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HUME’S PRINCIPLE, BEGINNINGS

ALBERT VISSER

Abstract. In this note we derive Robinson’s Arithmetic from Hume’s Prin-

ciple in the context of very weak theories of classes and relations.

1. Introduction

Frege’s derivation of arithmetic from Hume’s Principle has great beauty. In this
derivation, numbers are created by an autocatalytic process starting from nothing.
Moreover, in one fell swoop, we also define the arithmetical operations of addition
and multiplication. In this paper we try to obtain a closer understanding of the
fine structure of the employment of Hume’s Principle to obtain basic arithmetical
principles.

1.1. Contents of The Paper. In the present work, I attempt a detailed and slow
study to address the following questions:
a. How much comprehension is needed to develop a weak system of arithmetic?
b. Can we get a more modular picture of how arithmetic follows from Hume’s Prin-

ciple?
John Burgess shows, in his book [Bur05], that a predicative system of second order
logic, with variables for binary relations, expanded with Hume’s Principle interprets
Robinson’s Arithmetic Q. This result suggests the following picture. We can divide
the proof of Frege’s Theorem into two steps. First, in the context of a weak theory
of binary relations over a domain we can develop a weak arithmetic with the help
of Hume’s principle and, then, by increasing the strength of the theory of relations
we raise the strength of the resulting arithmetical system.

Zooming in on the development of arithmetic in a weak second order theory
using Hume’s principle, we see that there are, prima facie, three ingredients.
a. Hume’s principle gives us an infinity of objects.
b. Hume’s principle allows us to treat numbers as objects and, hence, enables us

to speak about classes of numbers in a second order context.
c. Hume’s principle helps us to define the arithmetical operations.
In the present paper we will concentrate on the development of first order arithmetic
from Hume’s principle, so on (a) and (c). Item (b) will only occur in so far as it is
used for (c). We will show that if we start with adjunctive relation theory, a very
weak second order system, then the only contribution needed of Hume’s principle
to develop an interpretation of Q is (a). We can define the arithmetical operations
as operations on classes modulo equinumerosity without projecting these classes to
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objects. In other words, Hume’s principle is not needed for (c) after all. Here, we
use the presence of relations (i) to define the relation of equinumerosity and (ii) to
implement the arithmetical operations on classes.

We can get a somewhat more refined and more interesting picture, if we do not
work with relations but only with classes. We show that, if we start with adjunctive
class theory with a primitively given equinumerosity relation plus the principle that
says that there is no universal class, then we can develop Qadd, the analogue of
Q for addition, without multiplication, but that we cannot develop Q.1 To define
multiplication, we need Hume’s principle, so, in a class context, Hume’s principle
is essential for (c).

Thus, in the context of a theory of classes with equinumerosity, Hume’s principle
is connected to what one could call the reverse mathematics of addition and mul-
tiplication. Such a program involves matching ‘natural’ pairs of class theories with
pairs of a theory of addition and a theory of addition and multiplication. We do
not develop the full picture here. We present one clear result: the adjunctive theory
of classes with equinumerosity and Hume’s principle is mutually interpretable with
Q.2 The precise relationship between adjunctive class theory with equinumerosity
and no-universe and, on the other hand, a suitable extension of Qadd still has to be
analyzed. We show that the first theory interprets the second. It seems plausible
that, in the other direction, there is an informative reduction relation, along the
lines sketched by Feferman and Vaught in their paper [FV59] for the case of true
theories. We show, in Section 6, that the second theory does not interpret the first.
Hence, we really do need the less restrictive Feferman-Orey relation between the
theories.

1.2. Almost Philosophical Considerations. In the kind of foundational re-
search exemplified by this paper, there are, very roughly, two colors, say blue and
yellow.3 Blue is the study of the fine structure of reasoning. Here we have reverse
mathematics, theory reduction, interpretability and the like. Yellow has a tighter
link with philosophy: we are looking for a serious justification of numerical reason-
ing, of sets, etcetera. A lot of contemporary work on Frege’s Grundgesetze falls
under yellow. Of course, the separation is not strict. E.g., Burgess’ book [Bur05]
exhibits both colors. Of course, work falling under blue can provide useful data for
research of color yellow.

The primary focus of the present paper is the fine structure of reasoning, making
it blue. Thus, the fact that we work in very weak theories does not necessarily reflect
a conviction that these theories can be justified, or that we cannot justify much
more.

One important aspect of both Burgess’ development of Q from a predicative
theory of binary relations expanded with Hume’s Principle and the development in
our paper is that we grant ourselves the freedom of gaining more ‘good’ properties
of our numbers by contracting the number domain. This methodology was initi-
ated by Edward Nelson in his book [Nel86], thus transforming Solovay’s method of
shortening cuts (introduced in [Sol76]) into a foundational tool.

1The system Qadd is a subsystem of Presburger Arithmetic PresA. We show in an appendix

that Qadd locally interprets PresA.
2It would be interesting to explore the existence of tighter relations. For certain extensions of

both theories we do indeed have tighter connections.
3The choice of colors is inspired by a famous scene from Monty Python and the Holy Grail.
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In the context of a Frege-style development of number theory (of color yellow)
this strategy is not unproblematic. In a Frege-style program, we are interested in
defining the natural numbers. Not every class of objects having some desired prop-
erties usually associated with the natural numbers qualifies. After all, we want to
say what the natural numbers are. Thus, it could be our aim to see what certain
principles allow us to prove about the numbers as given by some fixed definition,
e.g., the precise definitions employed by Frege, rather than to fiddle around with
the definition to get better properties.4 Similarly, we could be interested in a recon-
struction that justifies this specific reasoning and not in justifying quite different
reasoning with the same conclusion.

We note that the preferred definitions view is not without its own problems. The
claim that such-and-such a definition is the intended one, is in need of informally
rigorous argumentation. For example, Frege’s definition of the natural numbers
using the ancestral seems to me to be an ordinal-style definition, where Burgess’
definition of proto-natural numbers (p156 of [Bur05]) has much more a cardinal
flavour: it is a strengthened version of Dedekind finiteness. Given that Frege’s
development is intended to build the cardinals, which is the better one?

Let me stress that the kind of blue project we are involved in is not necessarily
antithetical to a yellow view involving intended definitions. Suppose, e.g., we have
a preferred definition N0 of, say, the natural numbers, and suppose we want them
to have the good property P . Suppose further we have proved P in a very weak
context for a ‘contracted’ virtual class of natural numbers N1. Then a good theory
in which to get P for N0 could be a theory in which N1 and N0 coincide. So we
immediately know that a principle that implies the equality of N0 and N1 will have
numbers with the good property P .

