
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Jennifer Wootton Hill,
University of Toledo, United States

REVIEWED BY

Anita Morandi,
Integrated University Hospital Verona, Italy
Naseem Akhtar Qureshi,
Al-Falah University, India

*CORRESPONDENCE

Fariba Ahmadizar

f.ahmadizar@umcutrecht.nl

RECEIVED 28 May 2023
ACCEPTED 18 July 2023

PUBLISHED 18 August 2023

CITATION

Pledger SL and Ahmadizar F (2023) Gene-
environment interactions and the effect on
obesity risk in low and middle-income
countries: a scoping review.
Front. Endocrinol. 14:1230445.
doi: 10.3389/fendo.2023.1230445

COPYRIGHT

© 2023 Pledger and Ahmadizar. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Systematic Review

PUBLISHED 18 August 2023

DOI 10.3389/fendo.2023.1230445
Gene-environment interactions
and the effect on obesity risk in
low and middle-income
countries: a scoping review

Sophia L. Pledger1 and Fariba Ahmadizar2*

1Department of Epidemiology and Global Health, Julius Global Health, University Medical Center
Utrecht, Utrecht, Netherlands, 2Department of Data Science and Biostatistics, Julius Global Health,
University Medical Center Utrecht, Utrecht, Netherlands
Background: Obesity represents a major and preventable global health

challenge as a complex disease and a modifiable risk factor for developing

other non-communicable diseases. In recent years, obesity prevalence has risen

more rapidly in low- and middle-income countries (LMICs) compared to high-

income countries (HICs). Obesity traits are shown to be modulated by an

interplay of genetic and environmental factors such as unhealthy diet and

physical inactivity in studies from HICs focused on populations of European

descent; however, genetic heterogeneity and environmental differences prevent

the generalisation of study results to LMICs. Primary research investigating gene-

environment interactions (GxE) on obesity in LMICs is limited but expanding.

Synthesis of current research would provide an overview of the interactions

between genetic variants and environmental factors that underlie the obesity

epidemic and identify knowledge gaps for future studies.

Methods: Three databases were searched systematically using a combination of

keywords such as “genes”, “obesity”, “LMIC”, “diet”, and “physical activity” to find

all relevant observational studies published before November 2022.

Results: Eighteen of the 1,373 articles met the inclusion criteria, of which one was

a genome-wide association study (GWAS), thirteen used a candidate gene

approach, and five were assigned as genetic risk score studies. Statistically

significant findings were reported for 12 individual SNPs; however, most

studies were small-scale and without replication.

Conclusion: Although the results suggest significant GxE interactions on obesity

in LMICs, updated robust statistical techniques with more precise and

standardised exposure and outcome measurements are necessary for

translatable results. Future research should focus on improved quality

replication efforts, emphasising large-scale and long-term longitudinal study

designs using multi-ethnic GWAS.

KEYWORDS
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Introduction

Obesity is a major public health concern worldwide, with 39%

of adults over 18 classified as overweight and 13% obese, according

to the most recent global estimates by the Word Health

Organisation (WHO) (1). Previously considered a disease

primarily affecting high-income counties (HICs), obesity is

rapidly rising in developing countries with emerging economies.

These low- and middle-income countries (LMICs) are now home to

62% of the world’s overweight or obese population (2) and make up

the top 10 countries with the largest average annual increase in

obesity prevalence worldwide (3). In recent decades, LMICs have

faced an epidemiological transition, characterised by a shift in the

main drivers of mortality and morbidity from communicable

diseases to non-communicable diseases (NCDs), such as

cardiovascular disease, type 2 diabetes and cancer. As both a

major metabolic risk factor for NCD development and a disease

by itself, obesity represents a significant epidemiological burden (4).

While the prevention and treatment of obesity is a primary target

within global health systems, it poses significant challenges thanks

to its complexity as a disease and the contribution of a multifaceted

interplay of variables which underwrite its development.

Obesity, defined by the WHO as a body mass index (BMI) of ≥

30 kg/m2, is determined by a long-term positive imbalance in

energy intake versus energy expenditure, driven by an unhealthy

diet and reduced physical activity (1, 5). Changes in global trade,

dietary patterns, and declining physical activity have exposed

people living in developing countries to increasingly obesogenic

environments (2). The nutrition transition faced by LMICs has been

a significant contributor to the obesity epidemic, characterised by a

shift from traditional dietary habits to increased consumption of

energy-dense, nutrient-poor ultra-processed foods and beverages

(6). Rapid urbanisation and within-country rural-to-urban

migration have also led to decreased manual labour and active

transportation and increased sedentary behaviours (7, 8). Genetics

has also been shown to play a substantial role in an individual’s

susceptibility to obesity, with obesity heritability estimated to be

between 40-70% (9). The advent of genome-wide association
Abbreviations: BMI, body mass index; CALML3, calmodulin like 3; CARTPT,

cocaine and amphetamine-regulated transcript prepropeptide; CI, confidence

interval; CLOCK, circadian locomotor output cycles kaput; DQI-I, diet quality

index – international; FFMI, fat-free mass index; FLJ33534, putative

uncharacterized protein; FMI, fat mass index; FTO, fat mass and obesity-

associated; GRS, genetic risk score; GWAS, genome wide association study;

GxE, gene-environment interactions; HC, hip circumference; HDL, high density

lipoprotein; HIC, high income countries; LDL, low density lipoprotein; LMIC,

low- and middle-income countries; MC4R, melanocortin 4 receptor; MET,

metabolic equivalent of task; MUFA, monounsaturated fatty acids; NCD, non-

communicable disease; NEGR1, neuronal growth regulator 1; OR, odds ratio; PA,

physical activity; PUFA, polyunsaturated fatty acids; SES, socioeconomic status;

SAFA, saturated fatty acid; SNP, single nucleotide polymorphism; TMEM18,

transmembrane protein 18; UCP2, uncoupling protein 2; WC, waist

circumference; WHR, waist-hip ratio; WHtR, waist-to height ratio; %BF,

percentage body fat.
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studies (GWAS) accelerated the discovery of obesity-related

genetic loci and causative single nucleotide polymorphisms

(SNPs) but focussed on adult populations of European ancestry

(10, 11). The fat mass and obesity-associated (FTO) locus was the

first obesity-related GWAS-identified locus and remains the most

highly significant and robustly replicated (11, 12). The landmark

2007 European study initially found that per risk allele in the FTO

SNP rs9939609, there was a 1.32-fold increased odds of obesity (13).

The effect of FTO SNPs on obesity risk and the prevalence of FTO

risk alleles has since been shown to vary across different ethnic

populations (14), with the risk of obesity per risk allele increasing

1.25-fold in Asians and 1.15 in Indians (15, 16). Since the discovery

of FTO, an additional 1,100 independent genome-wide significant

loci have been identified; however, these combined explain only 6%

of inter-individual obesity variation (17).

