]. The SURPAS model scored highest on clinical

usability with 9 out of 12 possible points, followed by SORT

and RQI (8 and 7 points; Table 3).

Discussion
We found 15 studies discussing 10 pre-operative prediction

models to predict 30-day mortality risk in adult patients

undergoing non-cardiac surgery. Although none of the

models combined high predictive accuracy with good

clinical usability, SORT performed best of the identified

models in the combination of predictive performance and

clinical usability.

We assessed the risk of bias of studies included in this

review with the prediction model risk of bias assessment

tool [23]. In four studies, update SRC [43], update SURPAS

[42], NZRISK [41] and the XGB model (development and

external validation) [37], we found an unclear risk of bias in

the analysis domain, whereas for the other models, a high

risk of bias was found. This is important knowledge because

some of the models are freely available on the internet and

can be used for mortality risk prediction in clinical practice.

Mortality risks calculated with models that are not yet made

fit for the population it is used on (external validation with

update if necessary) may deliver unreliable risk calculations

for safe use in high-risk surgical patients. The SORT model

seems the most promising model for use, but it also needs

external validation on new populations before physicians

can safely use it in clinical practice. Another systematic

review on pre-operative mortality risk models by Reilly et al.

[15] identified four prediction models as candidates with a

low risk of bias for adapting in the Australian context,

including S-MPM, SORT, NZRISK and the preoperative score

to predict postoperative outcome (POSPOM) [15, 45]. We

could not reproduce this low risk of bias, while assessing the

development of the same models (except POSPOM) in the

current study. High risk of bias in the development

procedure of a model can induce over- or underestimation

of predicted risks, which impacts on clinical decision-

making [46]. Obviously, inadequate model performance

can lead to erroneous estimates of predicted risk [47]. We

suggest that future research focuses on external validations

and clinical usability.

Figure 5 Summary analysis of concerns of applicability of discussed pre-operative 30-day riskmortality predictionmodels for
systematic review. Red, high risk; yellow, unclear; green, low risk.

Figure 4 Summary analysis of risk of bias of discussed pre-operative 30-day riskmortality predictionmodels [70]. Red, high risk;
yellow, unclear; green, low risk.

614 © 2023 TheAuthors.Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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Although the number of published pre-operative risk

prediction models is increasing, thus far their use in clinical

practice has been limited [7, 12–16, 48]. Possible reasons

for this lack of implementation include lack of face validity,

limited integration in electronic health records and

increased burden of data collection. Since no published

guidance exists for clinical prediction model clinical

usability, we developed a framework to assess clinical

usability, based on previously suggested desirable

characteristics of pre-operative risk prediction models [7,

15–17, 25]. Our assessment showed that SURPAS, SORT

and RQI had the highest potential for being used in daily

practice. The SURPAS model uses current procedure

terminology codes for surgical severity, which makes it less

suitable for use outside theUnited States.

All studies reported on discrimination using c-statistics.

Discrimination quantifies the model’s ability to distinguish

between patients who do, or do not, experience the event of

interest [49]. The SORT, SURPAS, SRC, RQI, Pythia and XGB

models showed good discrimination in their development

study. Calibration was reported with a test only in six studies

[12, 31, 33, 37, 41, 43].

Calibration refers to the agreement between the

predicted and observed number of events and is essential

in this era of precision medicine [50]. Reliable, well-

calibrated predictions are necessary for informed decision-

making, and to optimally allocate scarce resources such as

ICU capacity [50]. The integrated calibration index was

reported in one study [37] but this is only usable in

comparison with other models [51]. Unfortunately,

calibration is vastly under-reported. Wessler et al. noted in

their review on cardiovascular prediction models that only

36% of models provided a measure of calibration [52]. In

this review, the reporting rate of calibration measures was

similarly low at 40%. Guidance on uniform reporting

of calibration measures would make interpretation of,

and comparisons between, models easier for clinicians.

However, disagreement exists on the best way to calculate

calibration [50, 53, 54].

External validation of prediction models is required to

assess predictive performance on the targeted population

and, if necessary, to update the prediction model [16, 55].

The current systematic review revealed that most pre-

operative mortality risk prediction models lack external

validation. In all areas of medicine, the number of

publications reporting on developing new prediction

models far outweighs the number of external validation

studies [26]. We found that only SORT, SURPAS, RQI and

the XGB models had been externally validated in

heterogeneous non-cardiac surgical cohorts [12, 37–39,

41]. External validation of SURPAS showed moderate

performance, although it should be noted that this

validation was performed in an emergency, heterogeneous

surgical cohort [39]. In contrast, SORT and XGB performed

well in external validations. Importantly, the weights of the

predictors in some models are proprietary and thus

inaccessible to researchers. In that case, external validation

can only be performed by the original developers of the

prediction model [27]. For example, the coefficients of

predictors of the SRC are proprietary, which hampers

Table 3 Clinical usabilitymatrix and grading of reviewed pre-operativemortality risk predictionmodels.