On the other hand, it would be interesting to see whether there is a coherent
foundational idea corresponding to the methodology of shortening cuts. This would
involve rejecting the claim that induction is almost analytical for the natural num-
bers (made by Linnebo in his paper [Lin04]).5 When working with this method
one develops the feeling that such a philosophy is just around the corner. Nelson’s
program as developed in [Nel86] seems to be founded on the conviction that, yes,
there is a foundational idea that justifies building up the numbers by ‘number sys-
tem hopping’. Unfortunately, Nelson gives us no hint what such an idea could look
like.

2. Preliminaries

This note will presuppose familiarity with the notions and notations introduced
in [Vis09]. In this section, we provide a list of principles and theories. The best
reading strategy is to glance through this section and return to it as soon as a
principle is added.

We will use the following convention. Theories will be specified as e.g. [a3, b2]
where a3 and b2 are already specified principles. The signature of the theory will

4For a paper that studies preferred definitions for a Frege-style development of Arithmetic,
see Øystein Linnebo’s paper [Lin04]. Linnebo provides an interesting discussion of Burgess’ proof
that predicative relational Frege theory interprets Q.

5Induction in the case discussed by Linnebo is not really induction anyway, in the light of the
restriction on comprehension.
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be the minimal signature that is involved in all the axioms of the theory. If a theory
U is given U [a3, b2] will be the result of adding a3 and b2 to U .

2.1. Class Theories. We start with class theories. We have a language with two
sorts: o, the sort of objects and c, the sort of classes. We let x, y, z, . . . range over
objects and X,Y, Z, . . . over classes. We have identity for each sort and one binary
predicate ∈ of sort oc. We have the following list of principles.
c1 ` ∃X ∀x x 6∈ X (empty class axiom)
c2 ` ∃Y ∀y (y ∈ Y ↔ (y ∈ X ∨ y = x)) (adjunction axiom),
c3 ` ∀z (z ∈ X ↔ z ∈ Y )→ X = Y (extensionality)
c4 ` ∃Z ∀z (z ∈ Z ↔ (z ∈ X ∧ z ∈ Y )) (closure under intersection)
c5 ` ∃Y ∀y (y ∈ Y ↔ (y ∈ X ∧ y 6= x)) (subtraction axiom)
c6 ` ∃Z ∀z (z ∈ Z ↔ (z ∈ X ∧ z 6∈ Y )) (closure under class-subtraction)
c7 ` ∃Z ∀z (z ∈ Z ↔ (z ∈ X ∨ z ∈ Y )) (closure under union).
c8 ` ∃x x 6∈ X (no-universe axiom)

The theory ac is [c1,c2,c3]. We note that it has a one-sorted version, with just
classes and the relation ⊆, where we interpret the objects as the atoms of the ⊆-
ordering.6 We also note that axiom c3 is really superfluous, since we can always
interpret identity on the classes as extensional equivalence.

We note that if we have the theory with all our principles, say, ac+, then c2 and
c5 can be replaced by an axiom stating the existence of singletons. The theory ac+

can easily be shown to be complete via quantifier elimination by a minor adaptation
of the proof of the Löwenheim-Behman theorem. See [Bur05] for an exposition of
the original theorem.

2.2. Adding Equinumerosity. We extend the language of ac with a binary re-
lation symbol ≡ of type cc. We have the following principles for the extended
language. In the statement of some of these principles we use operations on classes.
We will only use the principles in the context of axioms stating that these operations
are total. We write X # Y for ∀z (z 6∈ X ∨ z 6∈ Y ).
e1 ` (X ≡ ∅ ∨ ∅ ≡ X)↔ X = ∅
e2 ` (x 6∈ X ∧ y 6∈ Y )→ ((X ∪ {x}) ≡ (Y ∪ {y})↔ X ≡ Y )
e3 ` X ≡ X
e4 ` X ≡ Y → Y ≡ X
e5 ` (X ≡ Y ∧ Y ≡ Z)→ X ≡ Z
e6 ` Y ⊂ X → Y 6≡ X (Dedekind finiteness axiom)
e7 ` (X ⊆ Y ≡ Y ′)→ ∃X ′ (X ≡ X ′ ⊆ Y ′)
e8 ` (X ≡ X ′ ∧ Y ≡ Y ′ ∧X ⊆ Y ∧X ′ ⊆ Y ′)→ (Y \X) ≡ (Y ′ \X ′)
e9 ` (X # Y ∧X ′ # Y ′ ∧X ≡ X ′ ∧ Y ≡ Y ′)→ (X ∪ Y ) ≡ (X ′ ∪ Y ′)

e10 ` ∃Y ′ (Y ≡ Y ′ ∧X # Y ′)

The theory eqnum is ac[e1,e2]. Feferman and Vaught in their classical paper [FV59],
show that, for any cardinality κ, the theory of all classes of elements from a domain
of size κ, with the subset ordering and with the relation of equinumerosity, is
decidable. We can interpret eqnum into these theories by identifying the objects

6If we set it up correctly this one-sorted version is bi-interpretable with the original theory. This

means that there are interpretations between the two theories whose compositions are definably
and provably isomorphic with the identity interpretation.
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with the atoms of ⊆. It follows that eqnum has a decidable extension and, hence,
does not interpret Q.

2.3. Adding the Hume Relation. To formulate Hume’s principe, we add the
Hume relation 3 to the language. This relation is of type co. We choose to work
with a Hume relation as opposed to a Hume function because the functionality
never seems to play any role in the arguments. Moreover, functionality is a rather
strong demand. For example, in the context of ZF without choice we need Scott’s
trick to produce a Hume function, which depends on a lot of details of the theory.
So by dropping functionality we have a substantial gain in generality. Here is a list
of principles.
h1 ` ∃x X 3 x
h2 ` (X 3 z ∧ Y 3 z)→ X ≡ Y
h3 ` X ≡ Y 3 z → X 3 z

The theory Hume Light or HL is eqnum[h1,h2].
We note that we could eliminate ≡ from the language by redefining X ≡ Y as

∃z (X 3 z ∧ Y 3 z). This would ask for a careful choice of axioms. Moreover,
we would get some properties of the equinumerosity relation like reflexivity and
symmetry for free.

2.4. Relational Theories. We introduce adjunctive relation theory ar. Adjunc-
tive relation theory is a two-sorted theory with sorts o, the sort of objects, and r,
the sort of relations. We use x, y, z, . . . to range over objects and R,S, . . . to range
over relations. Our theory has identity for each sort and a ternary relation app of
type roo. We write Rxy for app(R, x, y). Here is a list of principles.
r1 ` ∃R ∀x, y ¬Rxy
r2 ` ∃S ∀u, v (Suv ↔ (Ruv ∨ (x = u ∧ y = v)))
r3 ` ∃S ∀u, v (Suv ↔ (Ruv ∧ (x 6= u ∨ y 6= v)))
The theory ar is given by [r1,r2]. In ar we can define classes as diagonal relations, i.e.,
as relations such that, for all x, y, if Rxy, then x = y. Clearly this interpretation
does yield ac for our classes. We will add principles concerning classes to ar as a
matter of course under this reading. So, e.g. ar[c8] is ar plus ` ∃x ¬Rxx.

