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Abstract

For children, the gold standard for the detection of pneumococcal carriage is conventional culture of a nasopharyngeal swab. 
Saliva, however, has a history as one of the most sensitive methods for surveillance of pneumococcal colonization and has 
recently been shown to improve carriage detection in older age groups. Here, we compared the sensitivity of paired nasopharyn-
geal and saliva samples from PCV7-vaccinated 24-month-old children for pneumococcal carriage detection using conventional 
and molecular detection methods. Nasopharyngeal and saliva samples were collected from 288 24-month-old children during 
the autumn/winter, 2012/2013. All samples were first processed by conventional diagnostic culture. Next, DNA extracted from 
all plate growth was tested by qPCR for the presence of the pneumococcal genes piaB and lytA and a subset of serotypes. By 
culture, 161/288 (60 %) nasopharyngeal swabs tested positive for pneumococcus, but detection was not possible from saliva 
due to abundant polymicrobial growth on culture plates. By qPCR, 155/288 (54 %) culture-enriched saliva samples and 187/288 
(65 %) nasopharyngeal swabs tested positive. Altogether, 219/288 (76 %) infants tested positive for pneumococcus, with qPCR-
based carriage detection of culture-enriched nasopharyngeal swabs detecting significantly more carriers compared to either 
conventional culture (P<0.001) or qPCR detection of saliva (P=0.002). However, 32/219 (15 %) carriers were only positive in 
saliva, contributing significantly to the overall number of carriers detected (P=0.002). While testing nasopharyngeal swabs by 
qPCR proved most sensitive for pneumococcal detection in infants, saliva sampling could be considered as complementary to 
provide additional information on carriage and serotypes that may not be detected in the nasopharynx and may be particularly 
useful in longitudinal studies, requiring repeated sampling of study participants.

Introduction
The human nasopharynx is considered the primary niche of Streptococcus pneumoniae, with colonization occasionally 
progressing to pneumococcal disease. Disease manifestations include respiratory infections such as otitis media or pneu-
monia, and invasive pneumococcal disease (IPD) such as bacteraemic pneumonia or sepsis with or without meningitis [1]. 
Current vaccination strategies are targeted towards the polysaccharide capsule, which is considered the primary pneumo-
coccal virulence factor [2]. With over 100 known capsular types (serotypes) [3], current vaccination coverage is limited 
to either a maximum of 20 serotypes included in the conjugated polysaccharide vaccines (PCVs) or 23 serotypes for the 
polysaccharide vaccine (PPSV23). PCV vaccination of children (the key transmitters of pneumococcus) not only protects 
against vaccine serotype (VT) disease, but also against VT carriage. Moreover, PCVs lead to herd protection in other age 
groups, which has led to reductions in VT disease in older adults [1, 4–12]. However, the reduction in VT carriage has been 
followed by an increase in non-vaccine serotype (NVT) carriage [12–14]. This serotype replacement [10] has eroded the 
benefits of vaccination.
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For any strategy aiming to prevent pneumococcal disease, knowledge of pneumococcus reservoirs in the population is 
essential and surveillance of carriage can provide data on vaccine effects before any impact on disease can be observed [15]. 
Pneumococcal carriage detection has been instrumental in informing us on the impact of vaccination against pneumo-
coccal disease [16, 17]. The gold standard method for carriage detection is conventional culture of a nasopharyngeal swab. 
Recommendations set forth by a working group convened by the World Health Organization (WHO) in 2013 reiterated 
this for infants and children with an additional oropharyngeal swab being recommended to improve the sensitivity of 
detection in adults should resources be available [18]. Historical records from the pre-antibiotic era, however, reported 
high carriage rates ranging between 39 and 54 % across all ages when oral (saliva) samples were tested with a sensitive 
animal inoculation method [19–22]. This suggested to us that sampling of the oral site might increase carriage detection 
[23]. In line with this, we and others have demonstrated the potential of molecular methods for increased pneumococcal 
detection in older age groups when oropharyngeal swabs [24–27] or saliva samples were tested alongside nasopharyngeal 
swabs [23, 24, 28].

Since young children are typically the focus of surveillance of pneumococcal carriage prior to or following updated vaccination 
strategies, we explored the sensitivity of culture and molecular (qPCR) methods for pneumococcal carriage detection in naso-
pharyngeal swabs and saliva samples collected from children aged 24 months to investigate whether nasopharyngeal sampling 
was also underdetecting carriage prevalence in this population.

