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A B S T R A C T   

White matter connections enable the interaction within and between brain networks. Brain lesions can cause 
structural disconnections that disrupt networks and thereby cognitive functions supported by them. In recent 
years, novel methods have been developed to quantify the extent of structural disconnection after focal lesions, 
using tractography data from healthy controls. These methods, however, are indirect and their reliability and 
validity have yet to be fully established. In this study, we present our implementation of this approach, in a tool 
supplemented by uncertainty metrics for the predictions overall and at voxel-level. These metrics give an indi
cation of the reliability and are used to compare predictions with direct measures from patients’ diffusion tensor 
imaging (DTI) data in a sample of 95 first-ever stroke patients. Results show that, except for small lesions, the 
tool can predict fiber loss with high reliability and compares well to direct patient DTI estimates. Clinical utility 
of the method was demonstrated using lesion data from a subset of patients suffering from hemianopia. Both 
tract-based measures outperformed lesion localization in mapping visual field defects and showed a network 
consistent with the known anatomy of the visual system. This study offers an important contribution to the 
validation of structural disconnection mapping. We show that indirect measures of structural disconnection can 
be a reliable and valid substitute for direct estimations of fiber loss after focal lesions. Moreover, based on these 
results, we argue that indirect structural disconnection measures may even be preferable to lower-quality single 
subject diffusion MRI when based on high-quality healthy control datasets.   

1. Introduction 

Studies of patients with focal brain lesions, particularly stroke, have 
yielded valuable insights into brain-behaviour relationships. Techno
logical advancements in neuroimaging and statistics now allow re
searchers to investigate lesion data on a large scale and renewed interest 
for lesion-symptom mapping in recent years (Bates et al., 2003; Karnath 
et al., 2018). Generally, these studies are conducted for either of two 
goals: to identify structural correlates underlying a function of interest, 
or to predict stroke outcome or recovery (Price et al., 2017). Previous 
studies identified cortical areas critically involved in, for example, 
spoken language (Mirman et al., 2015), visuospatial processing (Baier 
et al., 2012; Biesbroek et al., 2014) and memory (Lugtmeijer et al., 2021; 
Mock et al., 2022). In addition, prediction studies showed relative 
contributions of lesion location and volume to, for example, post-stroke 
aphasia (Forkel and Catani, 2018; Fridriksson et al., 2015; Schumacher 
et al., 2019) and neglect recovery (Karnath et al., 2011). 

While traditional lesion symptom mapping studies contributed 
greatly to the field of neurology and neuroscience, lesion location alone 
is not the optimal proxy for a functional deficit (Catani and ffytche, 
2005; Fornito et al., 2015). This is especially true when the affected area 
includes white matter, as damage to any location along the length of an 
axon will induce a similar functional deficit. In theory, fiber tractog
raphy based on diffusion weighted imaging could address this issue, as 
this can be used to estimate white matter tracts in the brain and 
reconstruct the brain’s structural connectome. This method has also 
been applied to stroke patients (Bonilha et al., 2014; Forkel et al., 2014; 
Lunven et al., 2015; Rosenzopf et al., 2022), but the quantification of 
white matter damage is challenging (Jeurissen et al., 2019), especially in 
lesioned brains. Also, diffusion weighted imaging of sufficient quality 
for fiber tractography is often not available from clinical data. An 
alternative method to quantify network damage is to use tractography 
data from healthy controls to simulate network effects of lesions. 

In the last five years, several research groups have followed this line 
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of reasoning and developed methods for the quantification of discon
nection after stroke (Bowren et al., 2022; Foulon et al., 2018; Griffis 
et al., 2021; Kuceyeski et al., 2015; Salvalaggio et al., 2020). The 
workflow of these methods is as follows. First, lesions of individual 
(stroke) patients are delineated on MRI or CT images providing binary 
lesion maps. These maps are then transformed to a common coordinate 
system and used in a tractography atlas or database based on healthy 
controls, to assess which fibers cross the lesioned area. Together, these 
studies showed that it is possible to quantify white matter disconnection 
using tractography data from healthy controls and provided early pos
itive results about the clinical utility of these measures. Fiber tracking is 
a complex endeavor and the resulting tractogram will differ depending 
upon the quality of the acquired diffusion MR dataset. Obtaining high 
quality diffusion MR in patients is difficult due to the long acquisition 
time that is needed, and not all medical centers have the high-end MRI 
scanners required to do this. Using predictions of structural disconnec
tion based on diffusion datasets from healthy subjects allows for the use 
of the highest possible angular and spatial resolution. However, the 
amount of noise, i.e., to what extent these predictions deviate from 
direct results based on acquisitions in patients, that is introduced in this 
step is still largely unknown. 