We remind the reader of a result of [Vis09]. There it is shown that ar plus the no-
universe axiom interprets Q as a theory of cardinals over the given object domain.

2.5. Arithmetical Theories. We consider the following list of principles in the
inclusive signature 0,S,+,×,≤. We often write x · y or xy for x× y.
q1 ` Sx 6= 0
q2 ` Sx = Sy → x = y
q3 ` x+ 0 = x
q4 ` x+ Sy = S(x+ y)
q5 ` x× 0 = 0
q6 ` x× Sy = (x× y) + x
q7 ` x = 0 ∨ ∃y x = y + 1
q8 ` x ≤ x
q9 ` (x ≤ y ∧ y ≤ z)→ x ≤ z

q10 ` (x ≤ y ∧ y ≤ x)→ x = y
q11 ` x ≤ y → (x = y ∨ Sx ≤ y)
q12 ` x ≤ y ∨ y ≤ x
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q13 ` x ≤ y ↔ ∃z (z + x = y)
q14 ` Sx 6= x
q15 ` (x+ y) + z = x+ (y + z)
q16 ` x+ y = y + x
q17 ` x+ z = y + z → x = y
q18 ` x× (y + z) = (x× y) + (x× z)
q19 ` x× (y × z) = (x× y)× z

The theory Qadd is the theory [q1, q2, q3, q4, q7], in the signature with 0,S,+. The
theory Q is Qadd[q5, q6] in the signature with 0,S,+,×.

3. No-Universe

We first show that a version of Hume’s Principle allows us to construct a totality
of classes that is adjunctive, but does not contain the universe of objects. To be
precise, we show that eqnum directly interprets the no-universe axiom ac8.

3.1. Bootstrap in ac. We start to work in ac. As a first step, define X0 as the
virtual class of classes such that X is in X0 iff, for all Y , X ∩ Y exists. We easily
see that X0 is closed under empty class, adjunction, and intersection. We note
that this argument uses the associativity of intersection in the strong sense that if
(X ∩ Y ) ∩ Z is defined, then so is X ∩ (Y ∩ Z) and both are equal, and vice versa.
The equality relies on extensionality, which we use here as a matter of course. We
relativize our classes to X0, thereby gaining the extra axiom c4: that classes are
closed under intersection.

We work in ac[c4]. We consider X1, where X is in X1 if, for all x, X \ {x} exists.
It is easy to see that X1 is closed under empty class, adjunction, intersection and
subtraction. (We need the presence of intersection for closure under subtraction!)
We relativize to X1, thereby gaining the axioms c4 and c5. Here c5 tells us that
classes are closed under subtraction. Thus, we have directly interpreted ac[c4, c5].

3.2. Bootstrap in eqnum. By the result of the previous subsection, we can directly
interpret eqnum[c5] in eqnum. We work in eqnum[c5]. We define X2 as the totality
of those classes X such that:

X ≡ X and ∀Y (X ≡ Y → Y ≡ X) and ∀Y,Z ((X ≡ Y ∧ Y ≡ Z)→ X ≡ Z).

It is easy to see that ∅ ∈ X2. We show that X2 is closed under adjunction. We
treat the case of transitivity. Suppose (X ∪ {x}) ≡ Y and Y ≡ Z. If x is in X, we
are immediately done. Suppose x 6∈ X. We note that Y and Z cannot be empty.
Let y ∈ Y and z ∈ Z. We find that X ≡ (Y \ {y}) and (Y \ {y}) ≡ (Z \ {z}).
Ergo X ≡ (Z \ {z}). Hence, (X ∪ {x}) ≡ Z. Contracting our classes to X2 we gain
the axioms stating that ≡ is an equivalence relation. We note that this property is
preserved under any further contraction of our classes. Relativizing to X2 gives us
eqnum[e3, e4, e5].

We work in eqnum[e3, e4, e5]. We note that e3,e4,e5 are universal and, hence, pre-
served under contraction of the totality of classes. We repeat the procedure of the
previous subsection to regain the subtraction axiom: we get eqnum[c5, e3, e4, e5].7

7We note that in in eqnum[c5] plus the no-universe principle, i.e. eqnum[c5, c8], we can directly
prove that X2 is closed under subtraction.
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We work in eqnum[c5, e3, e4, e5]. We say that X is Dedekind finite iff, for every
Y ⊂ X, we have X 6≡ Y . Let X3 consist of the Dedekind finite classes. Clearly, the
empty class is in X3.

We show that X3 are closed under adjunction. Suppose X is Dedekind finite.
We show that X ∪ {x} is Dedekind finite. We may assume that x 6∈ X. Suppose
X0 ⊂ (X ∪ {x}) and X0 ≡ (X ∪ {x}). It follows that X0 is not empty. Let x0 be x
in case x ∈ X0 and let x0 be some arbitrary element of X0 otherwise. We find that
(X0 \ {x0}) ⊂ X and (X0 \ {x0}) ≡ X. A contradiction with the assumption that
X is Dedekind finite.

It is easy to see that X3 is closed under subtraction. We relativize to X3, thus
gaining the axiom e6, that all classes are Dedekind finite. So we have directly
interpreted eqnum[c5, e3, e4, e5, e6].

We note a useful fact.

Lemma 3.1 (in eqnum). Suppose Y is Dedekind finite, X ≡ Y and x 6∈ X. Then,
for some y, y 6∈ Y . In another formulation: suppose the universe is a Dedekind
finite class, then any class equinumerous to it is again the universe.

Proof. Suppose Y is Dedekind finite, X ≡ Y and x 6∈ X. Suppose Y would be
the universe, then we have (X ∪ {x}) ⊆ Y , and hence X ⊂ Y . But X ≡ Y ,
contradicting the fact that Y is Dedekind finite. 2

3.3. Bootstrap in HL. At this point we switch to the theory HL. Our develop-
ment in this subsection is a straightforward adaptation of the treatment predicative
second order logic with the Hume function in [Bur05].

By the preceding development, we can directly interpret eqnum[c5, e3, e4, e5, e6],
so we can work in HL[c5, e3, e4, e5, e6]. By replacing X 3 y by ∃Z X ≡ Z 3 y, we
gain the axiom h3. So we may work in HL+ := HL[c5, e3, e4, e5, e6, h3].

Let X4 consist of all X, such that there is a class Y such that X ≡ Y and, for
every y ∈ Y , there is an X0 ⊂ X such that X0 3 y. Clearly, ∅ ∈ X4.

We show that X4 is closed under adjunction. Suppose X is in X4. Let Y witness
that X is in X4. Consider X ∪ {x}. We may assume that x 6∈ X. Suppose X 3 y.
We show that Y ∪ {y} has the desired property.