Methods
Study design
Paired nasopharyngeal swabs and saliva samples were collected from 330 PCV7-vaccinated 24-month-old children [14, 29] 
in a prospective cross-sectional study conducted in the Netherlands during the autumn/winter season of 2012/2013. Detailed 
descriptions of the study population and primary results for pneumococcal carriage detection in the nasopharyngeal samples 
were reported previously [14, 29].

Collection of saliva samples
Prior to sample collection, informed consent was obtained from both parents/caregivers. For saliva collection, a sponge 
lollipop (Oracol, Malvern Medical Developments, Worcester, UK) was placed in the front part of the child’s mouth for 
approximately 1 min until saturated with saliva [30]. The wet sponge was then placed into a sterile 5 ml syringe and the 
lollipop stick was withdrawn through the narrow opening, leaving only the sponge inside the syringe. Using the plunger, the 
sponge was compressed, and the saliva was transferred to a 2 ml cryovial prefilled with 0.1 ml of 50 % glycerol water solution 
(made in-house). Samples were transported to the diagnostic laboratory on dry ice and stored at −80 ̊ C.

Pneumococcal carriage and serotype detection
Testing of nasopharyngeal and saliva samples occurred during the same study period; methods used for the testing of naso-
pharyngeal swabs have been previously described [29]. Briefly, nasopharyngeal swabs were processed by conventional diagnostic 
culture for pneumococcal carriage detection with isolates serotyped using the Quellung method [31], DNA extracted from plate 
harvests was tested using qPCR.

Saliva samples were thawed in batches and 100 µl of saliva cultured on Columbia agar with 7 % defibrinated sheep blood and 
gentamicin 5 mg l−1, a medium selective for pneumococcus, as previously described [14, 24]. Following overnight incubation at 
37 °C and 5 % CO2, all growth was harvested from all culture plates into 2,1 ml brain heart infusion broth (Oxoid, Badhoeve-
dorp, the Netherlands) supplemented with 10 % (v/v) glycerol and stored frozen at −80 °C [23]. These samples were considered 
to be culture-enriched for pneumococcus. DNA was extracted from 200 µl of culture-enriched saliva samples as previously 
described [23] and then tested using qPCR for the presence of two pneumococcal-specific genes, piaB [25, 29] and lytA.
[32]. Samples were classified as positive for S. pneumoniae when CT values for both targeted genes were <40 [23, 24, 26, 27].

Regardless of the outcome of piaB and lytA qPCR testing, all saliva samples from children were tested using qPCR for the 
presence of sequences specific for pneumococcal serotypes/serogroups 1, 3, 6A/B/C/D, 7 A/F, 8, 9 A/N/V, 10A/B, 12A/B/F, 
14, 15A/B/C, 19A, 20, 23F, 33 A/F/37[33], 11A/D, 16F, 18B/C and 19F [34]. Pneumococcus-positive samples were classified 
as positive for pneumococcal serotype/serogroup from assays determined to be specific for pneumococcus, when CT values 
for targeted genes were <40.

The results from the detection of pneumococcus in saliva samples obtained in the current study were analysed together with 
the results of pneumococcal carriage and serotype detection in their paired nasopharyngeal swabs, which have been previously 
reported [29].
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Statistics
Statistical analyses were conducted using GraphPad Prism v5.0 (GraphPad Software, San Diego, CA, USA). The sensitivity of a 
sample type for the detection of pneumococcal carriage was determined as the number of carriers identified by that sample type 
(nasopharyngeal swab or saliva) and testing method (culture or qPCR) over the total number of carriers detected by all methods 
applied in the study. For pneumococcal serotypes detected, the frequency of carriage was calculated for each serotype by the total 
number of samples testing positive for that serotype by either Quellung or qPCR over the total number of pneumococcal carriers 
detected for each study group. If a serotype was not detected in the method being compared (nasopharyngeal swabs tested by 
Quellung, nasopharyngeal swabs tested by qPCR or saliva samples tested by qPCR) it was assigned a value of 0.5× the fraction 
representing a single carrier for that method. Differences in pneumococcal serotype carriage were evaluated using McNemar’s test 
and differences in serotype detection were evaluated using two-way Fisher’s exact tests. An estimate was considered statistically 
significant at P<0.05.