In this study, we present a new tool to predict the impact of a lesion 
on the structural connectome using a technique based on diffusion 
datasets from healthy subjects. These predictions are supplemented with 
metrics of uncertainty, both for the overall predictions, and at the level 
of individual voxels. These metrics allow us to assess whether indirect 
measures of structural disconnection, as provided by the tool, are 
comparable to direct measures from patient’s DTI. In addition, the 
metrics provide an indication of the reliability of the tool. This is ach
ieved by quantifying differences between tool predictions and the results 
based on DTI data of patients, relative to the estimated prediction un
certainties. Taken together, these analyses will convey whether indirect 
methods can be a reliable substitute for DTI from patients for structural 
disconnection mapping. In addition, we performed the analyses with 
healthy control diffusion data from different databases in order to gain 
better insight in parameters driving the quality of the predictions, and 
established the effect of lesion size on the reliability of predictions. 
Finally, we perform validation by predicting white matter loss in a 
subset of patients who suffered from hemianopsia, and assess whether 
the results match with the known anatomy of the visual system as a 
ground-truth model. 

2. Methods 

2.1. Overview 

The predictions of damage to the white matter structure by a lesion 
are created in MNI space and are made by superimposing a lesion vol
ume of a patient on a tractogram of a healthy control subject, where 
tracks (or streamlines) passing through the lesion represent the pre
dicted damage to structural connectivity. By repeating this step for 
multiple tractograms of control subjects in a database, mean predictions 
and their uncertainty can be assessed in 3D MNI space. 

2.2. Patient data 

The patient data reported in this paper were collected as part of the 
Functional Architecture of the Brain for Vision (FAB4V) project (Lammers 
et al., 2022; Lugtmeijer et al., 2021). The project was approved by the 
UMC Utrecht institutional ethical board in accordance with the declara
tion of Helsinki (Association, 2013) and written informed consent was 
obtained prior to participation. Inclusion criteria were (1) clinical diag
nosis of ischemic stroke, (2) age between 18 and 90, and (3) fluent in 
Dutch. Presence of a comorbid neurological, psychiatric, or other condi
tion that may interfere with cognitive testing/imaging was reason for 
exclusion. A subset of 95 adult patients with a first-ever symptomatic 

ischemic stroke, a confirmed ischemic lesion on MRI, and with avail
ability of diffusion MRI data was included in the current study. Data of 
this subset were gathered in Amsterdam University Medical Center (AMC) 
and University Medical Center Utrecht (UMC Utrecht) in the Netherlands 
between September 2015 and January 2020. Imaging was performed 
between 3 weeks and 3 months post-infarction with an average interval of 
8 weeks. Demographics of this cohort are described in Table 1 and a lesion 
overlay is displayed in supplementary Fig. 1. 

2.3. Data inclusion 

We used several diffusion MRI datasets in this study. These included 
a dataset of 78 healthy control subjects acquired at the University 
Medical Center Utrecht (UMCU), the 7 T diffusion data of 173 healthy 
control subjects that were scanned as part of the Human Connectome 
Project (Vu et al., 2015), and 95 datasets of stroke patients from the 
FAB4V project. Datasets included structural images in addition to the 
diffusion data, which consisted of an MPRAGE for healthy controls, and 
a FLAIR for stroke patients. Note that whereas the HCP and UMCU 
datasets had two complete diffusion weighted series with opposing 
phase encoding blip, the patient data includes only one complete 
diffusion series. The second series of the patient data only included a b 
= 0 image. This means that the number of diffusion images that is ac
quired is almost halved in the patient dataset, which would lead to less 
reliable diffusion estimates. To mimic the patient data as closely as 
possible for optimal comparison, we created an additional database 
based on the UMCU data, where of the second diffusion series only the b 
= 0 image was used. This resulted in 3 databases with tractograms of 
healthy control subjects, which were the HCP (based on the Human 
Connectome Project data), UMCU 1 (2 phase encoding blips), and UMCU 
2 (1 phase encoding blip). A summary of the acquisition parameters of 
the different datasets can be seen in Table 1. 

2.4. Processing of DWI data of patients/control subjects 

For analysis of the DWI-data we used a combination of FSL (FMRIB, 
Oxford, UK), MRtrix (https://doi.org/10.1016/j.neuroimage.2019.116 
137), SPM12 (https://fil.ion.ucl.ac.uk/spm/), and custom scripts in 
the Interactive Data Language (IDL, Harris Geospatial Solutions, Colo
rado, USA). DWI data was denoised with ‘dwidenoise’ in MRtrix 
(Veraart et al., 2016a, 2016b), and geometry corrected using the B =
0 images of the series with opposed traversal of k-space in the phase- 
encode direction using FSL’s ‘topup’ (Andersson et al., 2003). DWI 
data were then corrected for eddy currents and head motion (Andersson 
and Sotiropoulos, 2016) using the multi-processor variant of FSL’s 
‘eddy’. A mean B0-image was calculated and stored as reference for 
registering other images to the DWIs. A response function for con
strained Spherical Deconvolution (CSD) was created with ‘dwi2res
ponse’ of MRtrix, based on the diffusion data (Dhollander et al., 2018, 
2016), and subsequently applied for estimating the fiber orientation 
distribution (FOD) for each voxel with MRTrix’s ‘dwi2fod’ (Tournier 
et al., 2004). 

