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Abstract: Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion
neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in
adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult
cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential
after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic
approaches. Targeting these cells by manipulating key signaling pathways that control mammalian
cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair
cells in the mammalian cochlea. This review discusses the pathways involved in the development
of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous
progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways
targeting supporting cells with progenitor potential to promote hair cell regeneration and translates
these findings to the human situation. To improve hearing recovery after hearing loss in adults,
we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating
signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFβ signaling pathways), (2) by manipulating
epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.

Keywords: inner ear regeneration; endogenous progenitor cells; re-innervation

1. Introduction

Hearing loss is the most frequent sensory deficit in humans and is mainly caused by
irreversible damage to cochlear sensory cells (hair cells) and/or their associated neurons
(spiral ganglion neurons, SGNs). Irreversible hair cell loss is particularly caused by aging,
noise exposure and ototoxic medication. In 2019, there were approximately 460 million
individuals with disabling hearing loss, and according to the WHO, this number might
increase to more than 900 million individuals by 2050 [1]. Hearing loss, which is often
accompanied by tinnitus, results in high levels of morbidity, depression and social isolation,
and it has been shown to significantly contribute to cognitive decline in the elderly [2–8].
While hearing aids and cochlear implants restore hearing in hearing-impaired and deaf
individuals to a large extent, sounds are still perceived as distorted (for the sound of a
cochlear implant, see [9] because the original cochlear function—in which the hair cells
together with the basilar membrane play a key role—is not replaced.

To prevent hair cell loss, there are currently several otoprotectants that can poten-
tially prevent damage after ototoxic or noise-induced trauma, including antioxidants to
reduce oxidative stress (such as sodium thiosulfate, amifostine, N-acetylcysteine) or anti-
inflammatory medication, such as dexamethasone (for review on ototoxicity see [10] and
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for review on noise-induced hearing loss (NIHL) see [11]). Regeneration of lost cochlear
cells has potential as an alternative approach and can have significant clinical applications
to restore hearing without the need for an electronic device. Studies on the regeneration of
the avian cochlea or zebrafish lateral line have demonstrated spontaneous hair cell regener-
ation out of endogenous progenitor cells after damage, even in adult specimens [12,13]. In
contrast, the mammalian adult inner ear possesses limited regenerative potential [14,15].
The vestibular organ shows scarce but spontaneous hair cell regeneration after damage,
whereas the cochlea shows no spontaneous regeneration [16]. For non-genetic hearing loss,
targeting the endogenous cochlear progenitor cells by manipulating signaling pathways to
promote hair cell renewal might improve the regenerative capacity.

Previous studies on the mammalian cochlea have mainly evaluated the presence of en-
dogenous progenitor cells in the neonatal cochlea or in a normal hearing condition [17–23].
The effects of trauma, such as ototoxicity or noise exposure, on regenerative capacity of the
cochlea of adult mammals has been scarcely studied. Because the majority of patients with
SNHL are adults, studying the regenerative capacity after hair cell ablation in the adult
mammalian cochlea is the key to understanding its true therapeutic potential. Importantly,
the pathways that regulate cochlear development in mammals and hair cell regeneration in
non-mammalian vertebrates shed light on the steps needed to improve mammalian hair
cell regeneration in the future. In this review, we therefore summarize the development of
the cochlea in mammals, necessary to understand the pathways involved in the generation
of sensory hair cells and progenitors of the cochlea, as well as the presence of progenitors
in the neonatal cochlea, and finally, we discuss the implications for the deafened adult
mammalian cochlea. While previous reviews [24,25] mainly focused on hair cell regenera-
tion, the current review not only evaluates the current literature on potential approaches to
regenerate lost hair cells in the adult mammalian cochlea but also discusses re-innervation
as that is crucial for functional improvement. For the purpose of this review, we focus on
non-genetic hearing loss, considering that other treatment approaches are more likely to be
effective in genetic hearing loss, in particular, gene therapy.

2. Hearing Loss and Its Pathophysiology
2.1. Age-Related Hearing Loss

Age-related hearing loss (presbyacusis) is the most common sensory impairment in
the elderly, and with aging of the population, the number of affected people is expected
to rise rapidly [26]. Several age-related structural changes have been described, including
age-related hair cell loss, SGN loss and atrophy of the stria vascularis [27]. Over the last
decade, studies have also shown loss of inner hair cell (IHC) synapses and their afferent
fibers [28,29].

Based on histopathology and patterns of hearing loss, Schuknecht et al. classified four
main types of presbyacusis, including (1) sensory (hair cell loss at basal end of cochlea),
(2) strial or metabolic (correlated to atrophy in the stria vascularis), (3) neural (as a result
of loss of cochlear neurons), and (4) cochlear conductive or mechanical presbyacusis (due
to stiffness of the basilar membrane) [29,30]. They concluded that the main contributing
factor to presbyacusis was atrophy of the stria vascularis. Interestingly, more recently, it
has been shown that presbyacusis is predominantly associated with damage to sensory
cells, rather than age-related changes in stria vascularis [31].

The precise mechanism underlying age-related degeneration of different cochlear
structures is unknown. Several contributing factors have been described, including inflam-
matory changes [32], genetic factors [33] and oxidative stress [34]. Although age-related
changes are multifactorial, noise exposure is thought to be the major contributing factor of
presbyacusis [31,35].

2.2. Noise-Induced Hearing Loss

NIHL mainly causes damage to and loss of outer hair cells (OHCs). Depending on
the duration and intensity of the noise exposure, there may be IHC loss as well. Three
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mechanisms of noise-induced cochlear damage can be distinguished: (1) mechanical de-
struction by short exposure to extreme noise intensities causing direct trauma; (2) metabolic
decompensation after noise exposure, which occurs over a longer period of time in high
intensities; and/or (3) IHC synaptopathy leading to loss of SGNs [11,36,37]. Excessive
noise stimulation causes the formation of free radicals or reactive oxygen species (ROS), as
well as glutamate excitotoxicity, followed by activation of signaling pathways leading to
cell death [38]. For an extensive review on cellular mechanisms involved in NIHL, see [36].

Apart from the loss of sensory cells, it has been widely investigated that noise exposure
causes permanent damage to the ribbon synapses of the IHCs, also referred to as cochlear
synaptopathy [37,39,40]. This leads to supra-threshold hearing loss, i.e., no measurable
increase in hearing threshold but worse hearing at supra-threshold levels (including re-
duced speech perception in noise, hyperacusis) and tinnitus, also known as hidden hearing
loss [37,40–42].