Results
From the 293 24-month-old children previously reported on [29] for pneumococcal carriage detection in their nasopharyngeal 
samples, 288 (98 %) matching saliva samples were available for inclusion in the current study. The results summarized in Table 1 
depict differences in pneumococcal carriage detection between the two sample types and detection methods (culture vs qPCR). 
Here, we report on the sensitivity of each method, defined as the number of individuals that tested positive for pneumococcal 
carriage by each method, over the total number of pneumococcal carriers detected by any of the detection method applied in 
the study.

Pneumococcal carriage detected by culture
Carriage prevalence as detected by culture was in line with contemporary rates reported by others [14, 35, 36]. Culture-based 
detection of pneumococcal carriers when testing nasopharyngeal swabs was of relatively high sensitivity (0.74). However, isola-
tion of live pneumococci from saliva at the initial culture step was not possible due to abundant polymicrobial growth on plates 
selective for pneumococcus [23, 24], thus the sensitivity of pneumococcal carriage detection by culturing saliva at the primary 
detection step was zero.

Pneumococcal carriage detected in culture-enriched samples by qPCR
Testing culture-enriched samples by qPCR significantly increased pneumococcal detection as compared with culture detection. 
Testing culture-enriched nasopharyngeal samples by qPCR was the most sensitive method of carriage detection (0.85) and 
identified significantly more carriers than testing culture-enriched saliva samples by qPCR (187/288, 65 %, versus 155/288, 
54%, respectively; P=0.002). Nonetheless, with 32/219 (15 %) of carriers identified only testing positive in their saliva sample, 
testing saliva significantly contributed to the overall carriage prevalence detected compared to testing nasopharyngeal swabs 

Table 1. Sensitivity of pneumococcal carriage detection in paired nasopharyngeal and saliva samples collected from PCV7-vaccinated 24-month-old 
children using conventional and molecular detection methods

24-month-olds (n=288) [29]

Detection method Carriage Sensitivity

Culture

Nasopharyngeal 161 (60 %) 0.74

Saliva ND* 0

qPCR

Nasopharyngeal 187 (65 %)† 0.85‡

Saliva 155 (54 %) 0.71

Overall§ 219 (76 %)## 1

*ND, not detectable by culture due to abundant polymicrobial growth on culture plate.
†P<0.05, ##P<0.01 (McNemar’s test), significantly more carriers detected by this approach as compared to the gold standard method of culture of 
nasopharyngeal swab (top row).
‡Method significantly more sensitive for carriage detection (P<0.05) than any other tested in the particular study group.
§The total number of individuals that tested positive for pneumococcal carriage by either sample type and detection method (culture and/or 
qPCR).
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alone (219/288 versus 187/288, respectively; P=0.002). Importantly, there was no significant difference between the detection 
of carriage when testing saliva using qPCR compared with the gold standard culture of nasopharyngeal swabs (155/288 versus 
161/288, respectively; P=0.59).

Overall, 219/288 (76 %) children were positive for pneumococcal carriage when the results from both sample types and both 
detection methods were combined.

Effect of sample type and testing method on pneumococcal serotype detection
To also evaluate saliva for pneumococcal serotype detection in this young age group, we compared data generated in the current 
study to the previously described nasopharyngeal serotype carriage data [29], detected using either the WHO recommended 
culture-based approach [18] or by testing culture-enriched nasopharyngeal samples using qPCR (Table S1, available in the online 
version of this article).

There was a strong correlation between the frequency of a pneumococcal serotype being detected in nasopharyngeal samples 
by culture and its frequency of detection in saliva by qPCR (rho=0.845; P<0.001). Despite fewer overall carriers being detected 
when testing saliva with qPCR, among carriers, we identified a higher rate of serotypes co-carried in saliva samples (33/155, 
21.3 % samples positive for 2 or more serotypes; average=1.25 serotypes/sample) as compared to testing nasopharyngeal swabs 
by both culture (3/161, 1.9 % samples positive for 2 or more serotypes; average=1.02 serotypes/sample) and qPCR (29/187, 
15.5 % samples positive for 2 or more serotypes; average=1.17 serotypes/sample). As compared to culture-based pneumococcal 
detection in nasopharyngeal samples, qPCR-based detection in saliva detected significantly more carriers of serotypes 11A/D 
(19/161, 12 %, versus 33/155, 21 %; P=0.033), 19A (25/161, 16 %, versus 39/155, 25 %; P=0.036) and PCV13 VTs overall (35/161, 
22 %, versus 50/155, 32 %; P=0.042) (Fig. 1a). There was an even stronger correlation between the frequency of detection for 
a serotype when nasopharyngeal and saliva samples were both tested using qPCR (rho=0.849, P<0.0001). Moreover, when 