As both a modifiable risk factor and a complex multifactorial

condition, obesity results from an interplay of genetic, lifestyle and

environmental factors (12). In parallel with GWAS, the number of

studies analysing gene-environment interactions (GxE) on obesity

risk has increased exponentially over the last decade; however, these

have focussed primarily on European populations living in

resource-rich settings (18). Recent research from HICs has

presented evidence that an individual’s genetic susceptibility to

obesity can be magnified or mitigated in response to environmental

factors, such as physical activity (19), alcohol consumption (20),

smoking (21), diet (22) and sleep (23). The generalisability of

findings from these studies to developing countries is restricted

due to the genetic heterogeneity found in different populations and

ethnic groups and differences in obesogenic environmental

exposure (24). So far, observational research focussing on people

from LMICs is limited but expanding. Synthesis of population-

based studies specifically investigating GxE on obesity in LMICs

could provide a more comprehensive understanding of this cause-

effect relationship in varied ethnic groups and potentially translate

into tailored region-specific lifestyle intervention strategies to

combat the global obesity epidemic. Therefore, we reviewed and

discussed the results of population-based studies from LMICs

investigating gene-lifestyle interactions and their effect on obesity.
Materials and methods

This study followed the Transparent Reporting of Systematic

Reviews and Meta-analyses (PRISMA) guidelines (25).
Eligibility criteria

The study inclusion and exclusion criteria for this review were

specified using the PECOS elements, as defined in Table 1. All

observational research articles investigating GxE on obesity risk in

adult human populations from LMICs were included. Articles were

also excluded if they focussed on specific populations, e.g., only

women or participants with comorbidities such as cancer,

cardiovascular or renal diseases, to reduce concerns for disease

labelling bias.
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Search strategy

Three electronic databases, PubMed, Embase and Scopus, were

systematically searched to identify observational studies relevant to

our research question and published before November 2022. The

search strategy was subdivided into three main groupings: studies in

LMICs, gene-environment interactions, and weight-related

outcomes. To define LMICs, articles were searched by title and

abstract for keywords such as ‘low, middle income’, ‘developing

country’ and ‘low resource’. To further increase capture, the names of

countries and geographical areas were included in the search syntax

according to the World Bank 2022 country classifications (26). To

include studies on gene-environment interactions, keywords were

used such as ‘gene-lifestyle’ or ‘GxE’ or terms relating to genetic

susceptibility such as ‘polygenic risk score’, ‘single nucleotide

polymorphism ’ and ‘epigenetic ’ in combination with

environmental exposure such as ‘diet’ or ‘physical activity’. Obesity

and all other weight-related anthropometric measurements such as

‘BMI’, ‘waist circumference’, ‘body fat percentage’, and ‘waist-hip

ratio’ were included in the final group. Animal, paediatric and

intervention studies were excluded. No filters based on language or

publication date were applied. Details of the search strategies

developed for each database can be found in Supplementary Table 1.

Data collection and extraction

Titles and abstracts of all articles identified via database

searches were screened based on the eligibility criteria previously

detailed using Endnote (v20.4.1) (27). Full-text articles were

assessed using Rayyan, with all reasons for exclusion documented

(28). Data extraction was also performed using a standardised form
Frontiers in Endocrinology 03
with the software programme Microsoft Excel 2016. For each

included study, the following information was extracted:
• First author, year of study, year of publication, country of

coverage, study objectives, and study design.

• Sample size, distribution of study population characteristics

(e.g., BMI, age, gender), obesity definition, environmental

or lifestyle exposure, genetic exposure (e.g., gene or SNP of

interest) and type of genetic analysis.

• Primary and secondary results (e.g., b coefficient or odds

ratio where possible) and overall conclusion.
Results

A total of 1,373 articles were identified, of which 744 were from

PubMed, 133 from Embase and 499 from Scopus. After removing 101

duplicate studies and 3 ineligible studies, titles and abstracts of 1,269

articles were screened, and 1,233 irrelevant studies were excluded. Full

texts were reviewed for 36 articles, of which 18 were excluded. Of these,

11 reported on populations which did not meet the inclusion or

exclusion criteria, 4 did not include an environmental interaction, 1

reported an irrelevant outcome, and 1 incorporated an interventional

design. Two studies by the same authors reported duplicate

populations, studies and outcomes but differed by cross-sectional

versus longitudinal analyses. The cross-sectional study was excluded

to ensure the strength of evidence was not overestimated, and themost

recent longitudinal study was included. In total, 18 studies met the

PECOS criteria and were included in this review (29–46). Figure 1

shows the PRISMA flow chart for the selection of studies.
TABLE 1 PECOS criteria for inclusion and exclusion of studies.

Inclusion criteria Exclusion criteria

Population Human participants
>18 years old
All genders and ethnicities
Populations in LMIC’s

Animal studies
Populations from HIC’s
Studies only including men or women
Paediatric studies
Participants with concomitant disease such as cancer, CVD disease,
hypertension, renal disease, neurological diseases.
Pregnant or breastfeeding women

Exposure Studies investigating gene-environment interactions on obesity risk.
Exposures were defined as a combination of genetic susceptibility (e.g.
genome-wide association studies, polygenic risk scores, genetic risk scores,
single nucleotide polymorphisms, epigenetics, and methylation) and lifestyle
and environmental factors (e.g. diet, smoking, physical activity).

Studies that did not include both exposures.

Comparison Any or no comparators. –

Outcome Obesity (as a disease or risk factor) as a binary outcome, or continuous
outcomes such as weight-related anthropometric measurements (BMI,
weight, waist circumference, waist-to-hip ratio) or body composition indices
(body fat percentage).

Studies which did not report the outcome of interest (namely studies only
reporting type 2 diabetes).

Study
Design

Observational studies, including case-control, cohort, or cross-sectional
studies.

Randomised, non-randomised or placebo-controlled trials.
BMI; body mass index, CVD; cardiovascular disease, HIC; high-income countries, LMIC; low- and middle-income countries.
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Characteristics of included studies

Populations and study designs
A summary of the key features of the 18 included studies is

presented in Tables 2, 3. In short, five studies were conducted in

South Asia (Pakistan, Sri Lanka and India), three studies in South-

East Asia (Indonesia), four studies in West Asia (Iran and Turkey),

five studies in China, and one study in Ghana. Studies from China

were assessed to ensure that study populations did not focus on very

high-income regions. Across all studies, ages ranged between 18 to

90 years, and sample sizes ranged from 71 to 14,131 participants.

Publication time ranged from 2012-2022. Most studies were cross-

sectional (n = 9) or case-control (n = 7) by design, with only two

cohort studies examining longitudinal associations.

