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Abstract

Magnetic resonance electrical properties tomography (MR-EPT) is a non-invasive

measurement technique that derives the electrical properties (EPs, e.g., conductivity

or permittivity) of tissues in the radiofrequency range (64 MHz for 1.5 T and

128 MHz for 3 T MR systems). Clinical studies have shown the potential of tissue

conductivity as a biomarker. To date, model-based conductivity reconstructions rely

on numerical assumptions and approximations, leading to inaccuracies in the recon-

structed maps. To address such limitations, we propose an artificial neural network

(ANN)-based non-linear conductivity estimator trained on simulated data for conduc-

tivity brain imaging. Network training was performed on 201 synthesized

T2-weighted spin-echo (SE) data obtained from the finite-difference time-domain

(FDTD) electromagnetic (EM) simulation. The dataset was composed of an approxi-

mated T2-w SE magnitude and transceive phase information. The proposed method

was tested three in-silico and in-vivo on two volunteers and three patients' data. For

comparison purposes, various conventional phase-based EPT reconstruction methods

were used that ignore Bþ
1 magnitude information, such as Savitzky–Golay kernel com-

bined with Gaussian filter (S-G Kernel), phase-based convection-reaction EPT (cr-

EPT), magnitude-weighted polynomial-fitting phase-based EPT (Poly-Fit), and

integral-based phase-based EPT (Integral-based). From the in-silico experiments,

quantitative analysis showed that the proposed method provides more accurate and

improved quality (e.g., high structural preservation) conductivity maps compared to

conventional reconstruction methods. Representatively, in the healthy brain in-silico

phantom experiment, the proposed method yielded mean conductivity values of

1.97 ±0.20 S/m for CSF, 0.33 ±0.04 S/m for WM, and 0.52 ± 0.08 S/m for GM, which

were closer to the ground-truth conductivity (2.00, 0.30, 0.50 S/m) than the integral-
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based method (2.56± 2.31, 0.39 ±0.12, 0.68 ±0.33 S/m). In-vivo ANN-based conduc-

tivity reconstructions were also of improved quality compared to conventional recon-

structions and demonstrated network generalizability and robustness to in-vivo data

and pathologies. The reported in-vivo brain conductivity values were in agreement

with literatures. In addition, the proposed method was observed for various SNR

levels (SNR levels=10, 20, 40, and 58) and repeatability conditions (the eight acquisi-

tions with the number of signal averages=1). The preliminary investigations on brain

tumor patient datasets suggest that the network trained on simulated dataset can

generalize to unforeseen in-vivo pathologies, thus demonstrating its potential for clin-

ical applications.

K E YWORD S

Conductivity brain imaging, Electrical properties tomography, MR image synthetization, Non-
linear conductivity estimator, Phase-based EPT reconstruction

1 | INTRODUCTION

Magnetic resonance electrical properties tomography (MR-EPT) is a

non-invasive measurement technique that derives electrical properties

(EPs: conductivity σ and permittivity ε) of human tissues from the dis-

tribution of transmit and receive radiofrequency (RF) fields of an MR

system (Haacke et al., 1991; Katscher et al., 2009). The tissue EPs dis-

tribution is not only important for estimation of the specific absorp-

tion rate (Balidemaj et al., 2017; Katscher et al., 2009; Voigt

et al., 2012; Zhang et al., 2013), but clinical studies have shown its

potential as a biomarker in oncology (Balidemaj et al., 2015a, 2016;

Kim et al., 2016; Lazebnik et al., 2007; Lee et al., 2022; Mori

et al., 2019; Shin et al., 2015; Suh et al., 2021; Tha et al., 2014, 2018).

To observe the tissue EPs, various MR-EPT reconstruction algo-

rithms have been proposed by the arrangement of the Maxwell equa-

tions (Balidemaj et al., 2015b; Hafalir et al., 2014; Katscher

et al., 2009; Liu et al., 2015; Lee et al., 2015a, 2015b; Serrallés

et al., 2019; Voigt et al., 2011). Especially, in most MR-EPT algorithms,

assumptions are applied to derive simplified formulas. Representa-

tively, the piece-wise constant assumption (i.e., a homogeneous

medium: rκ¼0) of EP values allows the Helmholtz-based EPT recon-

struction (H-EPT). However, H-EPT method produced boundary arti-

facts at tissue boundaries where spatial homogeneity is disrupted (van

Lier et al., 2012; Voigt et al., 2011). In addition, the straight-forward

computation of the Laplacian operator results in noise amplification

for the noisy Bþ
1 field. To address the problem, the Helmholtz equa-

tion can be reorganized by incorporating a convection-reaction term,

resulting in the convection-reaction EPT (cr-EPT) (Gurler & Ider, 2017;

Hafalir et al., 2014). Although the computation process for the cr-EPT

is not restricted to homogeneous tissue regions, since spatial deriva-

tives computation for noisy Bþ
1 fields is still required, error and arti-

facts may be observed in the reconstruction results, especially in a

low convective field. Integral-based methods showed robust recon-

struction results for the noise amplification and boundary artifact, but

the computational load may be expensive based on the iterative

optimization with the regularizations (Balidemaj et al., 2015b; Guo

et al., 2017; Hong et al., 2017; Schmidt & Webb, 2016; Serrallés

et al., 2019).