First, we note that y 6∈ Y . If it were, we would have X 3 y and X0 3 y, for
some X0 ⊂ X. So X0 ≡ X, contradicting the fact that X is Dedekind finite.
Ergo, (X ∪ {x}) ≡ (Y ∪ {y}). Consider y′ ∈ Y ∪ {y}. If y ∈ Y , we can find
X0 ⊂ X ⊂ X ∪ {x} with X0 3 y. If y′ = y, we have X 3 y and X ⊂ X ∪ {x}.
We prove that no element of X4 is the universe. Suppose X is in X4. Let Y be the
promised witness of this fact. Let Y 3 y. We find y 6∈ Y . It follows, by Lemma 3.1,
that, for some x, we have x 6∈ X. Finally, we contract our classes to X4. This gives
us HP[c8].

3.4. Bootstrap in adjunctive-subtractive relation theory. We consider ad-
junctive-subtractive relation theory ar[r3]. In this theory we treat classes as diagonal
relations. We define the equinumerosity of X and Y as the existence of a bijection
between X and Y . It is immediate that ar[r3] verifies the axioms e1 and e2. Thus,
when we add Hume’s principle in the form of h1 and h2 for equinumerosity-as-
defined, we obtain a direct interpretation of HL. Thus, by the result of the previous
subsection, we may conclude that ar[r3,h1,h2] directly interprets ar plus the no-
universe axiom c8.
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By the results of [Vis09], we find that ar[r3,h1,h2] interprets Q as a theory of
cardinals. In the converse direction, we know that Q interprets I∆0 + Ω1. Using
familiar methods one may interpret ar[r3,h1,h2] in this last theory. So, we find that
ar[r3,h1,h2] is mutually interpretable with Q.

We note that ar[c8] does not directly interpret ar[r3,h1,h2]. Suppose it did. Con-
sider a standard model M of ar[c8] with an infinite domain and all finite relations
over the domain. We fix a finite set of parameters of the interpretation in M.
Since, any relation in M is definable from finitely many objects, we may assume
that the parameters are objects. The interpretation provides us with an internal
model N of ar[r3,h1,h2]. Without loss of generality, we may assume that we also
have h3. Since every permutation of the objects inM extends to an automorphism
ofM, and since the objects of N coincide with the objects ofM, any permutation
of the objects of N that fixes the parameters extends to an automorphism of N .
Clearly, we can find a standardly finite set X in N and an element n in N such
that X 3N n and the elements of X (according to N ) and n are disjoint from the
parameters.8 Take any permutation σ of the domain that fixes the parameters. We
have X ≡N σX 3N σn. It follows that, for any non-parameter n′, X 3N n′. Quod
impossibile.

Open Question 3.1. We need the subtraction axiom r3 in our development since
the definition of equinumerosity in this context contains an existential quantifier
over relations. Thus, equinumerosity is not absolute for contraction of relations.
For this reason, we might loose axiom h2 when we try to obtain subtraction of
relations via contraction. Can we eliminate the use of the subtraction axiom r3 in
our result?

4. Development of the Theory of Addition in eqnum[c8]

In this section we show how to interpret Qadd in eqnum[c8]. We will provide a
bit more of the theory of addition since this flows naturally from the development.
In Appendix A, we show that we can go on to locally interpret full Presburger
Arithmetic PresA in Qadd.

We begin with a lemma that works already in ac[c4].

Lemma 4.1 (ac[c4]). Suppose Y is closed under empty class and adjunction. Let
D(Y) consist of those classes Y such that:

∀Y ′⊆Y ∀Z∈Y (Y ′ ∪ Z) ∈ Y.9

Then, D(Y) is closed under empty class, adjunction and union and downwards
closed under ⊆. As the consequence of the last fact, closure under intersection,
class subtraction, etc., are preserved from Y to D(Y).

Proof. Closure under empty class, singletons, and downward closure under ⊆ are
trivial. We verify closure under ∪. Suppose Y0 and Y1 are in D(Y). Let Y ′ ⊆
(Y0 ∪ Y1). Then (Y ′ ∩ Y1) ⊆ Y1. Consider any Z in Y. We find that (Y ′ ∩ Y1) ∪ Z
is in Y. Since, (Y ′ ∩ Y0) ⊆ Y0, we find that

(Y ′ ∪ Z) = ((Y ′ ∩ Y0) ∪ ((Y ′ ∩ Y1) ∪ Z)) ∈ Y.
We may conclude that Y0 ∪ Y1 is in D(Y). 2

8Note that X in N may be represented as ~Y , ~m in M. However, the precise representation of
X is immaterial for our argument.

9Here ‘(Y ′ ∪ Z) ∈ Y’ reads: (Y ′ ∪ Z) exists and is in Y.
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We start with eqnum[c8]. We first follow the bootstrap of the previous section to
gain eqnum[c5, c8, e3, e4, e5, e6]. Note that c8 is universal in the class quantifiers
and, hence, always preserved under contractions of the totality of classes.

To work conveniently we contract our classes to add closure under X ∩ Y , X \ Y ,
X ∪ Y . We leave this as an easy exercise to the reader. So, we may work in
eqnum+ := eqnum[c4, c6, c7, c8, e3, e4, e5, e6]. (Note that c5 is derivable.)

We work in eqnum+. We consider the collection of classes X5, such that X is in X5

iff, for all Y, Y ′, if X ⊆ Y ≡ Y ′, then there is an X ′, such that X ≡ X ′ ⊆ Y ′.
Clearly, the empty class is in X5. We show that X5 is closed under adjunction.

Consider X ∈ X5 and any x. Without loss of generality we may assume that x 6∈ X.
Suppose X ∈ X5 and (X ∪ {x}) ⊆ Y ≡ Y ′. Then, for some X ′, X ≡ X ′ ⊆ Y ′. If
X ′ = Y ′, then X ≡ Y , and hence, by Dedekind finiteness, X = Y , contradicting
the fact that x ∈ Y and x 6∈ X. So, for some x′, x′ ∈ Y ′ and x′ 6∈ X ′. We have
(X ∪ {x}) ≡ (X ′ ∪ {x′}) ⊆ Y ′.

Consider the class X6 of all X such that for all X ′, Y, Y ′ with X ≡ X ′, Y ≡ Y ′,
X ⊆ Y , X ′ ⊆ Y ′, we have (Y \X) ≡ (Y ′ \X ′).

It is clear that X6 contains the empty class. We prove closure under adjunction.
Consider X ∈ X6 and an arbitrary x. We may assume that x 6∈ X. Consider
X ′, Y, Y ′ with (X ∪ {x}) ≡ X ′, Y ≡ Y ′, (X ∪ {x}) ⊆ Y , X ′ ⊆ Y ′. We find
that X ′ is not empty. Suppose x′ ∈ X ′. We find that X ≡ (X ′ \ {x′}), X ⊆ Y ,
(X ′ \ {x′}) ⊆ Y ′. Hence (Y \X) ≡ (Y ′ \ (X ′ \ {x′}). It follows that:

(Y \ (X ∪ {x})) = ((Y \X) \ {x}) ≡ ((Y ′ \ (X ′ \ {x′})) \ {x′}) = (Y ′ \X ′).