Gene-environment exposures
Four articles investigated various environmental or lifestyle

factors and their genetic interactions on the risk of obesity. Five

studies assessed dietary interactions only, including nutritional

components and dietary patterns; three studies investigated the

effects of physical activity and sedentary behaviours; three studies
Frontiers in Endocrinology 04
looked at smoking and drinking statuses; two studies evaluated

sleep patterns, and two studies assessed urban-rural differences and

effects of within-country migration. Concerning genetic exposures,

there was only one GWAS included in this review. Four studies

assessed genetic risk through a genetic risk score (GRS), with the

number of included SNPs ranging from 2 to 9. Only two studies

assigned weights using an external independent study or genome-

wide meta-analyses, whilst the other three used an unweighted

approach. Thirteen studies used a candidate gene approach to

investigate 62 different SNPs, with risk alleles in genetic variants

of the FTO and melanocortin 4 receptor (MC4R) gene most

commonly studied. For only two studies, SNPs selection was

based on recent GWAS conducted in the same ancestral

population as the study participants, while the rest either relied

on GWAS of European ancestry or failed to justify.

Obesity outcomes
Anthropometric indices for obesity outcomes included (change

in) weight, BMI, waist circumference (WC), hip circumference

(HC), waist-hip ratio (WHR), waist-to-height ratio (WHtR), fat

mass index (FMI), fat-free mass index (FFMI), and percentage body
Articles identified via database
searches (n = 1,373)

• PubMed (n = 744)
• Embase (n = 133)
• Scopus (n = 499)

Duplicates removed (n = 101)
Articles marked as ineligible by

automation tools (n = 3)

Articles screened by title
(n = 1269)

Articles excluded
(n = 1233)

Full-text articles manually
assessed for eligibility

(n = 36)

Articles excluded (n = 18)
• Wrong population (n = 11)
• No environment interaction (n = 4)
• Wrong outcome (n = 1)
• Duplicate study, population and

outcome (n = 1)
• Intervention study (n = 1)

Studies included in review
(n = 18)
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FIGURE 1

PRISMA flow chart for the selection of studies.
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TABLE 2 Summary of included observational studies investigating gene-environment interactions on obesity.

RESULTS SECONDARY
RESULTS CONCLUSION

body weight
ere positively
ith total
ke. UCP2
ion was not
ith changes
take, dietary
n or PA

Energy intake was positively
correlated with body weight
and %BF changes and PA
was negatively correlated
with changes in WHR for
UCP2 GG genotypes but
not AA or GA genotypes.

UCP2-866G/A GG
genotypes are more
susceptible to the
association between
energy intake and
adiposity

rn dietary
re was
ith 2-fold
for carriers
es rs1121980,
rs8050136,
and

Significant interaction on
high Western dietary
pattern score and high GRS
group compared with low
GRS group on BMI increase
(mean BMI change: 1.04
±0.34 vs 2.26±0.36).

Western dietary patterns
increase the association
of FTO SNPs genetic
susceptibility with BMI
or WC increase.

enotypes
allele
were
different in
control
0.05)

rs12970134 GA/AA
genotypes and WC (≥90cm/
≥80cm M/F) had higher
obesity risk than GG
genotypes and lower WC.
No significant gene-
smoking or -drinking
interaction

MC4R SNPs were
associated with the risk
of obesity, but there was
no significant gene-
environment
interactions.

d OR52K1
were
orrelated
y, and OR2L8
L3 gene
negatively
ith obesity.

Higher OR4D1 gene score
smokers were at a greater
risk of obesity (OR = 2.67
[CI = 1.35, 5.30]), while
high CALML3 gene score
smokers had a lower risk of
obesity (OR= 0.25 [CI =
0.10, 0.62]).

Genetic variations in
olfactory pathway genes
were associated with
obesity, while smoking
modified this effect.
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AUTHORS
(YEAR)

STUDY
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STUDY OBJEC-
TIVES

SAMPLE SIZE
(FEMALE %;

AGE DISTRIBU-
TION; BMI DIS-
TRIBUTION)

OBESITY
DEFINITION

LIFESTYLE/ ENVI-
RONMENTAL
FACTORS

GENETIC
APPROACH PRIMAR

Muhammad
et al. (42)

Indonesia
Assess the role of
UCP2 gene variation
on energy intake, PA
and changes in
adiposity

323 (50.8%; 42.8 ±
9.7; 25.1 ± 5.0)

–

Dietary intake (total
energy, protein, fat and
carbohydrate intake)
and total PA (MET-
min/week)

Candidate genes

Changes in
and %BF w
associated
energy inta
gene variat
associated
in energy i
compositio

Cohort
UCP2 −866G/A

Hosseini-
Esfahani
et al. (34)

Iran
Explore the effect of
dietary patterns on
FTO SNPs and their
effect on BMI and
WC change.

4292 (56.8%; M
42.6 ± 14, F 40.4 ±
13)

–

Healthy (high levels of
vegetables, fish, poultry,
legumes, whole grains )
and Western dietary
patterns (high intake of
fast food, sweets, sugar
and red meat)

Weighted GRS of
6 SNPs (FTO
rs1421085,
rs1121980,
rs17817449,
rs8050136,
rs9939973 and
rs3751812

High West
pattern sco
associated
higher BM
of risk allel
rs1421085,
rs1781799
rs3751812

Cohort
No information on
overall BMI
distribution

Wei et al.
(44)

China Assess the
relationship between
3 MC4R SNPs, and
their interaction with
environmental
factors on obesity

Cases: 858 (61.5%;
56.3 ± 14.3; 27.6 ±
3.1)

BMI ≥ 25 kg/
m2

Smoking and alcohol
drinking status

Candidate genes All MC4R
and minor
frequencies
significantl
obesity and
groups (P<Case-control

Controls: 978
(47.3%; 55.4 ± 15.3;
20.0 ± 1.5)

MC4R
rs17782313,
rs476828 and
rs12970134

Sun et al.
(41)

China

Investigate if
olfactory pathway
genes are related to
obesity, and any
interaction effects of
smoking, alcohol
drinking and PA

Cases: 301 (61.1%;
53.5 ± 11.1; ≥ 28
kg/m2)

BMI ≥28 kg/
m2 AND

Smoking (current, non-
smokers), alcohol and
PA (inactive, moderate,
vigorous)

Candidate genes
OR4D1, an
gene scores
positively c
with obesit
and CALM
scores were
correlatedCase-control

Controls: 307
(39.1%; 51.2 ± 14.6;
≥ 18 kg/m2 and <24
kg/m2)

WC ≥90/
≥85cm M/F

29 SNP's from 7
olfactory
pathway related
genes/receptors
(OR2AK2,
OR2L8, OR4D1,
OR52K1,
Y
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TABLE 2 Continued

RESULTS SECONDARY
RESULTS CONCLUSION

313 C allele
134 A allele
antly related
Yi people.

Yi migrants had a greater
obesity risk (OR = 2.59 [CI
= 1.70, 3.95]) than Yi
farmers. rs17782313 (AP =
0.65, [CI = 0.22,1.09]) and
rs12970134 (AP = 0.59 [CI
= 0.02, 1.17]) increased
obesity risk in Yi migrants

The interaction between
both MC4R SNPs and
obesity risk was
modified by the urban
living environment

ith the CC
d a
higher BMI
I = 5.15,
cating a
it

MUFA (b= 1.14 [CI = 0.02,
2.26]) and SFA (b=2.06 [CI
= 0.29, 3.83]) were both
positively associated with
TC/CC genotypes compared
to TT.

