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Abstract

Introduction: Endoscopic detection of early neoplasia in Barrett's esophagus is

difficult. Computer Aided Detection (CADe) systems may assist in neoplasia

detection. The aim of this study was to report the first steps in the development of a

CADe system for Barrett's neoplasia and to evaluate its performance when

compared with endoscopists.

Methods: This CADe system was developed by a consortium, consisting of the

Amsterdam University Medical Center, Eindhoven University of Technology, and 15

international hospitals. After pretraining, the system was trained and validated using

1.713 neoplastic (564 patients) and 2.707 non‐dysplastic Barrett's esophagus

(NDBE; 665 patients) images. Neoplastic lesions were delineated by 14 experts. The

performance of the CADe system was tested on three independent test sets. Test

set 1 (50 neoplastic and 150 NDBE images) contained subtle neoplastic lesions

representing challenging cases and was benchmarked by 52 general endoscopists.

Test set 2 (50 neoplastic and 50 NDBE images) contained a heterogeneous case‐mix

of neoplastic lesions, representing distribution in clinical practice. Test set 3 (50

neoplastic and 150 NDBE images) contained prospectively collected imagery. The

main outcome was correct classification of the images in terms of sensitivity.
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Results: The sensitivity of the CADe system on test set 1 was 84%. For general

endoscopists, sensitivity was 63%, corresponding to a neoplasia miss‐rate of one‐
third of neoplastic lesions and a potential relative increase in neoplasia detection

of 33% for CADe‐assisted detection. The sensitivity of the CADe system on test sets

2 and 3 was 100% and 88%, respectively. The specificity of the CADe system varied

for the three test sets between 64% and 66%.

Conclusion: This study describes the first steps towards the establishment of an

unprecedented data infrastructure for using machine learning to improve the

endoscopic detection of Barrett's neoplasia. The CADe system detected neoplasia

reliably and outperformed a large group of endoscopists in terms of sensitivity.
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artificial intelligence, Barrett's esophagus, Barrett's neoplasia, computer aided detection,
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INTRODUCTION

Barrett's esophagus (BE) is a well‐known precursor for the develop-

ment of esophageal adenocarcinoma (EAC). BE patients undergo

regular endoscopic surveillance to detect neoplasia at an early

stage.1,2 Early neoplastic lesions may be difficult to detect, given their

sometimes‐subtle endoscopic appearance.3,4 Current state‐of‐the‐art

endoscopes enable visualization of nearly all subtle endoscopic

changes. However, these subtle lesions are not always recognized

since most endoscopists are unfamiliar with their appearance. A tool

assisting the endoscopist in the recognition of such subtle changes

may improve the quality of BE surveillance.

Computer aided detection (CADe) systems for gastrointestinal

applications largely focus on colonic polyp detection and character-

ization.5 CADe systems for the detection of Barrett's neoplasia are

still under development.6–8 For successful clinical implementation,

such systems require robust training and efficient software to enable

real‐time application. Most CADe systems described in the literature

are trained with relatively small data sets originating from a single

center. This limits their generalizability and results in suboptimal

performance when applied in daily practice.9 In addition, most of the

currently developed CADe systems require significant computational

resources, which limits real‐time video‐based application and ham-

pers efficient integration in existing endoscopy systems.

Our consortium envisions to develop a robust and ‘ready‐for‐use’

CADe system for the detection of early Barrett's neoplasia in a

stepwise manner, using efficient and generic software that enables

easy integration in the endoscopy suite. In this paper, we aim to

describe the research infrastructure of our consortium and to report

the first results of CADe performance on still images after training the

algorithm on retrospectively collected imagery.

METHODS

We aimed to develop a CADe system for the primary detection of

Barrett's neoplasia on white‐light endoscopy (WLE) images in

overview. It classifies images as either neoplastic or non‐dysplastic,

followed by the localization of neoplasia (if present) by the projection

of a green bounding box around the lesion, thereby guiding the

endoscopist to the region of interest.