5 million streamlines were generated for each subject using the 
deterministic Constrained Spherical Deconvolution algorithm of the 
‘tckgen’ function in MRTRix (Tournier et al., 2012), with a stepsize of 
0.1 times the voxelsize, a minimum streamline length of 5 times the 
voxelsize, a tracking cutoff at an FOD of 0.1, and a maximum angle of 9 
degrees per step. Seeds were picked randomly from the white matter. In 
order to improve biological plausibility of the tractograms, the 5 million 
streamlines were filtered down to 1 million using ‘tcksift’ of MRTrix, by 
removing streamlines so that the FOD lobe integrals better match the 
streamline densities (Smith et al., 2013). 

For normalizing the tractograms to MNI space, they were first 
registered to the structural images using parameters based on registra
tion using the B = 0 images. Displacement maps for moving the co
ordinates of the tractograms of healthy control subjects to MNI space 
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were obtained based on the T1-weighted images and unified segmen
tation (‘SEGMENT’) in SPM12 (Ashburner and Friston, 2005). For 
obtaining these maps for patients, we used the clinical toolbox, which 
also makes use of unified segmentation and multi-tissue templates, and 
allows normalization to MNI while ignoring voxels that enclose struc
tural abnormalities (Rorden et al., 2012). As input for the clinical 
toolbox we selected the mask of the manually delineated lesion and the 
FLAIR image. To avoid systematic misalignments between subjects in 
MNI-space, we used the same multi-tissue template for both patients and 
control subjects. We chose the elderly template that is part of the clinical 
toolbox, which would conceptually cope better with elderly patients 
with substantially enlarged ventricles. To further improve alignment, 
and to reduce bias as the result of the use of a single template, the 
warping regularization was reduced by an order of magnitude (relative 
to default). The resulting displacement maps were then applied to the 
coordinates of the tractograms to warp the streamlines into MNI space 
using a custom script in IDL. 

2.5. Predictions of damage to the white matter structure 

The white matter fibers predicted to be damaged by the stroke were 
selected by including streamlines from the tractograms for which at least 
one coordinate was positioned within a voxel marked as part of the 
lesion. The result of this streamline selection was subsequently used to 
create a volumetric visitation map representing the number of damaged 
streamlines passing each voxel. These volumes were created for every 
subject in the database, after which the mean and standard deviation 
across the subjects was calculated. The mean represents the prediction, 
and the standard deviation the uncertainty of the prediction, whose 
inverse could theoretically be used as a weighting factor in a second 
level analysis. A schematic representation of the method for creating 
predictions can be seen in Fig. 1. The reliability of the results was further 
assessed by performing a leave-one-out cross validation, where each 
individual control subject result was Pearson correlated with the mean 
of all other control subjects in the database. An MNI whole brain mask 

Fig. 1. Schematic of the procedure for creating predictions of damage to the white matter structure. A lesion was manually segmented and normalized to MNI space 
(1), and subsequently imposed on normalized tractographies of control subjects in a database (2). For each subject in the database all streamlines that touched the 
lesion area were selected (3), and mapped to a volume representing the fiber count for each voxel (4). The mean and standard deviation of the fiber count maps was 
calculated across subjects in the database (5). 

Table 1 
Acquisition parameters of the different diffusion datasets used in the experiments.   

HCP UMCU-1 UMCU-2 Patients 

Age (SD) 29 (3) 46 (21) 46 (21) 55 (15) 
Sex (%male) 39.3 48.1 48.1 67.4 
Diffusion volumes 286 64 32 34 
Resolution (mm) 1.10 × 1.10 × 1.05 1.87 × 1.87 × 2.00 1.87 × 1.87 × 2.00 2.00 × 2.00 × 2.00 
Nr slices 132 75 75 60 
Datasets 173 78 78 95 
Field strength 7 T 3 T 3 T 3 T 
Headcoil Channels 32 32 32 32 
TR (ms) 7000 7110 7110 7498 
TE (ms) 71 69 69 90 
Multiband factor 2 NA NA NA 
B-values (s/mm2) 1000/2000 1000 1000 1000 
Series 2 2 2 1 
Lesion location     
%left    54 
%right    41 
%bilateral    5 
Lesion volume (ml)    17.8 (3.7)  
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was used to select voxels to be included for calculating the correlation 
coefficients. The results were averaged after Fischer transformation, and 
the result was inverse Fischer transformed. The cross-validation result is 
further referred to as the internal reliability of the prediction. The voxels 
within the lesion area are included for each subject per definition and 
the leave-one-out-correlation within this area is likely to be higher than 
the overall internal reliability. This may lead to an overestimation of the 
reliability in larger lesions. To account for this, the internal reliability 
was calculated both with inclusion and exclusion of the lesion area. 