Let X7 := D(X5 ∩ X6). We find that X7 is closed under empty class, adjunction,
union and downwards closed under ⊆. Since the existential quantifier in the defi-
nition of X5 is ⊆-bounded and subtraction of classes in the definition of X6 brings
us to subclasses , relativization to X7 preserves eqnum+ and gains us e7 and e8. So
we may work in eqnum? := eqnum+[e7, e8].

We are now ready to develop the theory of the ordering of the cardinal numbers.
We work in eqnum?. We define X ≤ Y by ∃X ′, Y ′ (X ≡ X ′ ∧ Y ≡ Y ′ ∧X ′ ⊆ Y ′).
Clearly, ≡ is a congruence for ≤. It is immediate that X ≤ X and that, if X ⊆ Y ,
then X ≤ Y .

We prove that X ≤ Y iff, for some X ′′, we have X ≡ X ′′ ⊆ Y . Suppose
X ≡ X ′ ⊆ Y ′ ≡ Y . By e8, we may find an X ′′ such that X ′ ≡ X ′′ ⊆ Y . Hence,
X ≡ X ′′ ⊆ Y . The converse direction is trivial. It follows that:

X ≤ Y ≤ Z → ∃X ′, Y ′ (X ≡ X ′ ⊆ Y ≡ Y ′ ⊆ Z)
→ ∃X ′′ (X ≡ X ′ ≡ X ′′ ⊆ Y ′ ⊆ Z)
→ X ≤ Z

Suppose that X ≤ Y and Y ≤ X. It follows that X ≡ X ′ ⊆ Y ≡ Y ′ ⊆ X. We find
that, for some X ′′, X ≡ X ′′ ⊆ Y ′ ⊆ X. Since X is Dedekind finite, it follows that
X ′′ = X and, hence, that Y ′ = X. We may conclude that X ≡ Y .

Thus we see that we have derived the principles q8, q9, q10, under the interpretation
of numbers as classes modulo equinumerosity.

Here is a useful further insight. Suppose X ≤ (Y0 ∪ Y1). We show that there
are X0, X1, such that X = (X0 ∪ X1) and X0 ≤ Y0 and X1 ≤ Y1. We have
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X ≡ X ′ ⊆ (Y0 ∪ Y1). It follows that (Y0 ∩X ′) ⊆ X ′ ≡ X. Hence, for some X0, we
have (Y0 ∩X ′) ≡ X0 ⊆ X. It follows that:

X1 := (X \X0) ≡ (X ′ \ (Y0 ∩X ′)) = (X ′ \ Y0) ⊆ Y1.

It follows that X1 ≤ Y1.

We prove a lemma.

Lemma 4.2 (eqnum?). Suppose Y is closed under empty class and adjunction. Let
D+(Y) consist of those classes Y such that:

∀Y ′≤Y ∀Z∈Y (Y ′ ∪ Z) ∈ Y.
Then, D+(Y) is closed under empty class, adjunction and union and downwards
closed under ≤ and hence a fortiori under ⊆. As the consequence of this last fact,
D+(Y) is closed under subtraction, intersection, etc.

Proof. Closure under empty class and downward closure under ≤ are trivial. It
is also easy to see that all singletons are in D+(Y). We verify closure under ∪.
Suppose Y0 and Y1 are in D+(Y). Let Y ′ ≤ (Y0 ∪ Y1). We can find Y ′0 , Y

′
1 , such

that (Y ′0 ∪ Y ′1) = Y ′ and Y ′0 ≤ Y0 and Y ′1 ≤ Y1. Consider any Z ∈ Y. Since Y1 is
in D+(Y), we find that (Y ′1 ∪ Z) ∈ Y. Since Y0 ∈ D+(Y), we obtain (Y ′ ∪ Z) =
(Y ′0 ∪ (Y ′1 ∪ Z)) ∈ Y. We may conclude that Y0 ∪ Y1 is in D+(Y). 2

We proceed with the development of the arithmetic of 0, successor and addition.
We define 0 := ∅. Clearly 0 is the minimal element of ≤.

We define SXY by ∃x (x 6∈ X ∧ Y ≡ (X ∪ {x})). It is easy to see that S is a total
injective function modulo ≡ and that ∅ is not in the range of S. We also have that
each non-empty class has a predecessor. By Dedekind finiteness, we find that, if
SXY , then X 6≡ Y . Thus we have, via the obvious interpretation, axioms q1, q2,
q7, q14.

We show that, if X ≤ Y , then either X ≡ Y or, for some Z, we have SXZ and
Z ≤ Y . Suppose X ≤ Y . We have X ≡ X ′ ⊆ Y , for some X ′. In case X ′ = Y ,
we have X ≡ Y and we are done. Otherwise, there is an x′, such that x′ ∈ Y and
x′ 6∈ X ′. Pick any x 6∈ X. We have (X ∪ {x}) ≡ (X ′ ∪ {x′}) ⊆ Y , and hence
(X ∪ {x}) ≤ Y . Clearly SX(X ∪ {x}). Thus, we have proved the interpretation of
q11.

Suppose SXZ. Then, clearly X ≤ Z. Suppose X ≤ Y ≤ Z. It follows that
either X ≡ Y or Z ≡ SX ≤ Y ≤ Z, and, hence Z ≡ Y . So X is an immediate
≤-predecessor of Z.

To obtain the linearity of ≤ modulo ≡, we must again contract our classes. Let X8

be the totality of all classes X such that, for all Y , X ≤ Y or Y ≤ X. Clearly, ∅
is in X8. We show that X8 is closed under successor and, hence, under adjunction.
Suppose X ∈ X8 and SXZ. Consider any Y . In case Y ≤ X, we immediately
have Y ≤ Z. Suppose X ≤ Y . Then, either X ≡ Y , in which case Y ≤ Z, or
Z ≤ Y . We note that S and ≤ are absolute under contraction to ≤-downwards
closed totalities of classes. We contract to D+(X8). We preserve eqnum? and gain
linearity of ≤. We proceed to work in eqnum?[q12], where of course we read q12
modulo the interpretation we developed.