On the other hand, some EPT reconstruction algorithms enable

conductivity reconstructions using only Bþ
1 phase information while

ignoring Bþ
1 magnitude information under certain assumptions

(e.g., H-EPT: r2φþ �2 r Bþ
1

�� �� �rφþ� �
= Bþ

1

�� ��� �
or cr-EPT: r Bþ

1

�� ��¼0

and rBz ¼0) for 1.5–3T MR systems, so-called Phase-based EPT

(Gurler & Ider, 2017; van Lier et al., 2012; Voigt et al., 2011). In addi-

tion, the transceive phase assumption, which assumes that the Bþ
1

phase (φþ) and B�
1 phase (φ�) exhibit similarity, facilitates further

adoption of the phase-based EPT approaches. Here, the Bþ
1 phase can

be approximated by taking half of the transceive phase information

from spin-echo (SE) or balanced steady-state free precession (bSSFP)

sequences, which are commonly employed in clinical routines

(i.e., φþ ≈φ�=2¼ φþ þφ�ð Þ=2). Thus, the phase-based EPT

approaches may hold promise for fostering further investigations and

applications in the diagnosis and treatment of pathologies in clinical

settings without additional MRI scans (Kim et al., 2016; Suh

et al., 2021).

Despite these potential applications, phase-based EPT reconstruc-

tions still encounter challenges that lead to erroneous observations

deviating from ground-truth conductivity (GTC) values, which are

directly associated with underlying the assumptions (Duan et al., 2016;

Lee et al., 2015b; Mandija et al., 2018; Seo et al., 2011). Some of its lim-

itations are as follows. Firstly, phase-based EPT reconstruction algo-

rithms ignore the Bþ
1 magnitude information, leading to an

overestimation in the reconstructed results (Voigt et al., 2011). Sec-

ondly, the piece-wise constant assumption of EP values allows the

derivation of the simplified Helmholtz equation; however, ignoring

spatial changes in the EPs leads to erroneous reconstructions, espe-

cially at tissue boundaries where spatial homogeneity is disrupted (van

Lier et al., 2012; Voigt et al., 2011). Furthermore, the computation of

numerical derivatives using kernel-based or fitting-based methods

leads to substantial errors at the boundaries (Lee et al., 2015b;
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Mandija et al., 2018; Seo et al., 2011). To address this problem, possi-

ble strategies include integrating compensating factors, such as a

convection-reaction term, which allows for deviation from the piece-

wise constant assumption (Gurler & Ider, 2017), or employing avail-

able MR contrast information to confine derivative computations to

voxels with similar intensity values (Karsa & Shmueli, 2021; Katscher

et al., 2016; Lee et al., 2016). Yet, estimation errors in homogeneous

regions can still be observed. Lastly, the computation of differentiation

kernels causes noise amplification in the reconstructed conductivity

maps (Karsa et al., 2021; Mandija et al., 2018). Thus, in situations

where high signal-to-noise-ratio (SNR) levels cannot be ensured,

employing image filters may be a feasible option to achieve denoising

effects. However, this approach could have trade-offs, such as

reduced effective resolutions or broadened boundary artifacts (Lee

et al., 2015b; Shin et al., 2019; Voigt et al., 2011).

Recently, deep learning (DL) approaches have been introduced as

an alternative to address the problems of the conventional MR-EPT

algorithms (Gavazzi et al., 2020; Hampe et al., 2020; Inda et al., 2022;

Jung, Mandija et al., 2021; Lee et al., 2021; Leijsen et al., 2022;

Mandija et al., 2019). As a first attempt, the generative adversarial

network (GAN) based method was proposed (Mandija et al., 2019) for

estimating conductivity and permittivity using simulated Bþ
1 magni-

tude and B1 phase information. This study showed its feasibility to be

applied to in-vivo data of a healthy volunteer. This work also

investigated the significance of feeding MR contrast information to

the network for better resolving tissue boundaries. Afterwards, 3D

patch-based DL approach (Hampe et al., 2020) was proposed as an

alternative to the phase-based EPT reconstruction algorithms using

only B1 phase information. Despite the promising results shown on

patient data, the 3D patch-based DL approach, which relies only on

phase information for computations, resulted in loss of detailed infor-

mation due to the vulnerability of the network to noise, and limited

training dataset may lead to low generalization performance.