2.3. Ototoxicity

Ototoxicity is a pharmacological adverse reaction that causes irreversible damage
to the hair cells in cochlear and vestibular tissue, leading to their functional loss. With
over a million cases of profound ototoxicity-induced hearing loss annually worldwide,
this is a major problem [43]. There are more than 600 categories of drugs registered with
ototoxic side effects, and this number is still increasing [44]. The two most important
ototoxic drugs are aminoglycosides (including gentamicin and kanamycin) and platinum-
based antineoplastic agents (such as cisplatin, oxaliplatin and carboplatin). Numerous
studies have been performed evaluating the effects of ototoxicity on the cochlea (for review,
see [45]). Ototoxicity causes mainly OHC loss in a basal to apical gradient, thus associated
with especially high frequency hearing loss. With higher concentrations or persistent
exposure, ototoxic damage progresses to IHC loss as well. The mechanism by which
ototoxic drugs affect the cochlea has not yet been fully elucidated. It has been suggested
that oxidative stress induces apoptosis and necrosis in hair cells and marginal cells in the
stria vascularis (for a review, see [46]). Ototoxins enter cells via active transport [47–50].
It has been recently shown that inflammation precedes oxidative stress and excessive
production of ROS; therefore, it has been suggested that the inflammatory response triggers
cell death [51]. After apoptosis of hair cells, the cell is extruded from the sensory epithelium
and supporting cells phagocytize the remaining cell fragments. Supporting cells form a
scar and preserve the epithelial cytoarchitecture and the integrity of the barrier of the organ
of Corti [52–54]. Hair cell loss may occur rapidly (within days) after ototoxic exposure;
following IHC loss, SGNs first become smaller and subsequently progressive SGN loss
occurs [55]. The loss of SGNs has been associated with discontinued neurotrophic support
from the organ of Corti [56,57].

Hair cell loss may occur rapidly (within days) after ototoxic exposure; following
IHC loss, SGNs first become smaller and subsequently progressive SGN loss occurs [55].
Previous studies on ototoxicity have mainly focused on ototoxicity-induced hair cell loss
and considered neuronal loss to be a secondary consequence caused by loss of trophic
support [58–63]. However, as in NIHL, direct ototoxicity-induced damage to the synapse
and SGNs may occur, as well as ototoxicity-induced swelling of the nerve [64–67].

3. Cochlear Development and Its Associated Pathways

For treatment approaches to regenerate lost hair cells after trauma, knowledge of inner
ear development and pathways involved in hair cell and SGN formation is essential. For
this section, we will focus on the development of both the human (in gestational weeks,
GW) and the mouse cochlea (in embryonic days, E).

Around GW6 [68] or E8-9 [69], the otocyst starts to develop from the otic placode. In
the subsequent period (GW6-10 or E10.5-12.5), the cochlear duct develops, starting as an
evagination of the otocyst [68–71]. In this process, several cells detach and form neuroblasts
and SGN (and vestibular ganglion neurons, not further discussed in this review) precursors.
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Initial afferent innervation in the basal region of the cochlea is visible from GW8 [72] (E9.5),
and proliferation and differentiation of SGN occurs in the basal-to-apical direction [72,73].
At GW12 (E13.5), SGNs extend their peripheral projections to the entire nascent organ
of Corti [72,73]. This occurs when the first mature hair cells are visible in the basal turn
(E13.5; refs. [70,71]) and when the scala vestibuli and scala tympani open and fill with fluid.
The spiral form of the cochlea is finalized between GW10 and 11, reaching 2.5 turns [68].
Hair cells first start to differentiate from supporting cells around GW10 or E13.5 and then
start to express their associated markers, such as Atoh1 [68,71]. After this, in the following
days (in mice) or weeks (in humans), the cochlea matures from base to apex, following a
spatiotemporal gradient of growth and inhibitory factors. Thus, the development of the
basal turn is always ahead of the apical turn, and hair cell precursors that reside apically
remain undifferentiated for a longer period than basally located precursors [71]. At GW14
(~E14.5), the last cells complete the cell cycle exit, and the characteristic organization of
hair cells is visible: one row of IHCs and three rows of OHCs [68,70,71]. SGN neurons
change morphology from branched to unbranched endings upon HC differentiation and
maturation, forming radial bundles. At E18.5, their fibers extend throughout the whole
basal OHC layer and by birth throughout the whole cochlea [73]. The cochlea further
matures and differentiates up until GW19-20, when auditory function in humans starts [68].
For an extensive review on the development of mammalian cochlear development, see [74],
and for a review on the development of afferent innervation, see [73,75,76].

3.1. Hair Cell Differentiation

Several important signaling pathways control hair cell development, of which the
most important are Wnt, Notch, Sonic hedgehog (Shh), fibroblast growth factor (FGF) and
bone morphogenetic proteins (BMP)/transforming growth factor β (TGFβ). These are
further discussed below.

3.1.1. Wnt and Notch Signaling

Wnt and Notch signaling in cochlear development have been extensively reviewed
before [77,78]. Here, we discuss these pathways, as they are important for normal cochlear
development and thus also for the regeneration of hair cells [79,80]. The canonical Wnt/β-
catenin pathway plays an important role in fate determination, proliferation and differenti-
ation of hair cells. The non-canonical planar cell polarity pathway (WNT-PCP) is important
for cochlear lengthening and hair cell polarization, and it is the driver of stereociliary bun-
dle formation and organization [77]. Activation of the canonical Wnt pathway leads to Sox2
expression and promotes cell proliferation [81]. In the early stages of cochlear development,
Sox2 is present in all precursor cells [22,78] but is gradually downregulated in cells that do
not retain supporting cell fate [82]. Through Wnt pathway activation, unphosphorylated
β-catenin binds to TCF/LEF in the nucleus, causing transcription of Wnt target genes
and expression of Atoh1 [83]. Consequently, Notch signaling is downregulated, and these
cells differentiate into hair cells [78]. In a process called lateral inhibition, increased Atoh1
expression in hair cell progenitors causes the expression of Notch ligands, which bind to
Notch receptors in neighboring cells. Activation of Hes1 and Hes5 in these cells antagonizes
Atoh1 expression, leading to determination of their supporting cell fate [78]. These support-
ing cells activate Notch, which causes surrounding cells to attain their supporting cell fate,
also known as lateral induction [78].

3.1.2. Sonic Hedgehog (Shh) Signaling

Shh signaling has mainly been investigated in mouse and zebrafish studies [71,79,84–86].
Shh expression prevents hair cell differentiation during development. Shh signaling is initi-
ated in the SGNs at E11.75. Through a decreasing Shh signaling gradient (from E13-15.5),
starting at the base of the cochlea, hair cells start to differentiate, leaving apical prosensory
cells undifferentiated at first [71,84]. Shh also inhibits retinoblastoma protein (Rb1), which,
when active, is involved in cell cycle exit and, thus, final differentiation of hair cells [87]. It
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has been shown that mice that lack Shh have severe disturbances in cochlear development,
such as the absence of the cochlear duct and undeveloped semicircular canals and en-
dolymphatic duct [71,85]. Loss of Shh from developing SGNs during cochlear development
causes premature hair cell differentiation, which impairs cochlear lengthening [86,88].