BONS‐AI consortium

This study was performed by the Department of Gastroenterology

and Hepatology of the Amsterdam University Medical Centers, the

Netherlands, a tertiary referral center for BE neoplasia, and the

Department of Electrical Engineering of the Eindhoven University of

Technology, the Netherlands. The Barrett's OesophaguS imaging for

Artificial Intelligence (BONS‐AI) consortium consists of 15 partici-

pating medical centers from 7 countries, all expert centers in the

field of Barrett endoscopy: University Medical Center Utrecht, the

Netherlands, Sint Antonius hospital Nieuwegein, the Netherlands,

University Medical Center Groningen, the Netherlands, Isala hospi-

tal Zwolle, the Netherlands, Haga Teaching Hospital, the

Key summary

1. Summarise the established knowledge on this subject

� Endoscopic detection of Barrett's neoplasia is difficult

� Computer Aided Detection (CADe) systems can assist

the endoscopist in the detection of neoplasia

2. What are the significant and/or new findings of this

study?

� This study describes the rigorous development of a

CADe system for Barrett's neoplasia, which detected

neoplasia with high accuracy

� Our CADe system outperforms the vast majority of

general endoscopists in terms of the detection of Bar-

rett's neoplasia
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Netherlands, Flevohospital Almere, the Netherlands, Onze Lieve

Vrouwe Gasthuis hospital Amsterdam, the Netherlands, Cochin

Hospital Paris, France, Hirslanden Klinik Zürich, Switzerland, Kar-

olinska University Hospital Stockholm, Sweden, Evangelisches

Krankenhaus Düsseldorf, Germany, Krankenhaus Barmherzige

Brüder Regensburg, Germany, Nottingham University Hospital,

United Kingdom, Royal Perth Hospital, Australia. Centers partici-

pated in the consortium by collecting data and providing ground

truth delineations (see below). For the contribution per center,

please see Supplementary Table 1.

The Medical Research Involving Human Subjects Act did not

apply to this study. Official approval for this study was therefore

waived by the medical ethics review committee of participating

centers. This study was registered at the Dutch Trial Register under

the number NL8411.

Data collection

To effectively train our CADe system, we envisioned to create the

largest Barrett imagery data set that is currently described. To this

end, both retrospective and prospective data were collected by

collaborative partners in our consortium. Retrospectively recorded

endoscopic images were collected from the endoscopic databases of

the participating centers that included patients under surveillance for

their non‐dysplastic Barrett's esophagus (NDBE) or undergoing

endoscopic treatment of BE neoplasia. Endoscopic images recorded

with Olympus 100‐series endoscopes (H180 and HQ190) and pro-

cessors (CV‐180 and CV‐190; Olympus, Tokyo, Japan) between 2012

and 2021 were selected. The images were automatically extracted

from the system and de‐identified using proprietary software spe-

cifically designed for this project. The de‐identification software was

developed to detect text (i.e., patient identifiers) within imagery and

subsequently place a black box over the text, followed by automatic

overwriting of the original image. Any meta‐data was automatically

removed as well.

The majority of the participating centers also collected pro-

spective imagery following a standardized image acquisition protocol.

In this protocol, endoscopic images are collected in WLE in both

NDBE and neoplastic patients. Endoscopic images were recorded for

each 2 cm of the Barrett's segment. All imagery was obtained in

overview without specific focus on areas of interest such as potential

neoplastic lesions, if present. For an extensive description of the

prospective data acquisition protocol, please see the supplementary

materials.

All endoscopic imagery was manually labeled as either NDBE or

neoplasia according to the histopathology definitions (see below). To

guarantee patient privacy, endoscopic imagery was saved and de‐
identified. Prospective imagery was recorded completely anony-

mously in participating centers. Images were stored in lossless PNG,

BMP, or TIFF format; videos were saved as MP4 files. All imagery was

stored on a secured server to which only the researchers of this

consortium had access.

Definitions and selection of neoplastic and NDBE
images

For our data sets, we included WLE images from treatment naïve

patients. Images were selected based on image quality. Parameters for

inclusion included both content‐independent quality (e.g., sufficient

contrast and sharpness and absence of blur) and content‐dependent

quality (e.g., adequate esophageal expansion, illumination and

mucosal cleanliness in terms of absence of blood and bubbles, thereby

enabling circumferential evaluation of mucosal surface).

For neoplastic images, we employed the following additional

selection criteria: (1) a visible neoplastic lesion within the image, and

(2) high‐grade dysplasia (HGD) or early adenocarcinoma (EAC) in

biopsies or endoscopic resection specimens.

For NDBE images, we imposed the following additional selection

criteria: (1) no visible abnormalities within the endoscopic image, and

(2) absence of any degree of dysplasia in all tissue samples.