Before defining addition, we first contract our classes to gain two desirable proper-
ties. We consider the collection of classes X9 of all X such that for all X ′, Y, Y ′, if
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X # Y , X ′ # Y ′, X ≡ X ′, Y ≡ Y ′, then (X ∪ Y ) ≡ (X ′ ∪ Y ′). Clearly, ∅ ∈ X9.
We prove that X9 is closed under adjunction. Suppose X ∈ X9, (X ∪ {x}) # Y ,
X ′ # Y ′, (X ∪ {x}) ≡ X ′, Y ≡ Y ′. If x ∈ X, we are immediately done, so suppose
x 6∈ X. Clearly, X ′ is not empty. Let x′ ∈ X ′. We have (X # Y ), (X ′ \{x′}) # Y ′,
X ≡ (X ′ \ {x′}), Y ≡ Y ′. So (X ∪ Y ) ≡ ((X ′ \ {x′})∪ Y ′). Since x 6∈ (X ∪ Y ) and
x′ 6∈ ((X ′ \ {x′}) ∪ Y ′), we find ((X ∪ {x}) ∪ Y ) ≡ (X ′ ∪ Y ′).

We define X10 as the totality of all classes X such that:

∀Y ∃Y ′ (Y ≡ Y ′ ∧ (X ∩ Y ′) = ∅).

Clearly, ∅ is in X10. We show that X10 is closed under adjunction. Let X ∈ X10 and
x 6∈ X. Consider any Y . Suppose Y ∗ ≡ Y and (X ∩ Y ∗) = ∅. By the no-universe
principe, there is a y not in X ∪ {x} ∪ Y ∗ and there is a y′ not in X ∪ {x, y} ∪ Y ∗.
We take Y ′ := (Y ∗ \ {x}) ∪ {y, y′}.

We contract our classes to D+(X9 ∩ X10). Note that the existential quantifier
in the definition of X10 can be ≤-bounded. It follows that we directly interpret
eqnum?[q12, e9, e10]. We proceed in this theory.

We define:

• AXY Z :↔ ∃X ′, Y ′ ((X ′ ∩ Y ′) = ∅ ∧X ≡ X ′ ∧ Y ≡ Y ′ ∧ (X ′ ∪ Y ′) ≡ Z).

We note that ≡ is a congruence relation for A. Using e9 and e10, one can easily
show that:

AXY Z ↔ ∃Y ′ ((X ∩ Y ′) = ∅ ∧ Y ≡ Y ′ ∧ (X ∪ Y ′) ≡ Z).

Moreover, by e9 and e10, A defines a total function modulo ≡.

Trivially AX∅Z iff X ≡ Z. So we have the interpretation of q3.

We show that SXZ iff AX{y}Z. We have AX{y}Z iff, for some Y ′, {y} ≡ Y ′ and
(X∩Y ′) = ∅. It follows that Y = {y′}, for some y′ with y′ 6∈ X. So Z ≡ (X∪{y′}).
The converse is even easier.

It is immediate that addition is commutative. We show that it is associative. Sup-
pose e.g. AXY Z and AZUV . We may find X ′, Y ′, Z ′, U ′, V ′ such that X ′, Y ′, U ′

are pairwise disjoint and X ′ ∪ Y ′ = Z ′ and Z ′ ∪ U ′ = V ′ and X ≡ X ′, Y ≡ Y ′,
U ≡ U ′, V ≡ V ′. Let W ′ := Y ′ ∪ U ′. Then we have AY ′U ′W ′ and AX ′W ′V ′.
Ergo, AY UW ′ and AXW ′V . The converse is similar.

We note that the previous two results imply the interpretation of q4. Moreover, we
have the interpretations of q15 and q16.

We show X ≤ Y iff, for some Z, AXZY . Suppose X ≤ Y . Then, X ≡ X ′ ⊆ Y .
It is easily seen that AX(Y \X ′)Y . Conversely, suppose AXZY . Then, for some
disjoint X ′, Z ′, we have X ≡ X ′, Z ≡ Z ′ and (X ′ ∪ Z ′) ≡ Y . We can find an X ′′,
with X ′ ≡ X ′′ ⊆ Y . So X ≡ X ′′ ⊆ Y , and hence X ≤ Y . Thus, by commutativity,
we have interpreted q13.

We leave the easy verification of the interpretation of q17 to the reader.

In summary: we have directly interpreted in eqnum[c8] the principles q1-4, and
q7-17.
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5. Development of Multiplication in HL

The basic insight of this section is something very familiar to anyone who worked
out his or her own arithmetization. To develop recursion for a function F such
that x < Fx, we do not need computation sequences, since computation sets are
sufficient. In the present context the idea is not just convenient but essential.

We start with the theory HL. By the development in the previous section, we can
contract our classes to gain the principles of eqnum?[q12, e9, e10]. Thus, we also
have q1-4, and q7-17 available for the interpretations of the arithmetical operations
and relations specified in the previous section. Without loss of generality, we may
also add h3. We call the resulting theory HL?. We work in HL?.

We define N as the virtual class of x such that ∃XX3x. We define, for x, y in N ,
x ' y iff ∃Z (Z 3 x∧Z 3 y). Clearly, ' is an equivalence relation with domain N .
We find that 3 gives us a bijection between the classes modulo ≡ and N modulo
'. This means that we can induce Z and and ≤ and S and A on N modulo '. We
call the resulting relations Z?, ≤?, S?, and A?.

We turn to the definition of multiplication. We will first give the definition and
then add some motivating remarks. We define MXY Z iff, either X = 0 and Z = 0,
or X 6= 0 and, there is an Y ′ ≡ Y , and a z 6∈ Y ′ with Z 3 z, and an x with X 3 x,
such that:

i. Y ′ ⊆ N ,
ii. For all y, y′ ∈ (Y ′ ∪ {z}), if y ' y′, then y = y′.

iii. For all y ∈ (Y ′ ∪ {z}), Z?y or, for some y′ ∈ (Y ′ ∪ {z}), A?y′xy and, for all w,
if y′ <? w <? y, then w 6∈ Y ′.

iv. For all y ∈ Y ′, z >? y.

The idea is as follows. First, the case that X is empty is special. So, we set
that aside. If X is not empty, X times Y is Z (modulo equinumerosity) if there
is a computation that witnesses this fact. The computation is a set of numbers
Y ′ ∪ {z}. We demand that the computation starts with a zero and ends with a
number z representing the cardinality of Z. We have a normalizing condition (ii)
that says that every number has at most one representative in the computation.
This is needed since a number could have many ‘copies’ in our set up where we only
have a Hume relation. Item (iii) tells us that our computation proceeds by adding
a number of size X in each ‘step’. The bit in (iii) that there are no non-intended
intervening elements between two elements of a step is just there because in the
weak context we can not prove that. We build it in just in order not to have to
prove it. Clause (iv) is another case of ‘no intervening elements’. It is added for
the same reason as the extra bit in (iii).

We note that ≡ is a congruence for M.

We first prove that MX0Z iff Z = 0. In case X = 0, we are immediately done, so
suppose X 6= 0. We have MX0Z iff, for some z with Z 3 z and x with X 3 x, we
have Z?z or A?zxz. The second case is excluded by q17. So Z?z, and hence, Z = 0.