3.1.3. Fibroblast Growth Factor (FGF) Signaling

The signaling of FGF is also important for cochlear development. It induces the de-
velopment of the otic placode and the otic vesicle [89–91]. FGF receptors are expressed in
the ventral part of the otic vesicle, where the cochlea will develop, both in the developing
sensory epithelium and in adjacent mesenchymal cells [92,93]. Different FGF members reg-
ulate the development of non-sensory epithelium, hair cells, and pillar cell differentiation.
FGF receptor expression is strong at the beginning of cochlear development and declines as
the cochlea matures, where gradual attenuation of FGF is important for cell cycle exit and
hair cell differentiation [89,92]. Depending on the localization of cells that express the FGF
receptor, cochlear lengthening is also influenced by FGF, as has been shown in studies with
FGF receptor deletions [89,93]. For a detailed description of FGF signaling in the mouse
cochlea, see [94].

3.1.4. Bone Morphogenetic Protein (BMP) and Tissue Growth Factor β (TGFβ) Signaling

BMPs belong to the TGFβ superfamily. In humans, mutations in TGFβ or its receptor
are associated with hearing loss, such as in Loeys-Dietz syndrome and Ehler-Danlos syn-
drome [95,96]. In mice, BMPs are already expressed in early cochlear development from E9
onwards, together—but not always co-expressed—with the lunatic fringe (Lfng) [97–100].
The BMP pathway is necessary for prosensory domain specification and outer sulcus
differentiation through phosphorylated SMAD expression [100,101]. Conditional knock-
out of BMP receptors in the inner ear causes lack of cochlear development and lack of
differentiation of cells in the prosensory domain, hallmarked by the absence of P27kip
expression [100]. In developing chicks, BMP signaling inhibition by Noggin causes an
increased size of sensory patches without changes in cell proliferation in E3.5-4 [99] but a
reduction in hair cells and supporting cell counts in E15-16 [96]. On the other hand, the
addition of exogenous BMP4 in developing chick otic vesicles in vitro showed a reduction
in sensory patches and a marked decline in cell proliferation in E3.5-4 [99] but an increase
in hair cell counts in E15-16 [97]. High concentrations of a BMP agonist downregulate Lfng
and FGF-10 expression in cochlear cultures [100]. Considering this for optimal hair cell
regeneration, combining BMP activation in the early stage of development and BMP inhi-
bition in the later stage might be necessary, corresponding with the previously published
protocol in inner ear organoid generation from induced pluripotent stem cells [102].

3.1.5. The Role of Micro-RNAs in Cochlear Development

In addition to signaling pathways, micro-RNAs (miRs) play an important role in
cochlear development. miRs are non-coding (very small strings) of RNA that play important
roles in post-transcriptional regulation of gene expression. miR are first expressed in
sensory neurons from day E12.5 and in hair cells from day E14.5 in hair cells [103]. They
depend on Neurog1 and Atoh1 expression, respectively. miR follows a basal-apical gradient
during maturation, which also marks cochlear development in several other signaling
pathways [103,104]. Knock-out of miR during several stages of cochlear development
showed impairments in hair cell development, such as hair cell death after defective
hair cell bundle morphology [104]. Well studied miR are miR-183, expressed during
sensory neuron and hair cell development, miR-96 of which a mutation causes progressive
hearing loss in humans [103,104], and miR-124, which controls the Wnt pathway through
manipulation of secreted frizzled-related protein 4 (Sfrp4) and Sfrp5 [105]. In this review,
we will not further discuss miR in hair cell regeneration because our focus is on signaling
pathway regulation.
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In summary, hair cell differentiation is dependent on many factors and pathways
that are up- or downregulated during cochlear maturation in a base-to-apex gradient.
We describe the most important drivers: Wnt, Notch, Shh, FGF, and BMP/TGFβ, which
through their role in development, are important in research on hair cell regeneration in
the cochlea after damage.

3.2. Spiral Ganglion Neuron Differentiation

Separation of the anterior and posterior region of the otocyst is directed by Retinoic
acid (RA), and opposite gradients of Wnt and Shh assist the assignment of the proneurosen-
sory region in the anterior (ventral) part [73]. SGN formation and differentiation occur in
the anterior region. Lfng, Six1, Eya1 and Sox2 are important markers in this region [73].
Both Neurogenin (Ngn-1) and Neurod1 expression are important for neurogenic matura-
tion, which occurs through negative feedback on Sox2 by these markers. SGN development
is driven by neurotrophins secreted by the otic epithelium, cochlear Schwann cells and
supporting cells (and in later stages, SGN cells). The most important neurotrophins are
BDNF and neurotrophin-3 (NT-3), which are linked with transcription factors neuroD1,
Eya and Brn3a. In the developing cochlea, Bdnf expression migrates from supporting cells
in the apex to hair cells in the base, and NT-3 expression is expressed in supporting cells
but later expands to IHCs. Neurotrophins activate TrkB and TrkC receptors to mediate
SGN survival, and they are expressed in opposite gradients [73,106]. The absence of NT-3
expression causes massive neuronal loss in the base, while the absence of Bdnf leads to a
relatively small reduction in the apex (reviewed in [56,106]). The final location of SGNs and
their correct locational outgrowth are highly dependent on several pathways. Semaphorins,
POU3f4 (through ephrins), plexins/neuropilin, slits and netrin (receptors) are important
for axon guidance and target innervation by limiting axonal outgrowth, ensuring that
they do not overshoot beyond OHC layers. Directional growth is mediated by Prox1 and
R-spondin2. Ephrins (B2 and A4) regulate neurite outgrowth in the cochlear epithelium
through ERK signaling and are involved in the formation of radial bundles of SGNs. Finally,
pillar cells—driven by FGFR3—divide the IHC from OHC, guarding which SGNs can cross
to the OHC layer and which cannot [73]. SGN formation and differentiation occur near
parallel to hair cell development and differentiation. As HC differentiation starts later than
SGN development, it is influenced by this process, among others, by Shh [71]. At first,
through random action potentials, hair cells form synapses with several SGNs, depending
on the location within the cochlea. SGN connected to HC form radial bundles that project
to the central nervous system. Postnatally, 50% of the developed synapses are reduced
through synaptic pruning. The remaining synapses further mature, now called ribbon
synapses, mediated by thyroid hormones, enabling calcium signaling and neurotransmitter
release. While during development, two types of SGN (type-I and type-II) are connected to
both IHC and OHC, perinatally, SGN-type-II synapses disconnect from IHC and conversely
SGN-type-I from OHC, enabling SGN-type-II to connect to multiple OHCs. This leaves
IHC connected to type-I (~95%) and OHC to type-II SGN (reviewed in [73]).