Images were excluded in case of (1) presence of tools within the

image (e.g., clips or biopsy forceps), (2) collapsed esophagus, (3)

presence of blood or extensive amounts of mucous or bubbles, and

(4) biopsies showing low‐grade dysplasia in pathology results.

Creation of ground truth

All images were reviewed by three experts (KF, JJ, and MJ) for

quality assessment and for the absence of any visible abnormalities

(NDBE images) or the presence of a visible neoplastic lesion

(neoplastic images).

To indicate the location of the neoplastic lesion within each

neoplastic image, all lesions were delineated by at least two expert

endoscopists from a group of 14 expert endoscopists from the

participating centers (RP, BW, MH, WN, JW, LA, AA, KR, MB, JO, OP,

TB, SS, and JB) using an online module (Meducati AB, Göteborg,

Sweden). Experts were asked to provide two delineations for each

image. First, they were asked to delineate the outer peripheral extent

of the neoplastic lesion. This delineation contained the more subtle

mucosal and vascular changes of the lesion. Subsequently, the ex-

perts were asked to delineate only the area where the neoplastic

lesion was most profound. This area was considered to represent the

highest likelihood of neoplasia (Figure 1). After delineation, the ex-

perts were asked to score: (1) the most prominent macroscopic

component of the lesion (Paris classification 0–I, 0–II, or 0–III); (2)

location of the lesion within the image (based on distance to endo-

scope, angle of imaging, insufflation/desufflation), on a scale of 1–3: 1

representing a poor location, 2 representing a moderate location, and

3 representing a good location; (3) quality of the image (based on the

image resolution, overexposure of light and shadowing artifacts), on a

scale of 1–3, where 1 represents poor quality and 3 good quality; (4)

level of cleaning of the mucosa, on a scale of 1–3 with 1 representing

poor cleaning and 3 good cleaning; (5) the subtlety of the neoplastic

lesion on the image, incorporating all the four relevant features into a

single visual analogue scale score ranging from 1 (very subtle) to 100
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(very obvious). Prior to the delineations, all experts received exten-

sive instructions on the delineation process and rating criteria with

endoscopic examples per category and these examples were avail-

able during the rating process.

Each neoplastic image was delineated by two experts after which

delineation overlap was evaluated. In case of insufficient overlap

(defined as a Dice score10 of overlapping delineations <0.3), a third

expert delineated that particular image. The delineations of the two

experts with the highest Dice score were subsequently used as

ground truth for neoplasia. If it was not possible to reach consensus

(Dice scores persistently <0.3), the image was excluded.

Figure 1 shows the combination of expert delineations in an

exemplary case. The area containing both higher likelihood de-

lineations and the overlapping area of the lower likelihood delineation

of both experts is displayed in yellow and was used as ground truth for

both training and testing of the CADe system. This area was consid-

ered to contain the most valuable information about true neoplasia.

For an extensive description of the process of creating the

ground truth for training and testing the CADe system, please see

Supplementary Video 1.

Data sets for the development of the Computer Aided
Detection system

For the development of this CADe system, three different data sets

of increasing proximity to the final application were used for stepwise

training (Table 1):

First, a publicly available data set of random images (ImageNet

1K, https://www.image‐net.org/download.php) was used for general

pretraining.11 This data set contains 1.200.000 general color images

labeled into 1.000 different categories, none of them specifically

related to endoscopy. During such pretraining, a deep learning

system learns basic features of images, such as edges and shapes.

This training method eliminates the need to learn these basic fea-

tures from images corresponding to the final application (i.e., Bar-

rett's imagery), which are generally more scarcely available.

Second, GastroNet was used for domain‐specific pretraining. This

data set has been described before and contains 494.364 general

endoscopic images obtained from the endoscopic archives of the

Amsterdam University Medical Center, location Academic Medical

Center.12 A subset of 3.743 images were manually labeled by two

experts into five categories: the esophagus, stomach, small intestines,

colon, and others. The remaining images were classified into the same

five categories as part of this pretraining method.13 The rationale for

domain‐specific pretraining was to familiarize the CADe system with

the basic features of endoscopic imagery, thereby enhancing the

pretraining process.

After pretraining, a third data set was used for domain‐specific

training of the CADe system. This data set contained 4.420

Barrett‐specific WLE images derived from 1.229 patients (1.713

neoplastic images from 564 patients and 2.707 NDBE images from

665 patients), which were all retrospectively collected in 10 partici-

pating centers. All images were obtained using Olympus CV‐190

processors using GIF‐H180 and GIF‐HQ190 endoscopes.