SORT NZRISK

SORT
clinical
judgement SURPAS SRC RQI S-MPM MySurgeryRisk Pythia

XGB
model

Qualities

Lowburden of data
collection

2 2 2 2 0 2 2 2 2 2

Integrated in EHR? 0 0 0 1 0 0 0 2 0 1

Objectivedata? 1 1 1 1 1 1 1 1 1 1

Is updatedperiodically 1 0 0 1 1 0 0 0 0 0

Transparency 2 2 2 2 0 2 2 0 2 0

Externally validated in
heterogeneous cohorts

2 0 0 2 0 2 0 0 0 1

Total score 8 5 5 9 2 7 5 5 5 5

SORT, surgical outcome risk tool; NZRISK, New Zealand Risk Calculator; SURPAS, surgical preoperative assessment system; SRC,
surgical risk calculator; RQI, risk quantification index; S-MPM, surgical mortality probability model; EHR, electronic health record; XGB,
extremegradient boosting.
Points are awarded following online Supporting Information Appendix S1. Maximum total score is 12 points. The three highest scoring
modelswere regarded as promising.
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external validation and precludes integration of the rule into

an electronic health record. The SRC model has only been

externally validated on small and single-specialty cohorts,

with variable performance [56–63].

Implementation of prediction models in clinical

practice is likely to increase when predictive performance

(especially calibration) is high in combination with clinical

usability. A significant but underappreciated barrier to

adopting prediction models in clinical practice is the lack of

integration within electronic health records. This limitation

adds considerable administrative burden to healthcare

workers [26]. Stakeholders from electronic health record

vendors should be involved, for faster implementation of a

useful prediction score in their systems. For MySurgeryRisk,

the authors developed a platform-based application [40]

with integration in the electronic health record, which may

prove a worthy asset to diminish the burden of data

collection. However, for the other models, complete

integration still needs to be completed. In general, machine

learning models in clinical practice require validated and

reliable data to be able to provide accurate predictions.

Most predictors related to clinical care are prone to bias

because clinical information is subjective or only available in

a selected group of patients. Another barrier to adoption of

risk models in clinical practice is the lack of face validity.

Because assigning values to some categorical variables

(e.g. ASA physical status 2 vs. 3) is prone to subjectivity,

inter- and intra-rater variability may cause under- or

overestimation of mortality risk [64–66]. As many physicians

are aware of the variability problem, they may not believe

the presented risks and – as a result – decide not to use the

risk models in their clinical practice. Nonetheless, several

anaesthesia and cardiologic societies advise using pre-

operative risk predictionmodels [8, 9, 11, 67]. For the above

reasons, prediction models should be considered valuable

adjuncts during the pre-operative consultation.

We cannot overestimate the importance of adequate

reporting on discrimination and calibration to assess the

usability of a model [47]. In addition to predictive

performance, clinical usability and adequate external

validation are required measures that one should take into

account to decide whether a clinical prediction model

suffices for implementation [68]. Formal `impact studies´ are

needed to further evaluate the clinical usability and impact

of routinely using these prediction models. Impact studies

are alsomandatory to determine if the use of themodels will

improve quality of life and cost-effectiveness.

Future research should focus on external validation and

updating of existing models in respective patient

populations [16]. Nationwide auditing initiatives like the

Peri-operative Quality Improvement Program may be used

to externally validate pre-operative mortality risk prediction

models on current real-world data [69]. In addition, efforts

should be made to increase both the clinical uptake and

usability of pre-operative mortality risk prediction models.

Finally, it remains unknown how identifying high-risk non-

cardiac surgical patients leads to improved care. The added

value of multidisciplinary teamdiscussions for balancing the

harm–benefit ratio of the planned surgery or peri-operative

management alterations in the high-risk surgical population

should be further elucidated.

This study had some limitations. To increase clinical

relevance, we focused on heterogeneous non-cardiac

surgery adult patient cohorts, and therefore numerous

external validations on single surgical specialties or even

single surgical procedure studies were not included. Our

study included only publications from heterogeneous

patient populations for which the degree of heterogeneity

varied among studies, including the urgency and subtype of

surgical specialties. Both factors may have affected the

predictive accuracy of models in different studies. However,

we believe that the discussed prediction models should be

applicable for a broad range of surgical patients to be

considered for clinical use.

We aggregated and reported on several elements of

clinical usability but must acknowledge that there is currently

no accepted standard to gauge usability. Future research is

needed to validate the clinical usability score. Research

shows that models with low predictive performance on

development or during external validation are often not

submitted or accepted for publication. Currently, there is

no established standard for assessing the likelihood of

publicationbias in researchonpredictivemodels.

The current systematic review of models to predict 30-

day peri-operative mortality found that SORT combines

good predictive model performance with clinical usability.

In addition, SORT has been externally validated in

heterogeneous cohorts and can be used on the population

where validation was executed. External validation and

updating of existing prediction models to specific patient

populations have scarcely been performed in pre-operative

mortality risk predictionmodels. Still, this is a necessary step

to improve clinical uptake. Adequate reporting of

calibration is required to make it easier for clinicians to

understand which models provide accurate predictions

across the entire risk spectrum. Furthermore, integrating

reliable models with face validity in the electronic health

record is indispensable for improving clinical uptake.

616 © 2023 TheAuthors.Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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