2.6. Comparison with patient DWI results 

The predictions of damage to the white matter structure were 
compared to those as estimated through the tractograms that were 
created based on the DWI data of the patients. Note that the most ac
curate benchmark for comparison are the predictions based on the 
UMCU 2 database, as it included DWI data most closely matching those 
of the patients. Streamlines in patients were assessed as damaged if they 
either had a single coordinate within a voxel that was part of the lesion 
or had a starting point in the area directly surrounding the lesion. The 
surrounding area was defined through a 2 mm dilation of the lesion area, 
and was included to avoid missing streamlines that terminate before the 
edge of the lesion due to partial voluming effects. The selected stream
lines were subsequently used to create a visitation map that was corre
lated to the predictions based on the databases. Similarly for measuring 
the internal reliability, voxels for calculating the correlation coefficients 
were selected based on a whole-brain MNI mask. Additional masking 
was applied if the field of view of the DWI acquisition in the patients did 
not include the entire brain. This correlation value is termed the external 
reliability of the prediction. Importantly, neither for estimating the in
ternal reliability, nor for the external reliability smoothing was per
formed on the fiber-count maps, as the reliability scores are intended to 
reflect the accuracy of the predictions relative to an individual 
tractography. 

To assess the validity of the standard deviations of the predictions, 
we assessed for each patient if the values of their visitation maps were on 
average within the range that would be anticipated based on the pre
diction mean, standard deviation and standard error. For this we first 
calculated the difference maps, including for each voxel the difference 
between the prediction and the fiber-count maps of the patients. Then 
we calculated the ratio between the observed and predicted deviation at 
each voxel, thereby producing normalized differences from the predic
tion. Finally, the standard deviation from zero across the normalized 
differences was calculated. We term this value the deviation-score, which 
was benchmarked against its theoretical value of 1, in case of fully ac
curate standard deviations. In group-wise analyses we assessed devia
tion scores and differences between internal and external reliabilities, 
and determined to what extend these were determined by the used 
database and lesion size. Differences in reliabilities and deviation scores 
were tested using repeated measures General Linear Models (GLMs) and 
post-hoc paired samples t-tests. When necessary, the degrees of freedom 
of the GLM were adjusted for non-sphericity using the Greenhouse- 
Geiser method. All group-wise statistical analyses of reliabilities were 
done after Fischer-transformation of individual correlation coefficients 
to z-scores. All group-wise reliabilities reported in the figures and text 
are the result after inverse Fischer transformation of group-mean z- 
scores back to correlation coefficients. A positive evaluation of the 
method would include absence of differences between internal and 
external reliabilities, and deviation scores not exceeding 1 for the UMCU 
2 database. This would provide an indication that predictions based on 
healthy controls would perform equally well as predictions based on 
diffusion data of patients, when used in a second-level analyses. 

2.7. Example of application in a lesion symptom mapping approach 

To assess the applicability of the tool’s predictions in a lesion 
symptom mapping approach and compare them with predictions based 
on patients DWI data, we divided the patients in 2 groups, those diag
nosed with a stroke-induced visual field defect (n = 11) and those 
without (n = 84). Five pseudo independent-samples t-test were imple
mented in SnPM (https://nisox.org/Software/SnPM13/) comparing two 
groups, with subsequently using the white matter damage predictions of 
the 3 databases, the lesion maps, and the visitation-map based on the 
patient’s DTI as input. The visitation maps based on the patient’s DTI 
were smoothed with a kernel of 4 mm FWHM, to account for error in the 
normalization to MNI. Note that no smoothing was performed on the 
white matter damage predictions, as these are inherently smooth due to 
being an average of many subjects. To allow merging of the patients with 
visual field defects in a single group, the images of patients with a right 
visual field defect (n = 4) were flipped over the left/right (x)-axis, which 
was also done randomly for a similar percentage (n = 31) of patients 
without a visual field defect. A maximum of 5000 permutations were 
computed for statistical inference, with the threshold set at α = 0.05 
(One-sided, Family Wise Error). One sided testing was performed as no 
voxels with an inverse relationship between streamline damage and 
visual field defects were anticipated. This rationale is similar to that of 
the typical lesion-symptom mapping approach (Shahid et al., 2017). If 
such voxels exist, this is most likely due to patients without visual field 
defects being more likely of having damaged streamlines outside the 
visual system. 

3. Results 

3.1. Reliability of the predictions 

Fig. 2 shows several examples of the predictions of white matter 
damage, including the results obtained using the diffusion data of the 
patients as reference. The group-mean reliabilities of the predictions are 
depicted in Fig. 3, and were analyzed using a repeated measures GLM 
with 3 within-subject factors including database (3 layers: UMCU 1, 
HCP, UMCU 2), lesion (2 layers: included, excluded), reliability (2 
layers: internal, external). All main and interaction effects were statis
tically significant (p < 0.01). 

3.1.1. Indirect versus direct measures of tract damage 
The primary benchmarking of the predictions is represented by the 

comparison between the internal and external reliabilities of UMCU 2 
(the database using diffusion data most similar to that of the patients). 
However, this comparison can potentially be influenced by disruptions 
of tractographies in the lesion area of patients, as these would introduce 
additional differences between tool predictions and patient results. 
Indeed, including the lesion area enhanced the internal reliability, but 
attenuated the external reliability (F(1,94) = 612.67; p < 0.001), indi
cating that an unbiased comparison between the internal and external 
reliabilities of UMCU 2 can only be done with exclusion of the lesion 
area. Results of this benchmark indicated no difference between the 
internal and actual reliability (Mean internal reliability = 0.715; Mean 
external reliability = 0.705; paired-t(94) = 1.518; p = 0.132). Note that 
while this finding does not proof that no differences exist, they give an 
indication that predictions of white matter damage based on diffusion 
data of patients do not substantially outperform predictions based on 
diffusion data of healthy control subjects. 