FTO rs1421085 CC and
TC genotypes are
positively associated with
MUFA, SFA and
increased BMI.

genotypes
er risk of
= 3.72 [CI
]) and
take (OR =
.22, 29.22])
TT

Obese AT/TT genotype
individuals were
significantly more likely to
have high dietary fat intake
than low fat intake
compared to TT genotypes
(OR = 1.40 [CI = 1.07-
1.84])

FTO rs9939609 AT/TT
genotypes are associated
with increased risk of
obesity and tendency
towards high fat foods

18
as
associated
ometric
s increased
5) and WC

rs17782313, rs1421085,
rs7561317, and rs2815752
genetic variants were shown
to interact with REP, TFDF,
irregular SWC, and low PA
to increase obesity-related
anthropometric indices

Genetic factors are the
primary determinant of
obesity susceptibility,
however behavioural
traits are shown to
significantly modify this
interaction.
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OR52K2,
CALML3 and
CLCA2)

Wang et al.
(46)

China
Explore the effects of
rural-to-urban living
environment
transformation on
MC4R gene
polymorphisms and
obesity

Cases: 322 (66.8%;
≥ 28 kg/m2

BMI ≥ 28 kg/
m2

Differences in rural-to-
urban living
environments
(education, income,
smoking and drinking
status and PA)

Candidate genes
The rs17782
and rs12970
were signifi
to obesity in

Case-control
Controls: 643
(66.7%; < 24 kg/m2)

MC4R
rs17782313 and
rs12970134

Al-Jawadi
et al. (29)

Indonesia
Investigate
association of FTO
rs1421085 with BMI
and macronutrient
and fatty acid intake.

Cases: 35 (57.1%;
33 [27.5 – 39];
31.86 [28.10 –

35.39]) BMI ≥ 25 kg/
m2

Macronutrient
(carbohydrate, protein,
fat) and fatty acid
(PUFA, MUFA, SFA)
intake.

Candidate gene Individuals
genotype ha
significantly
(b=12.58 [C
20.01]), ind
recessive traCase-control

Controls: 36
(86.1%; 31 [27.5 –

34.6]; 20.86 [19.48
– 21.39])

FTO rs1421085

Daya et al.
(31)

Indonesia Assess the
interaction between
FTO rs9939609,
obesity and dietary
fat intake.

Cases: 40 (85.0%;
median (range) 31
(21-53) ; ≥25 kg/
m2) BMI ≥ 25 kg/

m2
Daily total dietary fat
intake

Candidate genes

The AT/AA
were at high
obesity (OR
= 1.19, 11.6
dietary fat i
5.98 [CI = 1
compared t
genotypes.

Case-control
Controls 40 (57.9%;
median (range) 33
(19-52); <23 kg/m2)

FTO rs9939609

Rana et al.
(37)

Pakistan
Examine the effects
of

Cases: 290 (45.2%;
30.7 ± 9.0; ≥ 25 kg/
m2)

BMI ≥ 25 kg/
m2

Random eating patterns
(REP), tendency toward
fat-dense food (TFDF),
sleep duration, sleep–
wake cycle (SWC), shift
work (SW), and PA
levels

Candidate genes Only TMEM
rs7561317 w
significantly
with anthro
traits such a
BMI (P=0.0
(P=0.045)Case-control

gene–gene and gene–
behaviour/lifestyle
interactions on the
risk of obesity in a
Pakistani population

Controls: 288
(43.8%; 28.4 ± 8.4;
< 25 kg/m2)

MC4R
rs17782313,
BDNF rs6265,
FTO rs1421085,
TMEM18
rs7561317, and
c
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rs9939609 and the
was significantly
ciated with higher
and fat mass index
.002 and P=0.003
ectively)

Higher protein intake was
significantly associated with
increased WC for FTO SNP
rs10163409 carriers
(P=0.044)

The impact of FTO
SNPs on obesity may be
moderated by dietary
protein intake and PA.

effect of MC4R
970134 on BMI, and
R rs7832552 and
2 rs12454712 on
was attenuated by

LTSB, higher SES and
higher energy intake
increased the impact of
SNPs on BMI and WC

High PA, low SES,
reduced LTSB and low
dietary intake have a
negative association
between SNP genetic
susceptibility and
obesity.

individuals with
GRS, there was a
ficant negative
ciation between
erate to vigorous
nd WC and %BF

For those with high GRS,
time spent watching TV
was associated with high
BMI: for every 1hr of TV
watching, BMI, WC and %
BF increased by 0.2kg/m2,
0.9cm and 0.3% respectively
(P<0.02)

In those with high
genetic risk of obesity,
moderate to vigorous PA
may reduce the risk of
obesity, whilst prolonged
TV watching may
accentuate.

ssociation between
and any obesity-
ed traits.

Significant interaction
between GRS ≥ 3 risk alleles
and high total fat intake (
>47g/day) on WC (b= 71.28
± 23.68). SFA, MUFA,
PUFA intake on WC
significant but not PA.

Higher consumption of
total fat, SFA, MUFA
and PUFA can increase
genetic susceptibility to
obesity.
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RONMENTAL
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GENETIC
APPROACH PR

NEGR1
rs2815752

Isgin-Atici
et al. (33)

Turkey Assess the role of
FTO rs9939609 and
rs10163409 and their
interaction with
dietary intake and
PA on obesity
outcomes

Cases: 200 (46%;
36.37 ± 7;
29.04 ± 3.38)

BMI ≥ 25 kg/
m2

Dietary intake
(carbohydrate, protein,
fibre, fat) and PA levels
(sedentary vs active)

Candidate genes FTO
GRS
asso
BM
(P=
respCase-control

Controls: 200 (50%;
33.29 ± 6.83;
22.56 ± 1.78)

FTO rs9939609
and rs10163409,
and combined
GRS

Gong et al.
(40)

China
Explore the effect of
the gene–
environment
interaction on BMI,
WC, and obesity
among Chinese
adults born in the
1960's.

2216 (60.3%; 49.7
[48.7 – 51.3]; 24.0
[21.9–26.4])

BMI ≥28.0 kg/
m2 OR

PA (leisure-time PA,
housework,
transportation mode),
SES (economic and
education level), LTSB
and dietary energy
intake

Candidate genes The
rs12
TRH
BCL
WC
PA

Cross-sectional
WC ≥90/
≥85cm M/F

12 obesity-
related SNPs

Xue et al.
(38)

China
Examine the
associations between
types of PA and
sedentary behaviours
on anthropometric
measures and their
interaction with
obesity genetic
susceptibility

3976 (54.9%;
median age 44.8)

BMI ≥ 25 kg/
m2

PA (moderate to
vigorous) and sedentary
behaviours (time spent
watching television,
computer/ phone
screen use)

Weighted GRS of
9 SNPs

For
high
sign
asso
mod
PACross-sectional

Overall BMI
distribution
unavailable.