A subset of this training data set was subtracted prior to training,

and therefore not used in the training data set. This subset was used

for validation of the CADe system. Based on the results of this

subset, the (hyper)parameters of the trained CADe system were

optimized and the threshold for differentiating neoplastic from NDBE

images was determined. This subset contained 233 neoplastic images

(129 unique patients) and 374 NDBE images (73 unique patients).

The images were carefully selected based on the subtlety score of the

neoplastic images to create a subset comparable to the test set (see

below) and to optimize the CADe system toward its intended

application.

F I G U R E 1 Creation of ground truth using expert delineations, an example of one case. (a) original image, (b) delineations of expert 1;
(c) delineations of expert 2; (d) combined delineations of the two experts; (e) heatmap based on expert delineations; (f) eventual delineation

used for ground truth.
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Data sets for testing the Computer Aided Detection
system

To test the performance of the CADe system, three independent

test sets were created (Table 1, Figure 2). The images in these

test sets were not used during pretraining, training, or validation

of the CADe system and a patient‐split was maintained between

all data sets.

Test set 1 contained 200 retrospectively collected images: 50

neoplastic images derived from 50 patients and 150 NDBE images

derived from 150 patients. A ratio of 1:3 neoplasia/NDBE was used

since this better reflects clinical practice than a 1:1 split as was used

in our previous studies.12,14 This first test set was artificially enriched

with subtle neoplastic lesions (based on preselection of cases with a

likelihood‐of‐detection‐score <50 followed by independent further

selection by two experts), mimicking a clinical setting during sur-

veillance endoscopy where recognition of early neoplasia might be at

stake.

Test set 2 contained 100 retrospectively collected images (50

neoplastic and 50 NDBE images, 1 image per patient). This test set

contained a wide variety of neoplastic lesions in terms of subtlety,

representing the distribution of neoplastic lesions encountered in

clinical practice.

Test set 3 contained prospectively collected images recorded

with the latest Olympus X1 endoscopy system using either HQ190 or

EZ1500 endoscopes. This set contained 200 images: 50 neoplastic

images derived from 39 patients and 150 NDBE images derived from

74 patients. Although our CADe system was not trained on either

prospectively collected imagery or next‐generation endoscopes, we

wanted to have an estimate of its performance once under state‐of‐
the‐art circumstances.

Benchmark performance by general endoscopists on
test set 1

The first test set was benchmarked by 52 general endoscopists

originating from 3 countries to provide a reference for CADe per-

formance. A previously designed web‐based module (Meducati AB,

Göteborg, Sweden) was used and adjusted for this specific study.15,16

For each endoscopic image, the endoscopists indicated if they

detected neoplasia and, where applicable, placed a biopsy mark on

the most abnormal part of the lesion. This mark represents the

location where they would have taken a targeted biopsy during real‐
time endoscopic examination.

Architecture of Computer Aided Detection system

The CADe system was constructed using an EfficientNet‐Lite1

encoder17 to extract the relevant image information and a Mobile-

NetV2 DeepLabV3+ decoder18 to generate an output segmentation

(Supplementary Figure 2). Both architectures are optimized for fast

and efficient processing of real‐time imagery and can be directly

implemented into current endoscopy systems.

After the two‐step pretraining process and transfer of the cor-

responding learned features, the encoder and decoder branch of the

system were trained simultaneously using data set 3. This enabled

optimal use of the classification labels and expert delineations of

neoplastic images for both branches. Furthermore, the neoplastic

images without expert delineations could be efficiently leveraged to

improve the training of the classification branch. During validation,

using only the segmentation branch (decoder) achieved the best

performance for both classification and segmentation. For this

T A B L E 1 Performance in terms of sensitivity and specificity on validation data set to determine optimal threshold for Computer Aided
Detection (CADe) performance.

Data set and purpose Type of imagery

Number of images (#
patients)

Acquisition Type of labelingNeoplastic NDBE

1. General pretraining on non‐
endoscopic images

ImageNet 1.200.000 (n.a.) n.a. n.a.