Suppose MXY Z, SY U , AZXV . We show that MXUV . This is immediate when
X = 0. So, suppose X 6= 0. Let Y ′, z, x be the promised witnesses for MXY Z.
Suppose V 3 v and A?zxv. We consider U ′ := Y ′ ∪ {z}. Clearly, U ≡ U ′. Since
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v >? z >? y′, for any y′ in Y ′, we find that v 6' u′, for any u′ in U ′. It follows that
U ′, v, x, V satisfy conditions (i,ii,iii,iv) for MXUV .

Suppose MXUV and SY U . We show that, for some Z, MXY Z and AZXV . In
case X = 0 this is immediate. Suppose X 6= 0. It is easily seen that, since U 6= 0,
we also have V 6= 0. Let U ′, v, x, V satisfy the conditions for MXUV . By (iii) and
the fact that not Z?(v), there is a z ∈ U ′ such that A?zxv. Let Y ′ := U ′ \ {z}.
Clearly Y ≡ Y ′. Let Z 3 z. Then, Y ′, z, x, Z witness MXY Z. Moreover AZXV .

We now consider X11. The class of all X such that, for all U , there is, modulo
≡, a unique Z, such that MUXZ. By the previous results, it is clear that X11 is
closed under 0 and successor. We contract our classes to D+(X11), thus gaining the
uniqueness clause for multiplication. The relation M is absolute for this contraction
(and similar contractions). We note a subtlety here: the totality N is not absolute
but contracts to an initial segment that is closed under addition. However, for the
question whether we have MXY Z relativized to X11, we only need to worry about
elements below z. For elements below z the old and the new numbers coincide.

Remark 5.1. At this point we could take a shortcut and obtain the desired inter-
pretation of Q by employing the result of [Šve07]. However, since we are so close
to the the end of our development, we will finish it. Moreover, we get a little bit
more in this way, since we will also preserve full HL?.

We let X12 be the totality of classes X, such that:

∀Y≤X ∀U, V (MUXV → ∃W ≤ V MUYW ).

Clearly, 0 is in X12. Suppose X is in X12. We show that any X ′ with SXX ′ is in
X12. Suppose that MUX ′V . In case U = 0, we are immediately done, so we may
assume that U 6= 0. Suppose Y ≤ X ′. We can easily prove that Y ≤ X or Y = X ′.
In the second case we are immediately done. In the first case, we can find a Z, such
that MUXZ and AZUV . It follows that, for some W ≤ Z, we have MUYW , since
Z ≤ V , we find W ≤ V .

We relativize to D+(X12), thus obtaining the principle

(p1) ` ∀Y≤X ∀U, V (MUXV → ∃W ≤ V MUYW ).

Let X13 consist of those X such that, for all U , X ′, X ′′, Z, Z ′, Z ′′, if AXX ′X ′′,
AZZ ′Z ′′, MUXZ and MUX ′Z ′, then MUX ′′Z ′′. It is easy to see that 0 is in X13.

We prove that X13 is closed under successor. Suppose X ∈ X13, SXY , AY Y ′Y ′′,
AZZ ′Z ′′, MUY Z and MUY ′Z ′. Let AXY ′X ′′. We find that, for some W , we
have MUXW and AUWZ. Let AWZ ′W ′′. We may conclude that MUX ′′W ′′. We
note that SX ′′Y ′′, since SXY and AXY ′X ′′ and AY Y ′Y ′′. Also AW ′′UZ ′′, since
AWZ ′W ′′ and AWUZ and AZZ ′Z ′′. We may conclude that MUY ′′Z ′′.

We relativize to D+(X13). Thus obtaining the principle:

(p2) ` (AXX ′X ′′ ∧ AZZ ′Z ′′ ∧MUXZ ∧MUX ′Z ′)→ MUX ′′Z ′′.

Let X14 be the totality of all X, such that, MWY U and MUXV implies that there
is a Z, with MYXZ and MWZV .

It is easily seen that 0 is in X15. Let X ∈ X14. Suppose SXX ′. MWY U and
MUX ′V ′. Then, for some V , MUXV and AV UV ′. It follows that for some Z,
MY XZ and MWZV . We find that, for some Z ′, MY X ′Z ′ and AZY Z ′. We have
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AZY Z ′, AV UV ′, MWZV , MWY U . Hence, MWZ ′V ′. If we contract our classes
to D+(X14), we gain the principle:

(p3) ` (MWY U ∧MUXV ) ∧MY XZ)→ MWZV ).

Finally, let X15 consist of all X, such that, for all U , there is a Z with MUXZ. We
can easily see that X14 is downwards closed w.r.t. ≤ and is closed under 0, singletons
and addition. It follows that X14 is closed under union, since if A(X \ Y )Y Z, then
(X ∪ Y ) ≡ Z. We show that multiplication is defined on X14 and that it is closed
under multiplication. Suppose that X0, X1 ∈ X14. We have MX0X1X, for some
X. We also have, for some Z0 and Z, MUX0Z0 and MZ0X1Z. By p3, we have:
MUXZ.

When we contract our classes to X15, we preserve HP? and gain q5, q6, q18 and
q19. Thus we end with HP?[q5, q6, q18, q19], which contains Q.

Conversely, since Q interprets I∆0 + Ω1, we can show that Q interprets HL.

6. An Application

We show that the presence of a certain preorder on our domain is equivalent (in
the sense of mutual direct interpretability) to Hume’s principle.

We expand the signature of eqnum with new symbols N of type o, Z? of type
o, and ≤? of type oo. We add axioms stating that ≤? is a linear preorder on N
with Z? the non-empty virtual class of its initial elements. We demand that every
element of N has strict ≤?-successors. We call the resulting theory eqnumord. Let
the induced equivalence relation of ≤? be '.

We show that HL is directly interpretable in eqnumord. We work in eqnumord. We
first contract our classes so that we gain subtraction of elements plus the fact that
≡ is an equivalence relation. This enables us to work in eqnumord[c5, e3, e4, e5].

We say that X is an x-class iff, x ∈ N , and, for all x′ ∈ X, x′ <? x, and, for all
x′ <? x, there is precisely one x′′ ' x′, such that x′′ ∈ X.

We consider the totality N0 of all x in N , such that for all x-classes X ′ and X ′′,
we have X ′ ≡ X ′′. Clearly, all elements of Z? are in N0.

Suppose that x is in N0 and that y is a direct successor of x. We show that y is
in N0. Suppose Y ′ and Y ′′ are y-classes. Since x is is a direct predecessor of y, we
will have direct predecessors of y in Y ′ and Y ′′, say these are x′, respectively x′′.
We note that x ' x′ and x ' x′′. Clearly, Y ′ \ {x′} and Y ′′ \ {x′′} are x-classes.
Hence, (Y ′ \ {x′}) ≡ (Y ′′ \ {x′′}). But then also Y ′ ≡ Y ′′.