Fig. 1. Comparison of the frequency of pneumococcal serotypes detected in nasopharyngeal versus saliva samples from 24-month-old children, when 
tested by conventional culture or qPCR. Graphs depict the correlation between the frequency of serotypes (from the subset targeted by qPCR) detected 
in nasopharyngeal swabs by (a) culture or (b) qPCR compared to detection in saliva samples using qPCR. The frequency of carriage was calculated 
for each serotype by the total number of samples testing positive for that serotype by either the conventional culture-based Quellung method or 
qPCR, over the total number of pneumococcal carriers detected for each study group. If a serotype was not detected in the method being compared 
(nasopharyngeal swabs tested by Quellung, nasopharyngeal swabs tested by qPCR or saliva samples tested by qPCR) it was assigned a value of 0.5× 
the fraction representing a single carrier for that method. Serotypes not detected by both methods were excluded from correlation calculations. Colour 
indicates serotypes targeted by PCV7 (orange), PCV10 (green), PCV13 (blue) or NVTs (black). Asterisks depict serotypes that differed significantly 
(P<0.05) in frequency of carriage between sample types. Black dotted lines indicate the minimum (0; represented as the value of 0.5× the fraction 
representing a single carrier for that method) and maximum (1) values for carriage frequency. The red dotted line indicates values of equal frequency 
between methods.
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both sample types were tested by qPCR, there were no significant differences in the carriage frequencies of serotypes between 
nasopharyngeal or saliva samples (Fig. 1b).

With similar rates of serotype detection in both nasopharyngeal and saliva samples collected from children, we were interested in 
the benefit of each sample type for its contribution to serotype detection. Therefore, to investigate the additive effect of samples 
obtained from different sites on serotype detection in children, we reanalysed the serotyping data, excluding children who 
tested positive for the same serotype in both their nasopharyngeal swab and saliva sample. As compared to culture detection in 
nasopharyngeal samples, testing saliva by qPCR detected significantly higher carriage of serotypes 16F (0/161, 0 %, versus 5/155, 
3 %; P=0.027) and 19A (5/161, 3 %, versus 16/155, 29 %; P=0.012; respectively) (Fig. 2a). When both sample types were tested by 
qPCR, there were no significant differences in additional serotypes detected by either sample type (Fig. 2b).

Discussion
The current culture-based recommendation for detecting pneumococcal carriage is being challenged more frequently 
[18, 24–26, 37–39]. While culture-independent methods improve the sensitivity of carriage detection in nasopharyngeal samples 
from both children [33, 40, 41] and adults [24–27, 42], we have also demonstrated improved sensitivity when these methods are 
applied to alternative respiratory samples from adults [24–26]. Therefore, in the current study, we conducted a direct comparison 
of paired nasopharyngeal swab and saliva samples collected from 24-month-old children to determine their sensitivity for 
pneumococcal detection when processed by culture and molecular (qPCR) methods; nasopharyngeal sampling proved superior 
in children.

While nasopharyngeal swabs were optimal for overall detection of pneumococcal carriage in children, saliva contributed signifi-
cantly to overall carriage detection (219 total carriers detected vs 187 carriers detected by nasopharyngeal swabs alone or 155 
carriers by saliva alone, P=0.002). For serotype detection, however, neither nasopharyngeal nor saliva samples were superior 
when all samples were processed by qPCR. This suggests to us that the results for serotype distribution generated using saliva 