Alsulami
et al. (30)

Ghana Investigate the effect
of GRS on obesity-
related traits and any
modifying effects by
dietary intake and
PA levels.

302 (58.3%; 38.17 ±
9.64; 26.6 ± 5.0)

BMI ≥ 25 kg/
m2

Dietary protein, fibre
and fat intake (SFA,
MUFA, PUFA) and PA
levels.

Unweighted GRS
of 4 SNPs
(TCF7L2
rs12255372,
rs7903146,
MC4R
rs17782313, FTO
rs9939609)

No
GRS
rela

Cross-sectiona
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12 T-allele
ntly
ith
C (1.58cm
.56] waist
per allele)

In participants with low PA
(<81 MET–h/wk), T-allele
was associated with
increased WC (+2.68 cm
[CI = 1.24, 4.12]) while
high PA (>212 MET–h/wk
had no association.

FTO rs3751812 genetic
susceptibility to obesity
could be attenuated by
high levels of PA

on between
obesity
(HDL,
tal
SBP, DBP,
HR)

In individuals with high
GRS (>2 risk alleles) high
SFA intake was associated
with increased WC
compared to low SFA
intake (b = 0.02, P=0.02)

SFA intake may modify
the genetic risk of lipid-
pathway genes SNPs on
obesity

ARTPT–
ions for
glucose and
trations.
ot modify
ts of
239670 AA

CARTPT–DQI-I
interactions were more
pronounced compared to
CARTPT–HEI interactions
for fat mass (P=0.02), WC
(P=<0.001), and BMR
(P=<0.001).

CARTPT rs2239670
genotype was
significantly associated
with HEI and
particularly DQI-I scores
for BMR, WC and FM

ifference
CK

enotype
s for energy
utrient
timing,

Eating lunch after 3pm
significantly increased
obesity susceptibility (OR=
2.95 [CI = 1.77, 4.90]) in
CT + CC CLOCK
rs1801260 genotype carriers

CLOCK C allele carries
are more likely to
experience higher energy
intake, reduced sleep
and later meal timings,
and are more genetically
susceptible to obesity if
eating lunch after 3pm.
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Moore et al.
(39)

India

Evaluate the
association between
16 obesity-related
SNPs and BMI and
WC and moderating
effects of PA levels.

New Delhi: 511
(54%; 47.1 ± 9.9;
19.6% obese)

BMI ≥30 kg/
m2 OR

PA level (<81, 81-143,
144-211, >212 MET-h/
wk)

Candidate genes
FTO rs3751
was signific
associated w
increased W
[CI = 0.60,
size increas

Cross-sectional
Trivandrum: 618
(48.7 ± 9.2; 17.5%
obese)

WC ≥90/
≥80cm M/F

16 SNPs in or
near FTO,
MC4R, G6PC2,
GCKR, TCF7L2,
and SLC30A8
genes

Wuni et al.
(32)

India

Investigate the effect
of a GRS on obesity-
related traits and any
moderating effects of
dietary intake

497 (54.7%; 44 ±
10; 24.6 ± 4.5)

BMI ≥ 25 kg/
m2

Dietary protein,
carbohydrate, fibre and
fat intake (SFA, MUFA,
PUFA) and total energy
intake

Unweighted GRS
of 3 SNPs (LPL
rs327, rs3200218
and CETP
rs4783961)

No associat
the GRS an
related trait
LDL, TG, to
cholesterol,
BMI, WC, W

Cross-sectional

Mahmoudi-
Nezhad et al.
(35)

Iran
Assess the
interaction of
CARTPT rs2239670
genotypes and
dietary indices on
anthropometric
measures in obese
individuals.

287 (51.1%; M:
38.44 ± 6.86, F:
37.81 ± 8.25; M:
33.90 ± 3.41, F:
35.61 ± 4.31)

BMI 30–40 kg/
m2

Dietary indices (healthy
eating index (HEI) and
diet quality index –

international (DQI-I)

Candidate genes

Significant C
HEI interac
BMR, serum
HDL conce
HEI could n
adverse effe
CARTPT rs
genotype

Cross-sectional CARTPT
rs2239670

Rahati et al.
(36)

Iran
Investigate the
impact of
behavioural
characteristics on the
association between
near CLOCK
rs1801260 and
obesity

403 (36.5 ± 8.7;
30.2 ± 3.1)

Overweight +
obese: BMI
25–40 kg/m2 Energy and

macronutrient intake,
circadian rhythm, sleep
duration and food
timing

Candidate genes
Significant d
between CL
rs1801260 g
study group
and macron
intake, food
sleep and P

Cross-sectional No information on
gender distribution

No individual
classification

CLOCK 3111 T /
C
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WAS
J33544
140133294

Lead variant identified
(FLJ33534;
rs140133294); with
strong association on
BMI phenotypic
variance (P=3.1 × 10-8)

Association of rs140133294
(FLJ33534) with BMI stratified by
smoking status: never smokers
(b=0.90 ± 0.36); current smokers (b=
−1.51 ± 0.52). No significant
association for PA.

Single FLJ33534
locus
significantly
modifies the
relationship of
smoking and
BMI
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FTO rs9939609 (AA
+TT) carriers and near
MC4R rs17782313 (CC
+TT) had a significantly
higher BMI, and were
associated with
categorial obesity.

FTO rs9939609 (AA +AT)
was associated with
significantly greater mean
BMI in urban populations
vs rural (M(SE) = 1.20
(0.53), P = 0.02)

FTO and MC4R SNPs
are associated with
obesity, and urban living
may accentuate the
obesogenic effect of the
FTO SNP.
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rs9939609
near MC4R

7782313

o i ARTPT; cocaine and amphetamine-regulated transcript prepropeptide, CETP; cholesteryl ester transfer protein, CI;
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Ahmad
et al. (43)

Pakistan
Cross-
sectional

Use genome wide
approaches to conduct
gene-lifestyle interaction
analyses for smoking and
PA in relation to obesity.