2. Domain‐specific pretraining on

general endoscopic images

GastroNet 494.364 (15.286) Retrospective

acquisition

Subset: Hand‐labeled by 2 experts

3. Training Barrett specific 1.480 (435) 2.333 (592) Retrospective

acquisition

Hand‐labeled by 3 experts, correlating

pathology, delineated by ≥ 2 experts

4. Validation Barrett specific 233 (129) 374 (73) Retrospective

acquisition

Hand‐labeled by 3 experts, correlating

pathology, delineated by ≥ 2 experts

5. Testing Barrett specific 50 (50) 150 (150) Retrospective

acquisition

Hand‐labeled by 3 experts, correlating

pathology, delineated by ≥ 2 experts

Barrett specific 50 (50) 50 (50) Retrospective

acquisition

Hand‐labeled by 3 experts, correlating

pathology, delineated by ≥ 2 experts

Barrett specific 50 (39) 150 (74) Prospective

acquisition

Hand‐labeled by 3 experts, correlating

pathology
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F I G U R E 2 (a) Example of neoplastic images per test set; (b) corresponding bounding boxes based on Computer Aided Detection (CADe)
prediction. Test set 1: retrospective test set enriched with more subtle lesions; test set 2: retrospective test set with less subtle lesions; test

set 3: prospective test set with different kinds of lesions.
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reason, positive detection on the test set was defined as any pre-

diction for which one or more pixels of the image exceeded the

customizable threshold.

Additional technical details are described in the supplementary

materials of this manuscript.

Outcome measurements

Primary outcome measurements:

‐ Correct classification of neoplastic images, reported in terms of

sensitivity for the CADe system and for general endoscopists on test

set 1.

‐ Correct classification of neoplastic images, reported in terms of

sensitivity for the CADe system on test sets 2 and 3.

Secondary outcome measurements:

‐ Correct classification of NDBE images, reported in terms of spec-

ificity for the CADe system and for general endoscopists on test

set 1.

‐ Correct localization of neoplasia for test set 1, defined as overlap

of the bounding box (CADe system) or biopsy mark (endoscopists)

with experts' ground truth (Figure 3).

‐ Correct classification of NDBE images reported in terms of spec-

ificity for the CADe system on test sets 2 and 3.

‐ Processing speed of endoscopic images for the CADe system.

Statistical analysis

Statistical analyses were performed using Python 3.8.10 (Python

Software Foundation). Diagnostic accuracy per image was displayed

using sensitivity and specificity. Due to the 25/75 split of neoplastic

and non‐dysplastic data, it was chosen not to display the accuracy.

Localization performance was evaluated for the images that were

correctly classified as neoplastic.

RESULTS

Internal validation results

During the training phase, the CADe system's performance was

evaluated on the validation set (Table 2, Figure 4) to optimize the

(hyper)parameters and to determine the threshold for neoplasia

detection afterward. This threshold is the optimal cut‐off point value

in terms of sensitivity while maintaining acceptable specificity. A

threshold of 0.25 (with a corresponding sensitivity of 88.0% and

F I G U R E 3 Difference in localization for Computer Aided Detection (CADe) system and endoscopists: (a) original image; (b) ground truth

based on expert delineations; (c) green bounding box of the CADe system indicating the localization of the neoplastic lesion; (d) the biopsy
mark of the endoscopist indicating the localization of the neoplastic lesion.
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specificity of 72.2% on the validation set) was chosen for further use

on the three independent test sets. This threshold indicates that if

the prediction of the CADe system, ranging between 0 and 1, is ≥
0.25, this image will be classified as neoplastic. A prediction <0.25

will classify the image as non‐dysplastic.

Performance on test set 1

The CADe system correctly classified 42/50 neoplastic images as

neoplastic and 99/150 NDBE images as non‐dysplastic, corresponding

to sensitivity and specificity of 84% and 66%, respectively. The results

are summarized in Table 3.

In 41 of 42 (97%) correctly identified neoplastic images, the

bounding box of the CADe system overlapped with the ground truth

of experts.

Benchmark performance of general endoscopists

Fifty‐two general endoscopists originating from France, the United

Kingdom, and the Netherlands completed the web‐based module.