Fig. 2. Investigating the additive effect of testing samples obtained from different sites on the detection of pneumococcal serotypes in 24-month-old 
children. Graphs depict serotype carriage frequency in pneumococcal carriers who tested positive for a specific serotype in only one sample type; 
individuals who were positive for the same serotype in both sample types were excluded from analysis. The frequency of carriage was calculated 
for each serotype by the total number of samples testing positive for that particular serotype by either Quellung or qPCR, over the total number of 
pneumococcal carriers detected by that method. If a serotype was not detected in the method being compared (nasopharyngeal swabs tested by 
Quellung, nasopharyngeal swabs tested by qPCR or saliva samples tested by qPCR), it was assigned a value of 0.5× the fraction representing a single 
carrier for that method. Serotypes not detected by both methods were excluded from correlation calculations. While (a) significantly higher carriage 
frequencies of serotypes 16F and 19A were detected when saliva was tested by qPCR as compared to the gold standard culture-based method 
(P<0.05), (b) no serotype was detected more frequently by either sample type when samples were tested by qPCR. Colour indicates serotypes targeted 
by PCV7 (orange), PCV10 (green), PCV13 (blue) or NVTs (black). Asterisks depict serotypes that differed significantly (P<0.05) in frequency of carriage 
between sample types. Black dotted lines indicate the minimum (0; represented as the value of 0.5× the fraction representing a single carrier for that 
method) and maximum (1) values for carriage frequency. The red dotted line indicates values of equal frequency between methods.
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are equally representative to results generated with the current gold standard method of conventional culture of nasopharyngeal 
swabs in children. It should be noted that culture enrichment can enhance carriage detection in low-density carriers or of 
secondary (or lesser) serotypes co-carried in a sample when serotype surveillance is being considered. The differences between 
serotypes detected in saliva compared to serotypes cultured from nasopharyngeal swabs were likely due to failure of colony 
picking during culture to detect co-carriage of less abundant strain(s) [43]. Importantly, overall serotype detection in saliva 
samples correlated well with qPCR detection in nasopharyngeal swabs. This enhanced sensitivity for both overall carriage and 
serotype detection are in line with findings in more recent study cohorts by Miellet et al.[44] and Wróbel-Pawelczyk et al.[45]; 
our observations here are not limited to one respiratory season nor geographic setting. Hence, qPCR testing of saliva samples 
holds potential for improving surveillance of pneumococcal carriage, providing additional insight into pneumococcal carriage 
compared to sampling the nasopharynx alone or providing a means to reduce the burden of study protocols through simplified 
sample collection. Additionally, with little-to-no discomfort from non-intrusive collection, saliva sampling is generally better 
tolerated compared to nasopharyngeal swabbing, encouraging greater adherence to sampling routines [24], while reducing the 
number of participants or samples lost due to testing aversion and refusing of sample collection [24]. This makes saliva particularly 
suitable for longitudinal studies.

The vast majority of epidemiological surveillance studies of pneumococcal carriage are descriptive, based on qualitative results 
for carriage detection, and focus on serotype distribution. They are usually solely aimed at monitoring the reduction of VTs and 
the emergence of NVTs. A current limitation of using qPCR to test saliva for pneumococcal carriage detection is the potential for 
confounding of assays due to the presence of homologous genetic sequences in closely related, non-pneumococcus streptococcal 
species that also inhabit the oral cavity. We provide evidence of this in the current study by ensuring that all samples that test 
negative for pneumococcus (i.e. qPCR-negative for piaB and lytA) are also tested in all serotyping assays. As such, it is not 
currently possible to specifically test for all pneumococcal serotypes in polymicrobial oral samples. Future vaccines, however, may 
transcend pneumococcal serotypes, with vaccines protecting against all pneumococci, independent of the capsular polysaccharide 
expressed. In this instance, while determining serotype-specific carriage may be only a secondary interest, accurate measures 
of overall pneumococcus in its ecological niche (the presence and density of all serotypes combined) will remain essential for 
monitoring vaccine effects and establishing study endpoints. More complex studies, with repeated sampling events, are required 
for better understanding of carriage dynamics (rates of acquisition and clearance, episode length) in both carriage and disease 
and in children versus adult populations.

With the increasing application of more sensitive detection methods, it is again being reported that, as in the early studies, 
pneumococcal carriage can be long lasting [46, 47], and that co-carriage of multiple serotypes is common [23, 48]. Longitudinal 
carriage of serotypes increases the risk of transmission, but also provides opportunities for intra- and inter-species genetic recom-
bination [49, 50]. While findings from this and previous studies suggest to us that no single sample type should be considered 
to be universally superior for pneumococcal carriage detection across all age groups, collecting saliva from children – whether 
alone or in addition to nasopharyngeal swabs – could be considered to be a low-resource option that can relieve the burden of 
sample collection. Saliva is a non-invasive sample to collect that can overcome testing aversion to swabs while removing the need 
for healthcare workers to collect the samples [51]. While testing nasopharyngeal swabs with qPCR remained superior for overall 
carriage detection, testing saliva with qPCR detected a broader distribution of pneumococcal serotypes, which could partially 
mitigate its reduced sensitivity. If strain isolation is not of critical importance the two sample types could be merged and tested 
as one. Moreover, sampling saliva may have an even greater benefit in broader studies for its potential to also be tested for other 
upper respiratory tract commensals or pathogens [52], such as meningococci [53, 54], as well as for immune responses.
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