In summary, final SGN formation and location are reached through four important
steps. (1) SGN development is initiated by neurotrophins BDNF and NT-3, secreted by
cochlear Schwann cells and supporting cells. (2) Neurite outgrowth and axon guidance
to sensory epithelium, driven by ephrins through POU3f4, semaphorins (Sema3a-g), neu-
ropilin/plexins, slits (robo receptors) and netrin (receptors). (3) SGN innervation of HCs,
including ribbon synapse formation, driven by thyroid hormones (calcium signaling).
(4) Synaptic pruning, mostly postnatally, and disconnection/retraction of redundant SGN
connections to IHCs and OHCs. For a detailed description of the signaling pathways and
transcription factors controlling SGN differentiation, see [76].

4. Target Cells for Potential Regenerative Treatment

Of special interest in cochlear development and hair cell regeneration are several
modulators of Wnt signaling: members of the Lgr family (mainly Lgr4, -5 and -6). Lgrs are
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stem cell markers expressed in many types of adult stem cells and have gained attention
through their potential in regenerative therapies [107,108]. In the cochlea, cells express-
ing Lgr5 or Lgr6 have the capacity to divide and differentiate into hair cells in vitro or
in vivo [20,22,109]. Of all Lgrs, Lgr5 expression is the most well described, as a mouse
strain harbors an Lgr5-EGFP-IRES-creERT2 knock-in allele that allows for easy visualiza-
tion of Lgr5-positive cells with a GFP reporter system [107]. This mouse model is widely
used in studies on the regenerative capacity of the cochlea [23,82,109–111]. At E17, Lgr5 is
expressed in the whole organ of Corti, in all hair cells and supporting cells from base to
apex. During further development, Lgr5 expression gradually decreases, and in the first
week of birth (P1), Lgr5 is expressed in the greater epithelial ridge (GER), the third row
of Deiters’ cells, inner border cells and inner pillar cells [22,23,82]. From then, expression
further decreases, and at P30, Lgr5 is restricted to the third row of Deiters’ cells and, to a
lesser extent, the inner pillar cells and expression of Lgr5 is then stable up until at least
P100 [22,23,82,110]. In early development of the mouse cochlea, Lgr4 is expressed in the
pro-sensory domain, non-sensory domain and SGNs of the developing cochlea. At E17,
Lgr4 expression is particularly strong in differentiating hair cells, where it is co-expressed
in Lgr5-positive cells [23]. In the mature cochlea (from P21), Lgr4 is restricted to all three
rows of Deiters’ cells [23]. Lgr6 is expressed in the inner border cells and inner pillar cells
in the developing cochlea until P15, after which it is only expressed in inner border cells at
P20 and decreases until it is no longer expressed at P30 [20].

Another marker used to label progenitor cells is Lfng, a type of Fringe gene involved
in cochlear development. It is already expressed in an early stage of development in a
base-to-apical gradient in the developing prosensory domain in the region where later
hair cell differentiation takes place [69]. Lfng is first expressed in both supporting cells
(at Kölliker’s organ and the lateral border of the developing organ of Corti) and in the
area where hair cells differentiate [100,112]. In the adult cochlea (P60), Lfng is restricted to
supporting cells only, including the inner phalangeal cells, pillar cells, and all three rows of
Deiters’ cells [100,112,113].

The epithelial cellular adhesion molecule EpCAM (or CD326) is a protein that partici-
pates in cell–cell adhesion, proliferation and maintenance of undifferentiated tissues, as
well as regulation of differentiation, migration and invasion [114]. In the cochlear duct, it
is expressed in all sensory and non-sensory epithelial cells during development [115]. It
is used in vitro as a marker to isolate hair cell progenitors from the prosensory domain of
neonatal and adult mice and the fetal human cochlea [115,116].

Sox2 is a transcription factor that is involved in neurogenesis and in the proliferation
and maintenance of stem cells, including neural stem cells [74]. Sox2 is required for the
development of the sensory domain of the inner ear, and it is expressed in embryonic
stages in hair cells, adjacent supporting cells and the GER [117,118]. Sox2 marks sensory
progenitors early in inner ear development and acts upstream of the Atoh1 gene during
sensory organ formation [119,120]. Postnatally, it is expressed in all supporting cells [19,22]
and in the mature cochlea is present in border cells, inner phalangeal cells, inner and outer
pillar cells, Deiters’ cells and Hensen’s cells [21,121].

In summary, Lgr5, Lfng, EpCAM and Sox2 are expressed in the adult cochlea, and
they represent potential target cells for future regenerative therapies. An overview of
the organization of the adult cochlea and the markers of supporting cells with stem cell
properties is listed in Table 1 and shown schematically in Figure 1.
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Table 1. Markers of supporting cells with stem cell properties. Abbreviations: Border cell (BC),
Deiters’ cell (DC), 3rd row of Deiters’ cell (DC3), Greater epithelial ridge (GER), Inner hair cell (IHC),
Inner border cell (IBC), Inner pillar cell (IPC), Inner phalangeal cell (IPhC), Hensen cell (HeC), Lesser
epithelial ridge (LER), Outer hair cell (OHC), Outer pillar cell (OPC), Reissner’s membrane (RM),
Spiral ganglion neuron (SGN). Age stages (mouse) Embryonic/fetal: Before birth, Postnatal: P1–P23,
Adolescent: P23+1–P60, Mature adult: >P60.

Gene/
Protein Species Stage Location in Cochlea per Stage References

EpCAM Mouse Mature adult RM, Cochlear HCs, SCs [116]

Human Fetal Chochlear duct [115,116]

Lfng Mouse Postnatal DC3 [101]
Mature adult IphC, IPC, OPC, DC [113]

Lgr4 Mouse Embryonic Cochlear duct and SGN [23]
Postnatal DCs and IPCs [23]

Adolescent DCs [23]

Lgr5 Mouse Embryonic DC3, IPCs, IphCs, and the lateral GER [22,82]
Postnatal IPC, GER, DC3, IPHC [20,22,77,82,122]

Adolescent IPCs, DC3, IBC [82,110]
Mature adult DC3, IPCs [22,110]

Deafened (p30) Survival in DC3 only [110]

Human * Fetal Prosensory doman, LER, SCs [115]

Lgr6 Mouse Embryonic IPCs [20]
Postnatal IPCs, IBCs (disappears at p30) [20,22]

Sox2 Mouse Embryonic HCs, adjacent supporting cells and GER [20,120]
Postnatal SCs [22,82]

Mature adult BCs, IphCs, IPC, OPC, DCs, HeCs [21,121]
Deafened (p120) BCs, IphCs, IPC, OPC, DCs, HeCs [21,121]

Human Fetal Organ of Corti [115]

* data from mRNA expression.
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5. Regenerative Potential of the Cochlea
5.1. Non-Mammalian Vertebrates

Hair cell regeneration is readily observed in non-mammalian vertebrates, especially
birds and fish. Understanding the differential response to damage is important for making
the translation to mammalian regeneration. In the avian cochlea, regeneration of hair cells
leading to recovery of function is observed 1 or 2 months after ototoxic or noise-induced
damage [13]. Avian cochlear supporting cells have progenitor cell-like characteristics
and express progenitor markers, including Sox2, which directly activate Atoh1 to induce
hair cell fate [123]. After ototoxicity, new hair cells are generated from Sox2+ supporting
cells, with preservation of the total number of supporting cells [124]. Supporting cells
either mitotically divide or directly transdifferentiate to produce new hair cells [12]. Direct
transdifferentiation from supporting cells to hair cells has been observed as early as 15 h
after damage with gentamicin, reaching complete maturation 2 days after damage. In
contrast, mitotic proliferation of supporting cells occurs 2 to 3 days after damage, and they
continue to proliferate for 3 weeks [12]. In birds, two distinct groups of supporting cells
give rise to tall (similar to IHCs) or short (similar to OHCs) hair cells and have distinct gene
expression patterns [125]. Comparative analysis between supporting cells in birds and
mammals should further clarify to which mammalian supporting cells these two distinct
supporting cell populations in bird cochlea relate.