The median sensitivity for the general endoscopists was 63% (IQR

50%–78%) and median specificity was 87% (IQR 79%–94%; Figure

5). The general endoscopists placed their biopsy mark within the

experts' ground truth in 96% (IQR 94%–100%) of the correctly

classified neoplastic images. The CADe system outperformed 88%

of the endoscopists in terms of sensitivity. The median absolute

difference between the performance of the CADe system and the

general endoscopists was 21%, resulting in a relative increase in

neoplasia detection of 33%. The lowest scoring 25% of the endo-

scopists (median sensitivity of 44% (IQR 44%–48%)) would benefit

most from the assistance of the CADe system with a potential

relative increase of 63% in their neoplasia detection (absolute in-

crease 40%).

Performance on test set 2

The CADe system classified all 50 neoplastic images correctly

(sensitivity 100%) and 33/50 NDBE images (specificity 66%; Table

3).

Performance on test set 3

In this prospectively collected test set, the CADe system correctly

classified 44/50 neoplastic images and 96/150 NDBE images (sensi-

tivity 88%, specificity 64%; Table 3).

Processing speed on endoscopic images

The CADe system classified an endoscopic image in 0.029 seconds

corresponding to an analysis speed of 35 frames per second, which is

sufficient for real‐time application during endoscopic procedures.

T A B L E 2 Summary of performance on all three test sets for the Computer Aided Detection (CADe) system and general endoscopists.

Threshold Sensitivity Specificity

0.15 92.7 60.0

0.20 89.7 68.2

0.25 88.0 72.2

0.30 85.0 76.2

0.35 84.1 80.5

0.40 80.7 82.6

0.45 75.1 85.8

F I G U R E 4 The ROC curve for internal validation. The vertical
axis represents sensitivity, and the horizontal axis represents the
inverse of specificity. The best performance on this data set is
located closest to the left upper corner. ROC, receiver operating

curve.
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DISCUSSION

We describe the first step in the development of a robust CADe

system for Barrett's neoplasia. In this study, we aimed to describe the

infrastructure of our consortium and report the first results based on

retrospectively collected endoscopic images. This CADe system was

trained with an unprecedented number of images in the field of BE

and outperformed the vast majority of general endoscopists in terms

of neoplasia detection.

For our primary analyses, we constructed a test set enriched

for subtle neoplastic lesions, representing challenging cases in which

endoscopists would benefit most from CADe assistance. This test

set was benchmarked by 52 general endoscopists who detected

63% of neoplastic lesions versus 84% for CADe (Figure 5). A

sensitivity of 63% for the general endoscopists corresponds to a

miss‐rate of approximately one third of the neoplastic lesions.

Approximately 25% of the endoscopists missed over 50% of the

neoplastic lesions.

Most endoscopists with a sensitivity comparable to that of the

CADe system (Figure 5) had a significantly lower specificity than

those who performed poorly in detecting neoplasia. This inverse

relationship between sensitivity and specificity was also reflected in

the CADe performance. The CADe system misclassified 51/150

NDBE images as neoplastic, which corresponds to a specificity of 66%

versus a median specificity of 87% for the general endoscopists.

In the light of the ongoing development of the CADe system, we

wanted to understand the false‐positive predictions of the CADe

system. During this evaluation, we noticed that the bounding box in

some cases included evident false‐positive detections (i.e., the esoph-

ageal lumen or the endoscope itself) or subtle mucosal abnormalities,

even though the corresponding pathology showed no dysplasia (Figure

6). We reasoned that the obvious false‐positive detections would be

rejected immediately by the endoscopist. However, the CADe system

should detect all visible abnormalities, regardless of corresponding

pathology, to adhere to current guidelines. Therefore, we performed a

post‐hoc analysis in which 2 expert endoscopists independently

assessed the false‐positive detections of the system.

For test set 1, 24/51 false‐positive detections, the NDBE images

indeed contained subtle visible abnormalities as assessed post‐hoc by

two expert endoscopists (Figure 6a). Based on the more focused

endoscopic inspection and clinical information, the endoscopist may

then decide to dismiss the detection, interrogate the area in detail,

and/or obtain targeted biopsy. The potential negative clinical con-

sequences of false‐positive CADe detection (i.e., obtaining an un-

necessary additional targeted biopsy against the background of

having to take multiple random biopsies anyway) are clearly of minor

importance compared to the potential clinical consequences of false‐
negative detection, in which a neoplastic lesion may be left unde-

tected and a 3–5 years surveillance interval may follow.