GWA
53.8 ±
Intera
8,193,
furthe
inform

GWAS; genome-wide association study, vGWAS; variance heterogeneity ge
Data are expressed as mean (standard deviation) or count (%) unless other

AUTHORS
(YEAR)

STUDY
COUNTRY/
DESIGN

STUDY OBJEC-
TIVES

SAM
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AGE
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Illangasekera
et al. (45)

Sri Lanka
Investigate the role
of FTO and near
MC4R SNPs on
obesity measures and
the moderating
effects of urban and
rural living

528 (
± 11.6
11.5)

Cross-sectional
No in
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distri

BCL2; B-cell lymphoma-2, BDNF; brain-derived neurotrophic factor, BMI;
confidence interval, CLCA2; chloride channel accessory 2, CLOCK; circadian
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Population measures were also examined, including odds of being

overweight. For all included studies, obesity outcomes were

objectively measured by a healthcare provider or study

investigators using validated and compatible devices. Definitions

of general obesity ranged across the studies, countries, and

populations from BMI ≥ 25 kg/m2 to BMI ≥ 30 kg/m2.
Association studies

Diet and food timing
Studies investigating gene-diet interactions on obesity focus on

macronutrient intake, including total fat, protein and

carbohydrates, and fatty acid intake, including saturated (SAFA),

monounsaturated (MUFA), and polyunsaturated (PUFA) fatty

acids were most prevalent. Within these studies, Al-Jawadi et al.

(n = 71), Alsulami et al. (n = 302), Daya et al. (n = 80) and Wuni

et al. (n = 497) all reported significant associations between higher

total fat intake and obesity traits, for those carrying risk alleles of

obesity-related gene variants, or for those with a high GRS in

Indonesian, Ghanaian and Indian populations (29– 32). High SFA

was also found to interact positively with WC in those with

increased genetic susceptibility to obesity in the cross-sectional

studies by Alsulami et al. and Wuni et al. Individuals with high

GRS (≥ 2 risk alleles) and high SFA intake (>14 g/day) had a

significantly higher WC (Pinteraction = 0.02) compared to those with

low SFA intake after adjustment for age and sex in the Ghanaian

study. In contrast, in the Indian population, those with lower SFA

intake (≤23.2 g/day) had a significantly smaller WC (b= -0.01cm,

P=0.03) (Pinteraction= 0.006) after adjustment for age, sex and 6 other

potential confounders (30, 32). However, some inconsistencies were

also reported on the modifying effects of dietary fat intake on

genetic susceptibility and obesity risk. In the case-control study by

Isgin-Atici et al. (n = 400), the same FTO SNP rs9939609 variant as

the Indonesian case-control study by Daya et al. was investigated

individually and as part of a GRS with one other FTO gene variant.

In contrast, no statistically significant association was found

between dietary fat intake and obesity traits in Turkish

populations (33). Findings concerning dietary protein intake and

its interaction with FTO gene variants on obesity measures also

conflicted in Turkish and Indonesian populations. In the study by

Isgin-Atici et al., carriers of FTO risk alleles showed a significant

interaction with protein intake on increased WC (Pinteraction =

0.044) after adjustment for age, sex hypertension and CVD.

Concerning dietary patterns, two studies examining eating

patterns in two separate Iranian populations reported modifying

effects in individuals with either high GRS or those carrying risk

alleles of the Cocaine and Amphetamine-Regulated Transcript

Prepropeptide (CARTPT) gene and their association with obesity-

related anthropometric measures. In a cohort study, Hosseini-

Esfahani et al. (n = 4,292) showed that higher Western dietary

pattern scores (namely high intakes of processed foods and drinks,

sugar, red meat, and high-fat dairy) were associated with increased

BMI in subjects with high GRS compared to those with low GRS

over time (Pinteraction= 0.01) after multivariable adjustment for age,

sex and 5 other confounders (34). In a cross-sectional study,
Frontiers in Endocrinology 10
Mahmoudi-Nezhad et al. (n = 287) used the Diet Quality Index—

International (DQI-I), an indicator of nutritional variety,

moderation, and adequacy to show that in individuals with high-

scoring quality diets, CARPT-DQI-I interactions significantly

reduced BMI (Pinteraction < 0.001) following adjustment for age

and sex (35). In both studies, however, analyses assessing healthy

eating patterns rich in fruits, vegetables, fish and whole grains,

quantified by the Healthy Eating Index, showed no significant

modifying effects by genotypic groups or GRS for obesity traits.

Significant interactions between food timing and genetic

variants on obesity were also demonstrated in both Iranian and

Pakistani populations. Rahati et al. (n = 403) reported in a cross-

sectional study that for carriers of Circadian Locomotor Output

Cycles Kaput (CLOCK) gene polymorphisms, delayed eating times

for breakfast and lunch increased the odds of obesity by 2.95 (95%

CI = 1.77, 4.90) and 1.53 (95% CI = 1.32, 1.89) respectively after

adjustment for age, sex and 6 other confounders (36). Significant

interactions between risk alleles in multiple genes, including FTO,

MC4R, and transmembrane protein 18 (TMEM18) and random

eating patterns were also found to increase BMI (Pinteraction=0.002,

Pinteraction = 0.008, Pinteraction=0.001 respectively) in the case-control

study by Rana et al. (n = 578) focussing on a Pakistani population

after age and sex adjustment (37).

Physical activity and sedentary behaviours
A total of 10 studies using either a candidate gene approach (n =

6) or GRS (n = 4) reported gene-physical activity (PA) interactions

on obesity traits. PA or sedentary behaviour were defined via

participant self-reporting in studies by Xue et al., Rana et al.,

Moore et al., Isgin-Atici et al., and Gong et al. (33, 37–40) while

articles by Sun et al., Muhammed et al., Alsulami et al., and Ahmad

et al., used investigator administered questionnaires (30, 41–43).

The standardised international physical activity questionnaire was

most used to assess PA levels across studies (n = 4), which assesses

levels of PA relating to work and house-related work,

transportation, and recreation, calculated and summarised as

metabolic equivalent of task units per week (MET-min/wk).

Four candidate gene studies showed that interactions between 4

different gene variants and low levels of PA were significantly

associated with obesity-related anthropometrics (33, 37, 39, 42).

The study by Moore et al. (n = 1,129) used a cross-sectional design

to show that in India, for participants with a low PA level of <81

MET-h/wk, the FTO s3751812 risk allele was significantly

associated with an increased WC (b = 2.68; 95% CI = 1.24, 4.12)

after controlling for age, sex, region, and religion (39). The same

association for variants of the FTO candidate gene was also found in

2 other case-control studies, which focused on Turkish (n = 400)

and Pakistani populations (n = 578) (33, 37). High levels of PA,

defined as >212 MET-h/wk, did not produce any significant gene

interaction effect on obesity (39). In conflict, there were no

significant interactions between putative uncharacterized protein

(FLJ33534), uncoupling protein 2 (UCP2), or olfactory pathway-

related candidate genes and PA, or their interaction on obesity-

related traits (41–43). The study by Alsulami et al., which used a

GRS approach comprised partly of FTO gene variants, also failed to

show any significant interaction between high GRS and PA on
frontiersin.org
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obesity (30) in a Ghanaian population. Two cross-sectional studies

investigated sedentary behaviours and their potentially modifying

effects in two Chinese people. Gong et al. (n = 2,216) and Xue et al.