Transcriptomic analysis in ototoxically damaged cochlea has allowed us to find up-
or downregulated genes that might contribute to the signaling during regeneration. In
neonatal chickens treated with gentamicin to induce complete hair cell loss, transcriptomic
analysis revealed that the Wnt, Notch, FGF and BMP/TGFβ signaling pathways were
differentially expressed [126,127]. This confirms that these pathways control avian inner
ear regeneration, either by up- or downregulating genes [126,127]. In line with these
findings, it has been shown that manipulation of Notch, Wnt, BMP/TGFβ or FGF signaling
pathways strongly upregulate hair cell regeneration after hair cell death in avian cochlear
explants [126–128]. Moreover, Bai et al. showed that simultaneously inhibiting the Notch
(with DAPT) and BMP (with Noggin) signaling pathways and activating the Wnt (with LiCl)
signaling pathway has the strongest effect on promoting hair cell regeneration, suggesting
that combined strategies are most effective [128]. Further analysis of regenerating basilar
papilla in chicks revealed that supporting cells upregulate immune-related genes via
the JAK/STAT signaling pathway [127,129]. These studies confirmed that the JAK/SAT
signaling pathway is also necessary for hair cell regeneration [127,129].

The zebrafish is another experimental model for hair cell regeneration since it expresses
sensory hair cells not only in the inner ear but also on the skin in the lateral line organ. This
superficial presence of sensory hair cells allows for rapid drug-induced damage and live
imaging to assess cell death and/or regeneration in vivo [130,131]. Interestingly, 15–20 min
after ototoxic trauma, there is complete hair cell ablation in the skin of zebrafish with
complete regeneration of hair cells within 72 h after damage. In zebrafish, after ototoxicity,
surviving supporting cells produce new hair cells mainly by mitotic regeneration, and
regeneration-specific genes are upregulated as early as 30 min after ototoxicity [132–135].
These studies have revealed a distinctive population of cells in the zebrafish lateral line,
other than supporting cells, that act as quiescent stem cell reservoirs for non-homeostatic
regeneration [135,136].

As in avian inner ear regeneration, the Wnt, Notch, FGF and BMP signaling path-
ways also control supporting cell proliferation and differentiation into hair cells in ze-
brafish [132,136–138]. Notch, FGF and retinoic acid (RA) signaling are downregulated
1 h after ototoxicity-induced hair cell damage; BMP signaling is upregulated 1 h after
damage and Wnt signaling is activated only 5–12 h after damage in zebrafish [132,136,137].
Indeed, it has been demonstrated that the trigger to induce Wnt signaling is the downreg-
ulation of Notch signaling after hair cell loss in zebrafish [132,137]. Interestingly, it has
been concluded that the absence of immediate and transient Notch downregulation in
the mammalian cochlea is a crucial difference with the zebrafish lateral line and therefore
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temporary inhibition of Notch is potentially an important first step toward mammalian
hair cell regeneration [137].

Although the importance of Shh signaling in cochlear development has been studied in
mammals and non-mammals, little is known about the role of Shh in hair cell regeneration
after trauma in non-mammalian vertebrates. As in the mammalian cochlea, it potentially
plays a role in development and tonotopic organization [85,139].

5.2. Neonatal Mammalian Cochlea

The neonatal mouse cochlea possesses the capacity to produce new hair cells from
supporting cells, such as inner pillar cells and Deiters’ cells, by targeted Atoh1 ectopic
expression [140,141]. For a review on reprogramming transcription factors (e.g., Atoh1,
Gata3, POUF1) as a tool to regenerate sensory hair cells, see [142]. A subtype of supporting
cells that express Lgr5 has progenitor potential and can regenerate into new hair cells
in vitro and in vivo [17–19,80,122,143–147]. After trauma to the cochlea, neonatal support-
ing cells have been shown to survive and even retain regenerative potential in vitro, ex vivo
(cochlear explants) and in vivo [17,109,146,148]. Further, it has recently been described that
spontaneous regeneration of hair cells in damaged neonatal cochlea produces cells with
markers for innervated IHCs and OHCs [149]. Lgr5-expressing supporting cells mainly
generate outer hair cells after both IHC and OHC loss [17]. Moreover, it has been shown
that Lgr5+ cells show a greater capacity for OHC regeneration after ototoxic trauma com-
pared to Lgr5+ cells that were not stressed with ototoxic medication [145]. Interestingly,
transcriptomic analysis of neonatal mouse cochleae after gentamicin-induced trauma re-
vealed that, similar to the avian cochlea, genes in the Wnt, Notch, FGF, BMP/TGFβ and
Shh signaling pathways were differentially expressed [150]. Moreover, neomycin-treated
cochlear explants showed upregulation of Fgf3 and Egfr (confirming these signaling path-
ways control inner ear regeneration in mammals) and downregulation of Hes1 and Hes5
(suggesting Notch signaling inhibition) besides a clear upregulation of genes involved
in the cell cycle, suggesting neomycin induced the proliferation of Lgr5+ cells [145]. It
has been demonstrated that inhibition of TGFβ signaling via overexpression of follistatin
alone or in combination with LIN28B allows supporting cells to re-enter the cell cycle and
produce mature hair cells after P5 in mice [151], suggesting inhibiting TGFβ signaling
might be crucial to adult hair cell regeneration. In recent studies, a new progenitor cell pop-
ulation has been described in the great epithelial ridge (GER) of the neonatal mouse cochlea;
after selective ablation of Lgr5+ SCs, cells in the GER mitotically divide and migrate to
repopulate the organ of Corti with mainly inner phalangeal cells [152].