Interestingly, although the number of diffusion volumes included in 
individual datasets used for the UMCU 1 database was double that of 
those included in UMCU 2, the external reliabilities for these two da
tabases (excluding lesion area) were nearly identical (Mean UMCU 1 =
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Fig. 2. Examples of predictions of white matter damage following stroke. The left three columns depict the predictions by the three databases, where the density of 
damaged streamlines (count ≥ 0.5) is superimposed on the normalized FLAIR image of the individual patient. The right column shows the fiber-counts of streamlines 
touching the lesion, or starting in the perilesional area according to the diffusion data of the patients (count ≥ 1). Each row provides the results for a different patient. 
The segmented lesion is shown in white. For each patient the most informative slice is shown (i.e. the slice including on average the maximum extent of the pre
diction). Images are displayed according to the neurological convention. 
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0.706; mean UMCU 2 = 0.705; paired-t(94) = 0.726; p = 0.470). 
Furthermore, the spatial correlations between the predictions of UMCU 
1 and UMCU 2, proved that they had a highly similar pattern (group- 
mean correlation = 0.986; negligible confidence intervals), further 
indicating that the higher quality of the used diffusion datasets did not 
substantially impact prediction results. However, the internal 

reliabilities were higher for UMCU 1 than for UMCU 2 (mean UMCU 1 =
0.727; Mean UMCU 2 = 0.715; paired-t(94) = 11.85; p < 0.001). This 
finding most likely reflects limitations in the use of individual DTI 
datasets as a gold standard, a topic which is further addressed in the 
discussion. 

3.1.2. The effect of diffusion MRI data quality 
Differences in performance across databases consisted primarily of 

an interaction between type of reliability (internal/external) and data
base (F(2,98) = 219,36; p < 0.001), which was largely caused by a higher 
internal reliability for the HCP than the UMCU databases, while the 
reverse was true for the external reliability (F(1,94) = 221.048; p <
0.001). These effects are in all likelihood caused by the large differences 
in acquisition parameters of the diffusion data underlying HCP 
compared to the other databases. Most likely the enhanced quality of 
diffusion data and its subsequent impact on the tracking algorithm 
would minimize between-subject variations of tractographies, and thus 
enhance the internal reliability of the HCP database. The qualitative 
nature of the HCP results would, however, be different from those based 
on diffusion data of the patients, e.g., due to a better performance in 
resolving crossing fibers, resulting in a lower external reliability. We 
thus would expect the reductions in external reliability for HCP to be 
absent if the same acquisition parameters would have been used in pa
tients, and use of the HCP database might still prove to be most 
advantageous. 

3.1.3. The effect of lesion size 
We explored the influence of lesion volume on internal and external 

reliabilities. This relationship was only assessed with exclusion of the 
lesion area, to avoid direct artefactual inflation of reliabilities through 
variations in overlap of the lesion volume. An exponential curve was 
fitted to the data, which for all databases showed decreased reliability 
for smaller lesions, both for internal and external reliabilities (Fig. 4). 
Importantly, the curves for the internal and external reliabilities of 
UMCU 2 were overlapping, except for the smaller lesions (approxi
mately ≤ 5 cm3). Overestimation of the reliability of predictions was 
thus driven by patients with smaller lesions. 

Fig. 3. Group mean internal and external reliabilities for the three databases, 
calculated with inclusion and exclusion of the lesion area. Bars indicate the 95% 
confidence intervals. The benchmark for the validity of reliabilities of the 
predictions is provided by the comparison between the internal and external 
reliability of UMCU 2 with the exclusion of the lesion area. 

Fig. 4. Internal (A) and external (B) reliabilities plotted against the volume of the lesion, with the different colors indicating the different databases used. Each dot is 
the result of a single patient and database. Solid lines represent the results of an exponential fit, with adjacent shaded areas marking the 95% confidence intervals. 
The R2 in the legend represents the proportion of variance explained by the polynomial fit, adjusted for the number of parameters in the model. The x-axis is 
truncated at 20 cm3 for clearer visualization, excluding 20 patients from the plot (but not the analysis). Fig. 3B includes the exponential fit of the internal reliability of 
UMCU 2 as reference. 
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3.2. Validity of standard deviations 