(n = 3,976) consistently showed that increased leisure time

sedentary behaviours such as television watching positively

accentuated the interaction between high GRS or SNPs and WC

and BMI after multivariable adjustment (38, 40).

Tobacco smoking and alcohol consumption
Across the studies included in this review, very few investigated

GxE assessing the effect of tobacco smoking (n = 3) or alcohol

consumption (n = 2) on obesity. In these candidate gene studies,

tobacco and alcohol exposures were assessed by a self-administered

questionnaire by Wei et al., while Ahmad et al. and Sun et al.

collected data using researcher administered validated

questionnaires in the form of a structured interview (41, 43, 44).

Both Ahmad et al. (n = 8,193) and Sun et al. (n = 608), using cross-

sectional and case-control study designs, respectively, showed that

for current smokers, the interaction between smoking status and

obesity was modified by different gene variants (41, 43). In the

current smokers from Pakistan, FLJ33534 risk alleles showed a

negative association with BMI (b=−1.51 ± 0.52, P=0.003) after

adjustment for age, sex, and genetic ancestry (43). While the

Chinese population showed smoking increased the risk of obesity

for those with high olfactory receptor family 4 subfamily D member

1 (OR4D1) gene scores (OR = 2.67; 95% CI = 1.35, 5.30; P=0.005;

Pinteraction = 0.041) but decreased the risk of obesity for those with

high calmodulin-like 3 (CALML3) gene scores (OR = 0.25; 95% CI

= 0.10, 0.62; P=0.003; Pinteraction = 0.026) after adjustment for age,

sex, PA and alcohol consumption (41). However, a separate case-

control study in China by Wei et al. (n = 1,836) showed no

significant gene-smoking or gene-alcohol interaction on obesity

risk for MC4R genotypes (44). Alcohol consumption was also

consistently disproved to show any modifying effect on the

relationship between gene variants and obesity by Sun et al. (41).
Sleeping patterns
Only two candidate gene studies performed gene-sleep

interaction analyses on obesity traits, both of which estimated

sleeping patterns and sleep duration using participant self-

reporting via study-specific questionnaires. Both studies

demonstrated unfavourable outcomes on obesity traits in

response to the interaction between genetic variants and reduced

sleeping times. In a Pakistani population (n = 578), Rana et al.

applied a case-control study design to demonstrate a significant

interaction between TMEM18, neuronal growth regulator 1

(NEGR1), FTO and MC4R gene variants and irregular sleep-wake

cycle, which was shown to augment BMI, WC, HC, WHR, WHtR

and %BF, in carriers of risk alleles after controlling for age and sex

(37). In the same study, inadequate sleep, defined as <7 hours/night,

was also shown to interact with FTO, TMEM18 and NEGR1 gene

variants to increase BMI and WC significantly. In a separate cross-

sectional study by Rahati et al., the interaction between sleep

duration (hours/week) and CLOCK rs1801260 genotypes were

also assessed in an Iranian population (n = 403), where obese
Frontiers in Endocrinology 11
individuals with the CT and CC genotypes had a significant shorter

sleeping time than TT genotype carriers after controlling for age,

sex and 6 other variables (36).

Rural-urban differences
Two studies investigating the moderating effects of urban and

rural living environments found a disparity in their effects on

obesity and their interactions with MC4R candidate genes in

Chinese and Sri Lankan populations. Information about

sociodemographic information and lifestyle factors was collected

through face-to-face interviews or participant self-report via

standardised questionnaires by Wang et al. and Illangasekera

et al., respectively. The MCR4 rs17782313 CC and CT genotype

were cross-sectionally associated with significantly higher BMI

values in Sri Lankans (P= 0.03) (n = 528) compared to the TT

genotype, a result which was replicated in the Chinese case-control

study by Wang et al. (n = 965), which demonstrated significantly

higher odds of obesity (OR = 3.01; 95% CI = 1.49, 6.05) for

homozygous C allele carriers (45, 46). However, on the

performance of stratified analysis by urban or rural residence and

the interaction with theMC4R gene polymorphism on obesity, only

the study by Wang et al. found a statistically significant

heterogeneous association between the two living environments,

with an attributable proportion of 0.65 (95% CI = 0.22, 1.17) after

controlling for age, sex and 7 other potential confounders (46). In

contrast, Illangasekera et al. showed the MC4R non-variant TT

carriers of urban residence to record higher mean BMIs (45).
Discussion

To our knowledge, this is the first review to provide an overview

of current literature investigating the effects of gene-environment

interactions on obesity traits in LMICs. Approximately two-thirds

of the 18 studies (n=26,684) included in our review explored gene-

diet or gene-physical activity interactions. In contrast, more limited

numbers explored other emerging obesogenic environmental risk

factors, such as urbanicity, irregular or insufficient sleep, and

tobacco and alcohol use. Results from this study indicate there

may be some consistent associations across LMICs for interactions

between genetic variants and reduced sleeping times, urban living

environments, low levels of PA, increased sedentary behaviour and

delayed eating patterns on obesity outcomes. However, due to

considerable heterogeneity between study outcome definitions,

genetic polymorphisms, and environmental and lifestyle factors,

in combination with the genetic heterogeneity across different

ethnic groups in LMICs, genotype-phenotype cross-correlations

should be interpreted with caution.

While results from nutrigenetic studies and studies

investigating gene-physical activity interactions on obesity suggest

there could be some consistent associations between eating patterns

or low levels of PA and their genetic interactions on an increased

risk of obesity, associations with specific gene variants were not

replicated across studies. Across all included studies, statistically

significant findings were reported for 12 individual SNPs, including
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FLJ33544 rs140133294 (43), FTO rs1421085 (29, 37), rs9939609 (31,

45), rs10163409 (33), rs3751812 (39), CARTPT rs2239670 (35),

UCP2 rs659366 (42), CLOCK rs1801260 (36), MC4R rs17782313

(37, 45, 46), rs12970134 (40, 46), TMEM18 rs7561317 and NEGR1

rs2815752 (37). However, these associations were either only

significant in single trials or were not replicated in response to

the same environmental exposure. Trials that assessed interactions

between the same FTO genetic variants and macronutrients,

including total fat and protein intake on obesity, conflicted across

different LMICs and populations (29, 31, 33).

Explanations for these inconsistent results could be accounted

for in the substantial heterogeneity in exposure and outcome data

collection methods, alongside wide-ranging obesity definitions in

the included studies. Obesity and overweight were often not

differentiated, and using BMI values only as a screening tool for

obesity was expected, with cut-offs varying from ≥ 25 kg/m2 to ≥ 30

kg/m2. Further heterogeneity can be evidenced by the additional

incorporation of WC measurements into obesity definitions by

some studies to measure central obesity. Regional and ethnic

differences in anthropometry and adiposity prevent the use of

standardised global obesity definitions, as evidenced by WHO

guidelines, which define obesity as 2.5 kg/m2 lower in Asian

populations compared to the global standard (2, 47). However,

this review has demonstrated disparity in the use of obesity

definitions even amongst populations from the same developing

countries, signalling the need for a more consistent application of

recommended definitions. Assessment and definitions of exposures

were also conflicting across studies, and at high risk of recall or

reporting bias due to incomplete or ambiguous recording of

methods and use of short self-developed questionnaires and

surveys for patient self-report. Confounding was controlled

reasonably well across studies, with age- and sex-adjusted for by

all studies as a minimum.