Ten of 51 false‐positive predictions were considered clear flaws

of the CADe system, for example, detecting the endoscope, lumen, or

bubbles as abnormal (Figure 6b). We anticipate that endoscopists will

easily dismiss such positive detections. In only 17/150 predictions,

the CADe system labeled normal mucosa as being neoplastic (Figure

6c). In our opinion, these are “true” false‐positive detections, corre-

sponding to an adjusted specificity of 89% (Figure 7). To compare the

adjusted specificity fairly with the assessors, the “subtle abnormality”

false‐positive predictions were disregarded for the assessors and

specificity was recalculated. The median adjusted specificity for as-

sessors was 88% (original specificity 87%).

F I G U R E 5 Classification performance of the Computer Aided

Detection (CADe) system (red square) and individual general
endoscopists (blue dot) on test set 1.

T A B L E 3 Overview of data sets used for the development of the Computer Aided Detection (CADe) system.

Data set Scored by

Classification Localization

Sensitivity Specificity Performance Method

Retrospective test set 1 CADe system 84% 66% 97% Bounding box

General endoscopists 63% (IQR 50%–78%) 87% (IQR 79%–94%) 96% (IQR 94%–100%) Biopsy mark

Retrospective test set 2 CADe system 100% 66% n.a. n.a.

Prospective test set 3 CADe system 88% 64% n.a. n.a.
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The post hoc analyses of false‐positive findings in test sets 2 and 3

showed similar findings with adjusted specificity of 88% and 87%,

respectively. We anticipate that a significant proportion of false‐
positive detections on a flat‐type mucosa of NDBE will be easily dis-

missed after more detailed inspection with optical chromoscopy

techniques. We have recently reported on a computer‐assisted char-

acterization algorithm using narrow‐band imaging (NBI‐CADx)13 that

could be used for such a purpose.

In test set 2, all neoplastic lesions were detected (sensitivity

100%). This test set was created to represent the normal variety of

neoplastic lesions encountered in daily practice and was not artifi-

cially enriched with subtle neoplasia, explaining the difference in

sensitivity in test sets 1 and 2. These results suggest that in daily

practice, the CADe system should be able to detect virtually all early

neoplastic lesions encountered during Barrett surveillance

endoscopy.

F I G U R E 6 Examples of false positive Computer Aided Detection (CADe) predictions: (a) subtle visible abnormalities; (b) clear flaws of the
CADe system; and (c) “true” false‐positive detections.

F I G U R E 7 Flow‐chart of Computer Aided Detection (CADe) performance on test set 1.
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In test set 3, the CADe system was tested on images obtained

using the Olympus X1 processor and the latest generation EZ1500‐
gastroscopes. The results of this prospective test set are compared

to those of test set 1 (sensitivity 88% vs. 84%, specificity 64% vs.

66%). The results of test set 3 suggest that the current CADe system

is pretty robust, even without actual training on imagery acquired

with this set‐up. It is important to point out that in our prospective

image acquisition protocol images are obtained in overview without

specific focus on any lesion (i.e., mimicking the situation where lesions

are overlooked). Training and testing CADe algorithms using imagery

collected in overview eliminate an important hidden bias that is

inherent to the use of retrospectively collected imagery of early

neoplasia: in the latter – almost per definition – the available image

has been acquired because the lesion has been detected by the endo-

scopist. Therefore, retrospectively collected imagery of neoplastic le-

sions is biased toward easily detectable lesions and shows the

neoplastic lesion in a different endoscopic configuration (i.e. relatively

more often focused onto the lesion) than during the envisioned

endoscopic application of CADe in Barrett surveillance. In the

eventual application, the endoscopist provides an overview of the

Barrett's segment and CADe might provide clinical benefit for those

neoplastic lesions that remain unrecognized by the endoscopist. This

is an important source of systemic bias in developing CADe algo-

rithms on retrospective imagery (Figure 8). In our ongoing prospec-

tive image acquisition, all imagery is obtained in overview without

specific focus on imaging lesions. This provides a more realistic im-

agery for training a CADe system and ensures that imagery of NDBE

and neoplastic cases are recorded under the same circumstances.

The ratio of neoplastic and non‐dysplastic images in our test sets

does not reflect the real‐time prevalence of neoplasia in a general

surveillance setting. If we extrapolate our findings to an estimated

prevalence of visible neoplastic lesions of 1/200 surveillance

endoscopy, our current algorithm will result in more false‐positive

detections than true‐positive detections (i.e., the positive predictive

value would be 1%, vs. a negative predictive value of 100%). As

mentioned above, we anticipate that many false‐positive detections

will be dismissed by the endoscopist and that the remaining detections

justify targeted biopsies based on current guideline recommendations.