Let X ? be the totality of classes X for which there is a y in N0 and a Y , such
that Y is a y-class and X ≡ Y . It is easy to see that X ? is closed under empty
class and adjunction. Moreover, a Y that witnesses that X is in X ?, will be itself
in X ?.

We contract our classes to X ?. We gain the following principle: for every X
there is a y ∈ N0, and a y-class Y , such that X ≡ Y .

We define X 3 y iff, y ∈ N0 and, for some y-class Y , we have X ≡ Y . We have
already seen that we must have h1. Suppose X 3 y and X ′ 3 y. Let Y and Y ′

witness this fact. Since, y ∈ N0, we have Y ≡ Y ′. Hence, X ≡ X ′. This gives us
h2.

We apply the above insight to show that Presburger Arithmetic PresA does not
interpret eqnum[c8]. Our argument is is quick and easy. Probably inspection of
the quantifier elimination for PresA could yield much stronger results. To exclude
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any possible interpretation we must take into account that our interpretations could
have special features like the presence of parameters or being piecewise. Fortunately,
we can work in a structure in which every element is definable and that has infinitely
definable elements. This means that interpretations with parameters and pieces can
always be replaced by interpretations without parameters and pieces.

Suppose PresA does interpret eqnum[c8], say via K. We may assume that K
is a parameter-free, one-piece interpretation. However, K may still be more-
dimensional. We consider the internal model K given by K in the standard model
Nadd := 〈ω, 0,S,+,≤〉.

The object domain of K will consist of a definable infinite totality of tuples
(n0, . . . , nk−1). We can define, in Nadd, the following ordering on these tuples:
(n0, . . . , nk−1) � (m0, . . . ,mk−1) iff (n0 + . . . + nk−1) < (m0 + . . . + mk−1) or
((n0 + . . .+nk−1) = (m0 + . . .+mk−1) and (n0 < m0 or (n0 = m0 and n1 < m1) or
. . . (n0 = m0 and . . . nk−1 ≤ mk−1)). This gives our domain order type ω. Thus
we can extend our interpretation of eqnum[c8] to an interpretation of eqnumord.
This gives us an interpretation of HL and, hence, of Q in PresA. Quod impossibile,
since Q is essentially undecidable and PresA is decidable.
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Appendix A. Presburger Arithmetic

Presburger Arithmetic, PresA, for the natural numbers is axiomatized by the
following principles.10 The signature consists of 0, 1 and +.
PresA1 ` x+ 1 6= 0,
PresA2 ` x+ z = y + z → x = y,
PresA3 ` x+ 0 = x,
PresA4 ` x+ (y + z) = (x+ y) + z,
PresA5 ` x = 0 ∨ ∃y x = y + 1,
PresA6 ` x+ y = y + x,
PresA7 ` ∃z (x+ z = y ∨ x = y + z),
PresA8 for any n ≥ 2, we have ` ∃y (x = n y ∨ x = n y + 1 ∨ . . . x = n y + (n−1)).

10I took this axiomatization principles from Clemens Grabmayer’s Master’s Thesis. See

Clemens’ site http://www.phil.uu.nl/~clemens/. I only changed the order a bit and omitted
a superfluous axiom.
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We call the instances of PresA8: PresA8n. We easily show that, for n,m ≥ 2,
PresA8n and PresA8m are equivalent, over the other axioms, to PresA8(nm). It
follows that any finite set of instances of PresA8 is equivalent to a single instance.
We call the theory PresA1,2,3,4,5,6,7,8n: PresAn. One can show that, for n > 1,
PresA8(n+ 1) is not derivable from PresA8n. See e.g. [Smo91].

We show how to interpret PresAn (for n ≥ 2) in Qadd. We work in Qadd. First let
J0 be the virtual class of all x such that for all y, z, (y + z) + x = y + (z + x) and
y + x = z + x→ y = z and 0 + x = x and 1 + x = x+ 1. We easily prove that J0

contains 0, 1 and is closed under addition and predecessor. Relativizing to J0 gives
us axioms PresA1, 2, 3, 4, 5, ` 0 + x = x and ` x + 1 = 1 + x. This theory clearly
extends Qadd. We work in the extended theory. We will follow the usual convention
of omitting brackets, which is justified by associativity.

Let J1 be the class of all x such that, for all y, y + x = x + y. We easily see that
J1 is closed under 0, 1, + and predecessor. Relativizing to J1, gives us axioms
PresA1, 2, 3, 4, 5, 6. We proceed to work in this system.

We define x ≤ y by: ∃z x+ z = y. It is easy to verify that ≤ is a partial order with
minimum 0 and that addition is monotonic w.r.t. ≤.

Let J2 be the class of all x such that, for all z ≤ x and for all y, z ≤ y or y ≤ z.
Clearly, J2 is downwards closed under ≤ and 0 and 1 are in J2. Suppose x0 and
x1 are in J2. We show that (x0 + x1) ∈ J2. Consider any z ≤ (x0 + x1) and any
y. In case z ≤ x0 we are immediately done. Suppose x0 ≤ z, say z = x0 + u.
It follows that u ≤ x1. In case y ≤ u, we have y ≤ z. Suppose u ≤ y, say
u + v = y. If v ≤ x0, we have y ≤ z; if v ≥ x0, we have y ≥ z. Relativizing
to J2, gives us axioms PresA1,2,3,4,5,6,7. For PresA7, note that it is equivalent to
∀x, y (x ≤ y ∨ y ≤ x) and that ≤ is absolute under relativization to downwards
closed sets, since x ≤ y ↔ ∃z≤y x+ z = y.

Finally, let J3 be the class of all x, such that, for all z ≤ x, we have:

∃y (z = n y ∨ z = n y + 1 ∨ . . . z = n y + (n−1)).

It is easy to see that J3 is downward closed under ≤ and that 0, 1 are in J3. We
show that J3 is closed under addition. Suppose x0, x1 ∈ J3 and z ≤ (x0 + x1). In
case z ≤ x0, we are immediately done. Otherwise, z = x0 +u, for some u. It follows
that u ≤ x1. We have, for some y0, y1 and for some standard k0, k1, x0 = n y0 +k0,
u = n y1 + k1. Hence,

z = x0 + u = n y0 + k0 + n y1 + k0 = n (y0 + y1) + k0 + k1.

In case (k0 + k1) < n, we are done. Otherwise 0 ≤ (k0 + k1 − n) < n, and we find
z = n (y0 + y1 + 1) + k0 + k1−n.

We note that the quantifier ∃y in axiom PresA8n can be bounded by x. It follows
that relativization to J3, gives us PresAn.

Appendix B. Questions

(1) Is ac[c8] interpretable in PresA?
(2) Is the complexity of deciding the theory of finite classes with equinumerosity

over an infinite domain higher than the complexity of deciding PresA?
(3) Is PresA interpretable in Qadd? I conjecture: no.
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(4) Is an extension of Qadd interpretable in Qadd that contains a faster-than-
linear function? I conjecture: no.
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