There is a high prevalence of statistically ‘significant’ GxE on

obesity on single genetic variants or environmental exposures

without replication. However, even with replication, many of the

study designs shown in this review are susceptible to reverse

causation, highlighting the need for more well-controlled long-

term prospective longitudinal research looking at GxE on obesity.

Using P-values without effect sizes or confidence intervals to report

associations was also prevalent across studies (32–35, 42), alongside

small sample sizes and erroneous underpowered statistical analyses,

resulting in concerns for selective reporting and publication bias.

From what is demonstrated in this review, emerging primary

research from LMICs investigating GxE primarily employs a

hypothesis-based approach, using pre-specified genes of interest

identified in GWAS studies from European populations. The

inconsistencies and lack of replication across study findings could

be partly attributed to the use of genetic variants identified from

GWAS conducted in developed regions with ancestrally

homogenous populations. It is, therefore, likely that the

inconsistency in study findings results from a lack of

generalisability of the GWAS-identified candidate genes from

developed nations due to the varied genetic architecture found in

the diverse ethnic populations across LMICs (48). In addition, of

the studies using a candidate gene approach, approximately half
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failed to correct for multiple testing when using multiple regression

analysis to investigate several SNPs across different genetic loci (49).

Of those which did control for Type I error, sample sizes were very

small and consequentially underpowered to detect GxE reliably.

Only five of the studies included in this review used a GRS (30,

32–34, 38), which, while eliminating the loss of statistical power

attributable to correction for multiple testing, studies were still

underpowered owing to insufficient sample sizes of 400, 497 and

302 for studies by Isgin-Atici et al., Wuni et al. and Alsulami et al.

respectively (30, 32, 33, 50). Moreover, only two studies by Xue et al.

and Hosseini-Esfahani et al. assigned a weighted method using

external weights from an independent study of the same ancestral

population (38) or a multi-ethnic GWAS meta-analysis,

respectively (34). The absence of suitable external weights for the

studies using unweighted GRS in Turkish, Indian and Ghanaian

populations further demonstrates the lack of global diversity in the

existing genetic research (30, 32, 33). As an aggregation of multiple

genetic variants, weighted GRS using meta-analysed external

weights is considered the gold standard for this genetic approach

and is a powerful and bourgeoning tool for identifying GxE (51).

New statistical techniques which rely on internal information on

effect size distributions could improve the accuracy of research in

developing countries using GRS analyses where external genetic

information is unavailable (52, 53).

Applying more GWAS approaches in LMIC research would

eliminate reliance on the strength of a priori evidence and any

previous associations drawn from homogenous populations of

European descent, producing quality genetic associations for future

gene-interaction studies (54). Only one paper eligible for inclusion in

this study used a GWAS approach in a Pakistani population to identify

the FLJ33534 obesogenic locus. This paper demonstrated a robust and

high-quality significant interaction between the identified genetic

variant, smoking and a moderating effect on obesity (43).

Transethnic GWAS studies to estimate improved GRS could provide

greater predictive power for future GxE studies in developing countries,

and their inclusion in future research has been called for in previous

reviews (18, 55). However, with a recommended genome-wide

significance threshold of P = 5x10-8, GWAS require huge sample

sizes to reach an adequate statistical power (56). This presents a

significant challenge in LMICs, where resources are often limited,

and participant recruitment can be challenging due to low engagement

levels and distrust of the scientific community (48). Expansion of

genetic studies in diverse populations is essential, and while an increase

in research capacity from LMICs could eliminate the Eurocentric biases

surrounding GWAS and GxE interactions, a more equitable and open

sharing of technologies, statistical advancements and GWAS summary

statistics in diverse populations is needed to improve the quality of

future research and eliminate health disparities (57).

Recent research from HICs has shown that environmental

factors can influence an individual’s genetic susceptibility to

obesity. For example, a recent study of 331,282 participants in the

UK Biobank found that metabolic equivalent task (MET) score,

pack-years of smoking, and alcohol intake frequency significantly

interact with genetic factors related to obesity for BMI (58).

Findings from GxE research in HICs cannot be assumed to be the

same in LMICs. This is because people living in LMICs have
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different ethnic backgrounds with different genetic information and

live in different environments with different lifestyles.
Study strengths and limitations

The strength of this systematic review is that it is the first to

report on GxE on obesity traits in LMICs through a broad and

exhaustive literature search, using rigorous and predetermined

inclusion and exclusion criteria. Evidence of this topic as a fast-

developing and emerging field of research in LMIC countries can be

substantiated by the number of included primary research conducted

or published in the last two years. However, several limitations

associated with this study should be highlighted. Despite nearly all

included studies reporting significant findings forGxE on obesity, the

limited homogeneity among studied SNPs and outcome definitions

severely restricted the synthesis and interpretation of results. In

addition, no meta-analysis or quantitative data synthesis could be

performed, owing to the considerable heterogeneity and sources of

error surrounding the included primary research. Imprecise and

diverse measurements of exposures and outcomes, alongside small

sample sizes and underpowered or improper interaction analyses,

which could have yielded false positive or false negative results,

mitigate any value in a meta-analytic summary of effect sizes of GxE.

It should also be noted that although the search strategy and study

eligibility criteria did not exclude studies based on language, only

English search terms were used in database searches. In addition, no

non-English databases were included in the search strategy. This

could explain the lack of any representation of research from

developing countries from Central and South America and the

limited representation of studies from developing African countries

eligible for inclusion in this review, with only three irrelevant non-

English studies identified in the initial database search. Finally, we

didn’t assess the quality of the reviewed studies since scoping reviews

offer a summary of the evidence available rather than synthesising

results for clinical implementations as systematic reviews.
Conclusion

This review has examined and discussed population-based

studies from LMICs investigating GxE and their effect on obesity,

in addition to synthesising the achievements and pitfalls in the

currently available primary research. Individual results have shown
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smoking status to modify the interaction between FLJ33544 and

olfactory pathway genetic loci and obesity traits. At the same time,

urban living environments were demonstrated to interact with

MC4R gene polymorphisms to increase obesity traits. However,

the ability to draw concrete conclusions is limited due to concerns

over study quality and a high potential for biases. The considerable

heterogeneity exhibited across the investigated genetic variants,

exposure and outcome measures, statistical analyses, and data

reporting has highlighted a need for updated standardised

protocols bespoke to LMICs, and advanced statistical techniques

and data availability to improve the quality and comparability of

future studies.
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