A deviation-score was assessed for each patient, where a score of 1 
reflects an accurate prediction of standard deviations, and a score 
exceeding 1 reflects that standard deviations are underestimated. The 
deviation-scores when using the different databases are depicted in 
Fig. 5. They were larger than 1 for all 3 databases, including UMCU 1 
(mean = 1.107; one-sample t(94) = 5.373; p < 0.001) HCP (mean = 1.32; 
one-sample t(94) = 11.126; p < 0.001), and UMCU 2 (mean = 1.101; one- 
sample t(94) = 5.235; p < 0.001). Furthermore, a repeated measures 
GLM with database as within-subject factor (3 layers; UMCU 1, HCP, 
UMCU 2) showed that the deviation-scores were substantially higher for 
HCP relative to the two other databases (F(1,94) = 64.312; p < 0.001). 
These relatively attenuated values for HCP are expected due to the dif
ferences in acquisition parameters of the diffusion data underlying this 
database relative to those used in patients. Furthermore, the deviations 
were slightly larger for UMCU 1 than for UMCU 2 (paired t(94) = 2.048; 
p = 0.043). While the predictions for the two databases were highly 
similar, those of UMCU 2 would be expected to have slightly higher 
standard deviations due to the decreased number of diffusion volumes, 
resulting in lower deviations of standard scores for the actual diffusion 
data of patients. 

Importantly, the deviation-scores of the UMCU-2 database indicated 
that the standard deviations of the predictions underestimate the actual 
deviations of patient data by approximately 10%. To assess if this un
derestimation was related to lesion-size, similar as reliabilities, an 
exponential was fitted to describe the association between lesion- 
volume and deviation-scores (Fig. 6). Results showed that deviation 
scores where larger for patients with smaller lesions (approximately ≤ 5 
cm3), indicating that standard-deviations where primarily under
estimated for patients with a smaller lesion extent, while being close to 

Fig. 5. Deviation-scores for the different databases. Bars show the 95% confi
dence intervals. The horizontal dashed line at a deviation-score of 1.0 is the 
reference for a fully realistic estimate of standard deviations provided by 
the prediction. 

Fig. 6. Deviation-scores plotted against the volume 
of the lesion, with the different colors indicating the 
different databases used. Each dot is the result of a 
single patient and database. Solid lines represent the 
results of an exponential fit, with adjacent shaded 
areas marking the 95% confidence intervals. The R2 

in the legend represents the proportion of variance 
explained by the polynomial fit, adjusted for the 
number of parameters in the model. The x-axis is 
truncated at 20 cm3 for clearer visualization, 
excluding 20 patients from the plot (but not the 
analysis). The horizontal dashed line at a deviation- 
score of 1.0 is the reference for a fully realistic esti
mate of standard deviations provided by the 
prediction.   
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accurate for patients with larger lesions. These results show that the 
diffusion data of patients fluctuates within the range of the tool’s pre
dictions, except for the patients with smaller lesions. 

3.3. Correlates of stroke induced visual field defects 

Results of the comparison between stroke patients with and without 
visual field defect using the various inputs can be seen in Fig. 7. All 
analyses based on diffusion data show significant effects in the optic 
radiations, its projection zone, and the Thalamus. The location of sig
nificant voxels for the comparison based on the lesion volumes are 
restricted to the termination zone of the optic radiations. As a rudi
mentary analysis of the variations in statistical power between the 
methods we calculated for each different input the total volume of 
voxels with a significant effect, the average -log10 across voxels with a 
significant effect for a particular method, and the average -p log10 with a 
significant effect in any of the methods (Fig. 7). The methods based on 
diffusion data of healthy controls and patients performed roughly 
similar regarding the volume of significant voxels and their statistical 
significance. In addition, the dice scores indicated that the overlap of the 
results based on the patients DWI and those based on the predictions 
using healthy controls was substantial (Fig. 7). The analysis based on 
lesion data had a substantially lower volume of significant voxels, and 
larger likelihoods that the observed effects were obtained through 
chance. 

4. Discussion 

Indirect structural disconnection mapping is a promising method to 
predict structural network effects of focal lesions. It requires only a 

lesion segmentation map to predict tract damage, which makes it effi
cient in terms of both time and costs. Normative tract-based methods 
have been applied to map structural networks associated with a variety 
of functions, with plausible results. The reliability and validity of these 
indirect methods, however, needs further exploration. In the current 
study, we present our implementation to predict fiber loss after focal 
lesions based on healthy control tractography data, that includes esti
mates of the uncertainty of predictions as an indication of their internal 
reliability. Moreover, we provide validation of the method by direct 
comparison with DTI measures derived from patient’s diffusion data. 
Results show that the tool can predict fiber loss with adequate reli
ability. The tool’s predictions were highly comparable to estimates of 
fiber loss based on patient’s diffusion MRI, except for cases with small 
lesions. Healthy control diffusion datasets of different quality were 
directly compared to investigate the effect of diffusion data quality on 
the reliability and validity of predictions. The use of high-quality 
diffusion data improved the internal reliability of predictions as esti
mated by the procedure. For a proof of concept, we presented a lesion- 
symptom mapping analysis of visual field defects with lesion location, 
the tool’s predictions or patient’s tractography as input. Results showed 
a large overlap in results for predictions based on normative DTI and 
patient DTI data. Tract-based measures, both indirect and direct, out
performed lesion location in statistical power and showed an extended 
network including optic radiations, its projection zone and thalamus, 
matching the known anatomy of the visual system (Zhang et al., 2006). 
These findings demonstrate clinical utility of the method and exemplify 
the limitations of standard voxel-based lesion-symptom mapping in 
identifying tract damage after focal lesions. 