There are several opportunities to further improve the current

CADe performance on still images. First, we will expand the pre-

training GastroNet data set tenfold to include 5.000.000 general

endoscopic images. Second, we will increase the number of training

data by adding more prospectively collected data. Third, we will

expand the number of subtle neoplastic images in the training set:

since we artificially enriched our test set with subtle neoplastic lesions,

our training set may have been relatively depleted for these types of

lesions and therefore may have been underpowered for optimal

training here. Fourth, we will further curate the training set by

excluding NDBE images with subtle visible abnormalities to avoid that

the CADe system is trained with images of subtle abnormalities which

are labeled as non‐neoplastic. These two measures should increase the

sensitivity for detection of subtle neoplastic lesions. Fifth, we strive to

exploit the ambiguity contained in the ground truth delineations by the

expert endoscopists for better training. Conceptually, the overlap area

of two experts for the most profound part of the neoplastic lesion has

different information than an area which was delineated by only one

expert as being subtle in neoplastic appearance (Figure 1).

This study has several unique features. First, due to the low

demands on computational resources and generic architecture of the

current CADe system, it is suitable for direct clinical implementation

in current endoscopy systems. Second, our CADe system was trained

with the largest reported number of Barrett's images to date. The

total number of images (close to 500.000 endoscopic images and

4.920 Barrett‐specific images derived from 1.642 unique patients)

F I G U R E 8 Representing the difference in focus for neoplastic lesions: (a) retrospective images focused on the neoplastic lesion and
(b) prospectively recorded images in overview without specific focus on the neoplastic lesion.
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were obtained from 11 participating centers in Europe. The hetero-

geneity of the data sets used in the development and evaluation of

the CADe system increases the robustness of the results. All

neoplastic images were delineated by at least two out of 14 inter-

national expert endoscopists to create the optimal ground truth for

training and testing. This approach ensures improved heterogeneity

and robustness over our previous CADe system.12,14

This study also has some limitations. First, only retrospective

data were used for the development of this CADe system. However,

the comparable performance on test set 3 suggests robustness for

prospective data. Second, due to the setup of the current bench-

marking study, it is not possible to report the additive value of the

CADe system. This would require a two‐phase assessment in which

assessors first assess images without CADe assistance, followed by a

second assessment in which the same images are evaluated with

CADe assistance. Third, all images used in this study were recorded

by expert endoscopists, resulting in high‐quality images with proper

mucosal cleaning and a well‐expanded esophagus. This might differ

from the eventual application in the current surveillance setting. In

future studies, we are planning to include more heterogenous and

prospective data to increase the robustness of the CADe system.

Finally, the localization of the CADe system was considered correct if

the bounding box overlapped the experts' ground truth with a min-

imum of one pixel, which could theoretically increase localization

performance. However, when analyzing CADe predictions, the

bounding box virtually always included the major part of the

neoplastic lesion, if not the complete lesion.

In future studies, to improve the performance of the current CADe

system, our consortium aims to expand the training set, in particular by

theprospectively collected imagery, with a set goal on15.000 images in

total derived from 2.000 patients. Second, we will work on the tran-

sition from an image‐based CADe system toward a video‐based CADe

system to work toward a real‐time application during endoscopic

procedures. Third, to evaluate the robustness and generalizability of

the CADe system, we aim to expand the number of independent test

sets for images and videos. Furthermore, we will include expert

endoscopists performance as a reference performance and we want to

test the performance of general endoscopists without and with the

assistance of the CADe system in sequential benchmarking studies to

investigate the additive value of the CADe system when used by

general endoscopists. Finally, we aim to incorporate an NBI‐CADx

system to reduce false‐positive CADe detections.

In conclusion, we report the preliminary results of a robust CADe

system for Barrett's neoplasia with low computational demands

allowing real‐time applications. The CADe system detected neoplasia

with high accuracy and near‐perfect localization. The accuracy for

detecting neoplasia of the CADe system was higher compared to

general endoscopists, suggesting improved neoplasia detection by

the use of CADe assistance. Future studies will focus on the acqui-

sition of prospective training data and prospective testing with

‘endoscopist plus CADe’ performance evaluations, followed by live

testing in the endoscopy suite.
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