5.3. Adult Mammalian Cochlea

Only a few studies have evaluated the regenerative capacity of the adult cochlea. It is
thought that the regenerative potential of the cochlea of adult mammals is less than that of
neonatal mammals. It has even been suggested that the regenerative capacity of supporting
cells is lost in the adult cochlea [18,21,153]. However, White et al. showed that although the
proliferative capacity of supporting cells is decreased with age, supporting cells from the
mature adult cochlea can generate hair cells in vitro [153]. It is known that supporting cells
are more resistant to an ototoxic event compared to hair cells, which is probably a result of
less uptake of aminoglycosides in supporting cells [154–157]. In line with this, it has been
shown that Sox2+ supporting cells survive 6–12 months after ototoxic trauma in mice, even
after complete ablation of IHCs and OHCs [14,21,121]. This is in line with what is shown in
NIHL, where Sox2+ supporting cells are also more resistant to noise trauma [148]. Several
other studies support the hypothesis that supporting cells with regenerative capacities
are present in the adult cochlea, which survives after trauma [158,159]. Moreover, we
have shown that Lgr5+ supporting cells survive severe ototoxic trauma in adult Lgr5GFP
transgenic mice [110]. Interestingly, cell proliferation has also been reported after high
concentrations of ototoxic medication in the mature cochlea [159]. Although these studies
suggest the availability of endogenous cochlear stem cells as targets for treatments, even
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after trauma, it was not determined if the surviving supporting cells had any progenitor
capacity (e.g., by evaluating if surviving supporting cells could produce hair cells in vitro).
More studies are needed to investigate whether and to what extent surviving supporting
cells, including Lgr5+ cells, maintain regenerative potential. For the assessment of their
potential for clinical applications, future studies are also necessary to unravel the long-term
effects of trauma on regenerative potential.

5.4. Epigenetic Barrier to Hair Cell Regeneration in Adult Cochlea

Epigenetic modifications during the development of the cochlea promote gene tran-
scription associated with regeneration in neonatal stages (for an overview, see [160,161]);
however, repressive complexes limit cochlear regeneration in adulthood [162–164]. Histone
modifications and DNA methylations are the main epigenetic modifications controlling
the access of transcription factors to chromatin. In Lgr5+ inner ear stem cells, modifica-
tions in histone H3K4me regulate proliferation and hair cell regeneration after neomycin
treatment [165]. Interestingly, inhibition of histone deacetylases (HDAC) with valproic
acid (VPA) has been shown to promote hair cell differentiation in vitro [109]. In addition,
inhibition of DNA methylation (with 5-azacytidine) has been shown to promote hair cell
differentiation in Sox2+ supporting cells in adult mice [166]. Lastly, inhibition of demethyla-
tion in histone H3K4me (with GSK-LSD1) significantly increased the number of supporting
cells that transdifferentiated to hair cells [162]. Thus, breaking the epigenetic barriers of the
endogenous cochlear stem cells might be the key to improving hair cell regeneration in the
adult cochlea.

6. Promoting Regeneration & Re-Innervation

As reviewed here, important signaling pathways (Wnt, Notch, Shh, FGF, BMP/TGFβ)
in the zebrafish lateral line and in the avian cochlea have been described to participate in
hair cell regeneration, and these same pathways are known to control otic development in
the mammalian cochlea. For that reason, in the last decade, novel strategies have focused
on targeting these signaling pathways in the mammalian cochlea to improve hair cell
regeneration.

6.1. Manipulating a Single Signaling Pathway

Several studies using neonatal mammalian cochlear explants have shown that inhi-
bition of Notch signaling by pharmacologic agents or gene therapy results in hair cell
regeneration from supporting cells [17,150,167–171]. Bai et al. showed that in undamaged
neonatal cochlear explants, inhibition of Notch generated increased OHC numbers. Treat-
ment of gentamicin-damaged neonatal cochlear explants with a Notch inhibitor (DAPT)
also resulted in newly formed (but disorganized) hair cells with no increased proliferation
rates, suggesting supporting cells directly transdifferentiated to hair cells to repopulate the
cochlea [168]. In addition, inhibition of Notch by a novel gamma-secretase inhibitor (CPD3)
showed increased OHCs by direct transdifferentiation of supporting cells, in bacterial-
induced ototoxicity in neonatal whole otic capsule explants [169]. In contrast, in neonatal
neomycin-damaged cochleae Notch inhibition (with Dibenzazepine or DAPT) also strongly
promoted supporting cell proliferation, in addition to hair cell regeneration, and upregu-
lated Wnt and Atoh mRNA expression [171,172]. Thus, CPD3 allowed hair cell formation
by direct transdifferentiation of Sox2+ and Pouf4+ cells, whereas Dibenzazepine and DAPT
induced hair cell formation by proliferation of Sox2+ supporting cells. It must be taken into
account that CPD3 was tested in otic capsule explants derived from P2 Wistar rats, while
Dibenzazepine and DAPT were tested in cochlear explants from P1 mice; these differences
in models used could also explain the promotion of proliferation of the last two drugs
versus CPD3; however, Dibenzazepine and DAPT were able to downregulate Notch and
activate Wnt signaling, thus promoting proliferation, and CPD3 showed downregulation of
Notch without Wnt activation, and no proliferation was observed. These results confirm the
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importance of activating the Wnt pathway in order to promote supporting cell proliferation
prior to or alongside hair cell differentiation by Notch inhibition.

In undamaged conditions, Wnt signaling activation promotes the proliferation of
supporting cells and the generation of new hair cells [19,150,173]. However, the production
of new hair cells after Wnt activation depends on the developmental stage in which they
are treated, as new hair cells could be generated at E13.5, but not at E16 in mouse cochlear
explants [173]. In neomycin-induced hair cell loss, Wnt activation alone is not able to
induce supporting cell proliferation or hair cell differentiation [171].

Increased hair cell regeneration has also been observed after in vitro induction of
the Shh signaling pathway in ototoxically damaged cochlear explants [87,147]. In P2
rat cochlear explants, Shh stimulation after neomycin-induced damage promoted the
proliferation of Sox2+ supporting cells and the generation of new hair cells [87]. In addition,
Lu et al. showed that Shh also triggers the proliferation of supporting cells and hair cell
regeneration [87]. They suggested that this was a result of an increase in cell cycle-entry
related genes mediated by the inhibition of retinoblastoma protein [87]. In line, Chen
et al. showed that activation of the Shh signaling pathway promoted supporting cell
proliferation and mitotic hair cell regeneration after neomycin-induced hair cell loss in
P1 mice [147]. Interestingly, Chen et al. showed that Shh activation promoted both Wnt
signaling activation and Notch signaling inhibition, hence supporting the hypothesis that
Wnt activation is crucial for hair cell regeneration [147]. Still, more studies are needed
to evaluate whether targeting Shh allows hearing recovery as well as de novo hair cell
production.

As we have observed here, manipulation of a single signaling pathway is probably
not sufficient to support cell proliferation and hair cell formation to allow clinically rel-
evant functional outcomes. More importantly, only two studies have evaluated hair cell
regeneration in adult specimens. In undamaged adult mouse cochleae, transient Notch
inhibition enabled supporting cells to proliferate after treatment with Atoh1 gene therapy
and efficiently transdifferentiate into hair cell-like cells in vitro [174]. In another report
using adult mice deafened by acoustic trauma, Notch inhibition alone promoted supporting
cell transdifferentiation to OHCs, but with slightly improved ABR thresholds of only 8 dB,
these animals were still functionally deaf [148].