The use of higher quality diffusion data (HCP dataset) positively 
affected only the internal reliability, not the external reliability of 

Fig. 7. Statistical maps of the comparison between stroke patients with and without visual field defects, with using as input (A) the white matter damage predictions 
base on the UMCU 1 database, (B) the white matter damage predictions based on the HCP database (C) the white matter damage predictions based on the UMCU 2 
database, (D) the lesion volumes, and (E) the fiber count maps according to damaged streamlines as based on the DWI data of the patients. Significant voxels (α = 5%; 
FWE corrected) are projected on the ch2 single subject T1-weighted image (Rorden and Brett, 2000). Images are displayed according to the neurological convention. 
The bottom-right part of the image shows the lesion overlap for the group of patients with and without visual field defect. The bottom left of the figure includes the 
table showing for each method the total volume of voxels with a significant effect, the mean -log10 across voxels in this volume for the likelihood the effect was 
obtained through chance (FWE corrected), and same metric calculated across voxels that were significant for any of the methods. 
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predictions. The most straightforward explanation for this discrepancy 
is that the underlying assumption that individual DWI results can be 
regarded as a gold standard, is incorrect. Individual DWI results will 
always be approximations of true underlying values due to noise in the 
acquisition. The more data that can be acquired in single subjects, the 
better the approximation. This is also reflected in the enhanced simi
larity of the individual results with the prediction based on the mean of a 
large group, i.e., the internal reliability, when using the high-quality 
dataset. As the amount of diffusion data that can be practically ac
quired in single patients is limited, the noise in individual acquisitions is 
higher than in the control dataset. We found that the external reliability 
is no longer affected by increasing the amount of diffusion volumes, 
indicating that the noise in individual acquisitions is under these cir
cumstances no longer an important factor. The tool’s prediction thus to 
some extent negates the noise in the diffusion data, allowing for more 
accurate predictions than indicated by the internal and external re
liabilities that we estimated. It might therefore be hypothesized that the 
best approximation of the accuracy of the output of the tool is given by 
the internal reliability of the HCP database, that would include the least 
noise in the individual results due to the high field strength at which it 
was acquired, and the large number of diffusion volumes. 

The internal reliability of the prediction is dependent on several 
factors. These include the size of the lesion, how close the lesion is to the 
edges of a fiber bundle, and how well the normalization procedure 
performs in the areas that the damaged fibers are traversing. We reason 
that the error in the prediction is mainly driven by the inherent limi
tations of the normalization procedure, and variation in the white- 
matter structure. Along these lines the effect of lesion size is not sur
prising, as error in inter-subject alignment following normalization to 
MNI would impact the overlap of the predictions more for small than for 
larger lesions. Moreover, we found that for these smaller lesions the 
internal reliability overestimated the reliability that was attained in 
patients. A similar effect was observed for standard deviations of the 
predictions per voxel, which were underestimated for patients with 
smaller lesions. Theoretically, secondary degeneration or false-negative 
errors in the manual lesion segmentation could cause a mismatch be
tween results based on patient data and the predictions. However, given 
the relationship between lesion size and internal reliability, a more 
speculative explanation is that normalization error is in general larger in 
patients, either through the lesion itself or other structural abnormal
ities, thereby disproportionally impacting overlap of smaller lesions, 
leading to lower reliabilities and higher standard deviations. Nonethe
less, estimates of reliabilities and standard deviations of the predictions 
can be adjusted dependent on lesion size according to this knowledge, 
for example by weighting scores according to lesion size in prediction 
models. 

Furthermore, in this study, all normalization parameters were 
established based on anatomical contrast. Alternatively, the between- 
subject alignment for subjects in the database could have been based 
on diffusion metrics, e.g., the voxel’s tensor or CSD models (Tournier 
et al., 2019). While this probably would have improved the inter-subject 
alignment of tractographies in the database, and thus the estimations of 
reliability of the tool’s result, this reliability would not be representative 
when using lesion volumes that are normalized based on anatomical 
contrast. One potential shortcoming compared to direct measures is the 
assumption that all axons passing through a lesion area are non- 
functional as a result of the stroke. This assumption may not be 
completely correct, as abnormal contrast in FLAIR images may not al
ways signify a full functional disconnection. The patient’s DTI data also 
showed that changes to the structural integrity of the white matter did 
not always prevent tracking through voxels that were marked as part of 
the lesion (meaning that FOD values surpassed the tracking threshold 
while angles of streamlines were not abnormal). For the comparison 
with the tool’s predictions, all streamlines in patients within the lesion 
area were assumed damaged. The tool results may thus include false 
positives. Note, however, that this issue is not specific to our tool, it is 