6.2. Combined Strategies

Novel combinational strategies targeting endogenous progenitor cells, such as Lgr5+
cells, have shown promising results in promoting hair cell regeneration in vitro. For
example, a combination of Wnt activators and Notch inhibitors resulted in extensive sup-
porting cell proliferation and hair cell formation in neonatal cochlear explants damaged by
neomycin [142]. Samarajeewa et al. showed in E13.5 and P0 cochlear explants that Wnt
activation and Notch inhibition promoted supporting cell proliferation and hair cell forma-
tion [170]. Interestingly, Wu et al. showed that adding a Shh agonist to the treatment with
a Notch inhibitor (DAPT) and a Wnt agonist (QS11) after neomycin-induced damage in
neonatal cochlear explants improved supporting cell proliferation and hair cell production,
compared to manipulating only Notch and Wnt (or Notch alone) [171]. This supports not
only the hypothesis of the additional value of combined strategies but also shows the im-
portance of inhibiting the Shh pathway to improve hair cell regeneration. In addition, Wnt
activation (CHIR99021) in combination with inhibition of TGFβ signaling by an antibody
targeting the vascular endothelial growth factor receptors (regorafenib) showed potential
to induce hair cell regeneration in damaged neonatal cochlear explants [175]. Interestingly,
the combination of Wnt activation (CHIR99021) and FGF inhibition (Su5402) triggered
an increase in IHCs but at the expense of the inner pillar cell pool [173]. Moreover, Wnt
activation in combination with a histone deacetylase inhibitor, which promotes epigenetic
manipulation, as well as Notch inhibition, resulted in extensive supporting cell proliferation
and both IHC and OHC formation in neonatal cochlear explants [109].
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These observations suggest that manipulating a combination of key signaling path-
ways to target endogenous cochlear progenitors, including epigenetic manipulation, is a
potential therapeutic approach for hearing loss in adults. Unfortunately, this has mainly
been investigated in the neonatal cochlea or ex vivo and the functional effects are still un-
known. Although cochlear explants represent a plausible model for hair cell regeneration
in vitro, they lack the ability to measure functional outcomes to reveal whether the newly
formed hair cells are able to transmit sound in a physiological environment. For that, it is
important that we study the effect of these drugs in vivo using animal models and analyze
functional improvements, if any.

Whether and to what extent adult Lgr5+ supporting cells or other supporting cells
with progenitor capacity retain responsiveness to Wnt activation, Notch inhibition and/or
to the manipulation of other signaling pathways after deafening to improve supporting
cell proliferation and hair cell regeneration remains unresolved and should be the focus
of future research. To improve hearing, in particular in the case of severe hearing loss,
promotion of IHCs, and not only OHCs, is crucial since IHCs are the ones to transfer
the acoustical information to the auditory nerve, whereas OHCs ‘only’ act as amplifiers,
increasing sensitivity and frequency tuning. Therefore, further research in the adult cochlea
is needed to evaluate the efficacy of OHC and IHC regeneration.

6.3. Improving Functional Outcomes: Inner Hair Cell Re-Innervation after Cochlear Trauma

To improve the restoration of hearing in deafened patients, re-innervation of newly
generated hair cells and re-formation of the lost synaptic connections, known as ribbon
synapses, are necessary. By focusing the efforts on a multi-targeted approach, the chances
of restoring hearing after cochlear damage are potentially higher, giving the patient a better
opportunity for recovery.

Protection of SGNs by neurotrophins after cochlear damage has been widely studied
(for review, see [56]). The four types of neurotrophin nerve growth factor (NGF), BDNF,
NT-3, and NT-4/5 participate during cochlear development, and exogenous treatment has
been shown to ameliorate SGN loss and improve the number of ribbon synapses after
cochlear damage in animal studies [176–181]. Other novel therapies involve drugs targeting
different molecules in the cochlea, such as the repulsive guidance molecule (RGMa) with
antibodies or using Trk receptor agonists; these strategies have been shown to promote
neuronal survival, restore synapse after damage and even restore hearing to control levels in
adult mice [182–184]. Another candidate to reverse cochlear synaptopathy is zoledronate, a
bisphosphonate used in the clinic to treat osteoporosis and related bone diseases, which has
also been shown to reverse the damage caused by noise exposure and promote the recovery
of hearing in adult mice [185]. Finally, treatment with exogenous insulin-like growth factor
(IGF) restored the number of ribbon synapses in the cochlear explants after exitotoxic
trauma [186]. Interestingly, in patients with sudden deafness, IGF promoted hearing
restoration (10 dB improvement; refs. [187,188]. Moreover, it has been recently shown that
overexpression of neuritin (a gene induced by NT-3 and BDNF; ref. [189]) is able to mitigate
the damage to hair cells and even promote supporting cells to transdifferentiate to hair
cells after gentamycin-induced damage to cochlear explants derived from adult mice [190],
so combining these treatments could prove successful not only to help re-innervation
but also to promote hair cell regeneration. The additional value of adding neurotrophins
(or other neuroprotective/neuropromotive drug) to the regenerative treatments targeting
endogenous cochlear progenitor cells on functional outcomes needs to be further explored.

7. Human Inner Ear Regeneration and Clinical Trials Targeting Endogenous
Stem Cells

In humans, there is little evidence of inner ear regeneration. Three-dimensional
cultures have allowed the expansion and experimentation of human-derived cochlear
organoids. Roccio et al. showed that fetal-derived post-mitotic EpCAM+ cells were able
to proliferate, expand and generate hair cells in vitro. After differentiation with a Wnt
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activator (GSK3β inhibitor CHIR99021) and a γ-secretase (Notch) inhibitor (LY411575),
there was no increase in the number of hair cells generated compared to expansion medium
alone, suggesting there was some spontaneous transdifferentiation in hair-cell-like cells in
the expansion medium conditions [115].

McLean et al. showed for the first time that human adult-derived inner ear organoids
were readily generated using the same protocol as for growing mouse cochlear organoids,
which include Wnt agonists and Notch inhibitors, an extracellular matrix (e.g., Matrigel, to
produce a 3D environment to sustain their growth) and growth factors (e.g., insulin-like
growth factor, epidermal growth factor, fibroblast growth factor) [109]. These organoids
have differentiation potential and can generate hair cells in vitro. The tissue was collected
from only one patient, so further experiments are needed to explore the conditions for
growing human (adult)-derived inner ear organoids.

In another study using inner ear tissue from adult patients, Senn et al. showed that
adult-derived cochlear and utricular spheres grew in vitro [191]. However, they showed
that only 1 in 10 postmortem cochleae could generate organoids, which was less successful
compared to the vestibular epithelium-derived organoids (success rate > 50%). This is in
line with the fact that the vestibular system has more regenerative capacity than the cochlea
in adulthood [16]. The low yield of organoid generation achieved in the Senn et al. study
could be explained by the absence of the key Wnt agonists and Notch inhibitors and the
lack of a 3D environment in their culture conditions.

Although research on human inner ear regeneration has just started, some researchers
have initiated clinical trials targeting either cochlear endogenous progenitor cells or rib-
bon synapses as a treatment for SNHL in adults (for an extended review on this topic,
see [192,193]). The REGAIN clinical trial (EudraCT number 2016-004544-10) reported pos-
itive results from a phase I multiple ascending dose, open-label safety study of a novel
gamma-secretase (Notch) inhibitor (LY3056480) in 15 patients with mild to moderate SNHL.
The REGAIN clinical trial has continued to treat patients with SNHL and will evaluate pure
tone hearing thresholds and speech-in-noise perception. Furthermore, a pioneer clinical
trial has already shown that modulating Wnt (CHIR99021) and Notch (LY411575) signaling
pathways with a recently commercialized drug (FX322) in patients with SNHL improves
speech recognition in-quiet and in-noise 90 days after treatment [194]. Several clinical trials
are ongoing to test the efficacy of FX322 to improve hearing in stable, acquired, adult-onset
SNHL associated with noise-induced, idiopathic sudden, and age-related SNHL [192]. No
results have yet been published on these ongoing clinical trials. Still, further combined
strategies, as discussed above, are probably necessary to improve functional outcomes.

8. Conclusions and Future Perspectives

In this review, we have discussed the therapeutic potential of regenerating hair cells
from remaining endogenous cochlear stem cells for acquired non-genetic SNHL in the adult
cochlea. Current research mainly focuses on regeneration in the neonatal cochlea, where
different types of supporting cells, including Sox2+ and Lgr5+ supporting cells, allow
the opportunity for regeneration of hair cells. Whereas other reviews on the regenerative
potential in the adult cochlea focus on specific pathways regulating regeneration or epige-
netics [24,25], this review summarizes current knowledge and literature on regeneration in
the adult cochlea through the different types of supporting cells known and their regen-
erative potential. Furthermore, we propose a combined strategy for regeneration, based
on manipulation of key signaling pathways (e.g., Wnt, Notch, Shh, FGF, and BMP/TGFβ),
manipulation of epigenetic modifications to expose transcriptional sites, and for functional
effects, as well as treatments to protect and regenerate the SGNs and ribbon synapses
(including neurotrophic factors, and/or TrkB receptor agonists, anti-RGMa and IGF).

The pathways controlling development of the cochlea were described and studies on
hair cell development and regeneration in the cochlea were discussed. Knowledge of these
pathways poses a better understanding of the possibilities within regeneration, such as the
use of Wnt-, Shh-, FGF- agonists or Notch- and BMP- inhibitors. They target supporting
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cells with stem cell capacity, such as Lgr5- and Sox2-positive cells, and induce hair cell
differentiation. These supporting cells are the main drivers of hair cell regeneration in the
neonatal cochlea. However, the regenerative potential of the adult cochlea has yet to be
investigated, since it is of high importance in regenerative medicine, as onset of hearing
loss often occurs during adulthood. There is evidence that these endogenous cochlear
stem cells survive to a certain extent after noise exposure or ototoxicity, even in the adult
cochlea, which indicates the availability of target cells for future therapies. However, the
regenerative capacity of these stem cells after deafening needs to be further evaluated.

Several models can be used to test the efficacy and safety of the different drugs ma-
nipulating the key signaling pathways: in vivo approaches using zebrafish and different
rodent models, such as the Lgr5-GFP mouse model [19,22,110], or ex vivo cochlear ex-
plants [146,173,186]. These are also important models for investigating the mechanisms
of regeneration and the effects of possible modulators. Moreover, in vitro expansion
and culturing of supporting cells has been an increasing field of interest, now that sup-
porting cells can be easily isolated, for example, through sorting for surface markers,
such as EpCAM, or through GFP-sorting, isolating Lgr5-positive cells from the Lgr5-GFP
transgenic mouse [109,115]. From these isolated cells, 3D cultures can be generated into
inner ear organoids, which can be used to test many different protocols manipulating
the key signaling pathways in order to evaluate how to improve the regeneration of
hair cells [22,109,115,169,175]. Recently, a study investigating different drugs and small
molecules on these organoids using high-throughput screening led to insights into small
molecules that cause hair cell differentiation [175]. For translational purposes, human
cochlear organoids from the adult cochlea are important to use, but to grow them is still a
challenge and further research is needed to evaluate whether that can be improved. Adding
certain growth factors (e.g., IGF, epidermal growth factor, FGF, antioxidants, Wnt agonists)
can help to improve the growth of organoids.

After optimization of the differentiation protocol in organoids, functional outcomes can
be tested in animal models. Animal studies also allow us to evaluate the additional value of
neurotrophic factors, such as BDNF, NT-3 and/or TrkB receptor agonists, anti-RGMa, and
IGF to improve SGN survival and the regeneration of the ribbon synapse. Another model to
test functional connections between newly formed hair cells and SGNs could potentially be
microfluidic-based approaches, which can establish spatially controlled cellular structures
in the form of an organ-on-a-chip [195]. However, although this technology has been
used for many organs such as liver, heart and kidney for drug toxicity assays and even
multi-organ systems to test systemic or off-target effects, no inner ear-organ-on-a-chip has
been developed yet.

The first clinical trials modulating the Wnt and/or Notch pathways with novel com-
pounds are currently ongoing [109]. These trials use intratympanic injections; however,
while this route is clinically feasible, the optimal route of delivery from a therapeutic
perspective is still unknown. Intratympanic delivery has a risk of low yield of medical
compounds that enter the cochlea. Other delivery methods, such as intracochlear or sys-
temic (IV), have several disadvantages as well [196]. Intracochlear injections have a risk of
infection and increased cochlear trauma, causing further damage. For systemic application,
there is a risk of systemic side effects. Additionally, the blood-labyrinth barrier must be
overcome, and as a result of premature systemic clearance, only low concentrations reach
the cochlea. Minimizing invasiveness and maximizing the efficacy of treatment have to be
carefully balanced. More experimental methods are currently being investigated, such as
the application of gelatin sponge on the round window in the middle ear or the tympanic
membrane [197–199], microperforations of round window membrane to increase the rate
of diffusion into the cochlea [200] or magnetic targeting to improve the concentration of
systemically delivered compounds in the cochlea [201].

Future research should be directed toward the assessment of a tailor-made approach
for hair cell regeneration of the adult (damaged, mammalian) cochlea. Nevertheless, with
the current understanding of signaling pathways and epigenetics involved in development
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and regeneration of the cochlea, we propose a combined approach, implementing multiple
targets to induce regeneration of hair cells, re-innervation of newly generated hair cells and
re-formation of the lost synaptic connections, which is probably the key to success.
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