inherent to all approaches to lesion-symptom mapping. A second 
shortcoming is that assigning a single value of disconnection to a voxel 
ignores the putative presence of crossing fibers, where some axons 
transversing a voxel may be disrupted, while others are not. The voxel- 
level visitation maps represent streamline density for each voxel. Voxels 
that have the same non-zero fiber-count across multiple subjects could 
still vary in the fiber orientations that they enclose. This can also lead to 
false positive predictions of disconnection, attenuating the strength of 
the link with clinical lesion symptoms. There are other approaches to 
disconnection mapping that estimate streamline loss at the level of 
macroscale white matter tracts or use connectivity matrices to represent 
streamline loss between grey-matter parcels (Gleichgerrcht et al., 2017; 
Griffis et al., 2021; Kuceyeski et al., 2015). The benefit of voxel-level 
visitation maps is that they are easy to use as input for second-level 
group analyses. This makes it a popular approach, that can used in 
combination with tract-level measures. Last, we used two sets of healthy 
controls diffusion weighted imaging datasets to build three normative 
tractography databases. These included a large set (n = 173) of high- 
resolution diffusion imaging data derived from the HCP data and a 
second set of 78 healthy control subjects acquired at the University 
Medical Center Utrecht. The HCP subjects were mostly young adults and 
thus differ substantially from our middle to old age stroke cohort. The 
age range of the UMCU cohort was wider, though the median age 
remained younger than of the stroke cohort. For an optimal comparison, 
demographics of the control datasets should have been matched to that 
of the patients. Previous studies did, however, indicate that normative 
disconnection maps have a very high reproducibility across age decades 
in adulthood (age 21 and above) (Foulon et al., 2018; Thiebaut de 
Schotten et al., 2020) and the same HCP dataset has been used in prior 
disconnection mapping studies (Alves et al., 2021; Billot et al., 2022). 
Also, the impact of age-related differences would be in the direction of 
an underestimation rather than overestimation of reliability. 

Several research groups have advocated the importance of including 
estimates of white matter damage in lesion-symptom mapping (Corbetta 
et al., 2015; Grefkes and Fink, 2014; Reber et al., 2021). The theoretical 
underpinnings are clear. Lesions at different locations can damage an 
axon at different points along its structure, while still resulting in the 
same clinical symptoms. Moreover, disconnection at one location 
doesn’t have a lower impact than demolishment of the entire tract. 
Hence, using predictions of tract damage to establish lesion-symptom 
associations has less variability in individual voxels and a higher 
power to detect true associations. There are several software tools now 
available that use normative connectivity data to estimate structural 
disconnection (Foulon et al., 2018; Griffis et al., 2021; Kuceyeski et al., 
2015). Recent papers illustrated the potential of this approach (Bies
broek et al., 2021; Griffis et al., 2019; Kuceyeski et al., 2016; Thiebaut de 
Schotten et al., 2020) and a first validation study for structural discon
nection mapping was recently published (Wawrzyniak et al., 2022). In 
their validation, the authors reproduced the known association between 
corticospinal tract damage and hemiparesis, similar to what our findings 
demonstrated for hemianopsia and the optic radiations and their pro
jections. Nonetheless, studies contrasting models based on lesion loca
tion versus structural connectivity measures to predict clinical outcome, 
show discrepant results. Where some studies report superiority of 
(adding) connectivity measures (Bowren et al., 2022; Del Gaizo et al., 
2017; Wawrzyniak et al., 2022), others find no difference between lesion 
and structural disconnection maps (Hope et al., 2018; Salvalaggio et al., 
2020). Thus, while the theoretical advantages of structural disconnec
tion mapping are well-defined, the additive value of disconnection 
measures in outcome prediction models is still questioned. Methodo
logical variability between existing tools is likely to have a role in these 
inconsistencies, since the tools vary in tracking method, the normative 
data that is used, and the output measures that are calculated. Lesion 
methods, including indirect measures, have many degrees of freedom 
(Sperber and Karnath, 2018) and variability in the analysis is a known 
problem in the neuroimaging field (Botvinik-Nezer et al., 2020). It is also 
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important to consider that these differences may not be directly attrib
uted to the indirect disconnection approach itself. The impact of struc
tural disconnection may vary depending on the function of interest, the 
sample composition and within-sample lesion distribution. Findings 
from this paper demonstrate the impact of lesion size of the sample 
under study. The sample from Corbetta et al. (2015) that is used in the 
paper by Salvalaggio and collegues (2020) has a relatively small average 
lesion volume compared to the current stroke dataset (3.4 ml versus 
17.1 ml). Small and distinct lesions are favorable in terms of spatial 
specificity but have a higher prediction error in indirect methods. 
Hence, this may provide one explanation why structural disconnection 
maps did not perform better than lesions in predicting behavior in their 
sample (Salvalaggio et al., 2020). 

In conclusion, indirect measures of structural disconnection are a 
reliable and valid substitute for tractography based on patient’s DWI for 
estimations of fiber loss. Analyses using predictions based on a healthy 
control database would accomplish similar results as when using diffu
sion data of patients, which saves substantial costs and effort. Moreover, 
when using high quality datasets, the tool may even be preferable above 
(lower quality) single subject diffusion MRI. Further work is needed to 
elucidate whether models using (indirect) connectivity measures also 
outperform models using only traditional lesion characteristics in pre
dicting behavior, cognition, and clinical symptoms. 
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