As mentioned, conductivity maps can be retrieved by solving the

Helmholtz equation, which is a non-linear partial differential equation.

Recently, DL approaches have been investigated to replace the compu-

tations of non-linear partial derivative equations (Baymani et al., 2015;

Ben-Shabat & Gould, 2020; Chakraverty & Mall, 2020; Jung, Lee

et al., 2021; Kwon et al., 2017; Murphy et al., 2018; Raissi et al., 2019).

Such artificial neural network (ANN) approaches have demonstrated

that usage of DL can be advantageous in obeying spatial robustness,

invariance, and conservation characteristics. This is due to the training

dataset which can address the non-linear problems within model

boundaries. In addition, DL-based methods have shown to be more

robust under noisy observations (Ben-Shabat & Gould, 2020; Jung, Lee

et al., 2021; Kwon et al., 2017; Murphy et al., 2018). Therefore, DL-

based approach with physics-coupled datasets has the potential to be

an alternative non-linear numerical solver for the Helmholtz equation.

This work proposes a data-driven two-dimensional (2D) patch-

based non-linear conductivity estimator using ANN trained on a simu-

lation dataset. The main contributions of this work are as follows:

(1) We propose an ANN-based method for reconstructing the conduc-

tivity maps in a pixel-wise manner by incorporating the local

information of images through patches (i.e., the network estimates the

conductivity value for the central voxel of the input patch). The simu-

lation training dataset was constructed based on the reported conduc-

tivity values in the literatures: cerebrospinal fluid (1.80–2.20 S/m),

white matter (0.30–0.45 S/m), gray matter (0.50–0.65 S/m), and addi-

tional cylindrical structures (0.60–1.60 S/m) (Gabriel, Gabriel, &

Corthout, 1996; Gabriel, Lau, & Gabriel, 1996a, 1996b;

Hampe et al., 2020; Hancu et al., 2019; Liao et al., 2019; Mandija

et al., 2021; Tha et al., 2014, 2018). (2) The proposed network is tar-

geted for application to high resolution brain images (i.e., 1 � 1 mm2),

much higher than previous DL approaches. (3) We also incorporate

the MR contrast information alongside the transceive phase data to

enable the network to represent realistic characteristics of actual

data. (4) The code supporting the findings of this study is openly avail-

able at https://github.com/Yonsei-MILab/Non-linear-Conductivity-

Estimator.

2 | METHODS

The overall schematic diagram of the proposed work is illustrated in

Figure 1. Network training was performed on synthesized dataset

(T2-weighted [T2-w] SE). Details about the T2-w MR image syntheti-

zation for the training dataset are provided in Section 2.1. The data

preparation and the network training process are summarized in Sec-

tions 2.2 and 2.3. In-silico testing is described in Section 2.4. Addition-

ally, we investigated the generalizability of the network to in-vivo

data in Section 2.5.

2.1 | EM simulations with T2-w MR image
synthesization

The finite-difference time-domain (FDTD) electromagnetic

(EM) simulation program Sim4Life (Zurich Med Tech, Zurich,

Switzerland) was used to generate all the in-silico data using a bird-

cage coil operating in quadrature (QA) and anti-quadrature

(AQ) modes at 128 MHz and two head models: Duke and Ella (human

model software of IT'IS [Information Technologies in Society] Founda-

tion) (Christ et al., 2009; Gosselin et al., 2014). The Bþ
1 field ( Bþ

1

�� �� and
φþ) was computed in the QA mode, while the B�

1 field ( B�
1

�� �� and φ�)

was computed in the AQ mode. The transceive phase (φ�) was deter-

mined by the sum of the simulated φþ and φ�.

The geometry of the coil was set as follows: high-pass birdcage

coil with 16-rungs, length = 58 cm, and diameter = 70.4 cm; RF

shield: length = 68 cm, and diameter = 80.4 cm. Discretized voxel

size for FDTD simulation was x = 2, y = 2, and z = 2 mm. With this

setup, Bþ
1 and B�

1 fields were calculated in QA and AQ modes from

which SE images were computed as indicated in Figure 1. To increase

the variability in the simulated dataset, two strategies were adopted:

first, different rotations of the human models inside the coil (rotation

directions: x–y plane=�10� to 10�, x–z plane=�10� to 10�) were

performed; second, based on the reported conductivity values

4988 JUNG ET AL.
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(Gabriel, Gabriel, & Corthout, 1996; Gabriel, Lau, & Gabriel, 1996a,

1996b; Hancu et al., 2019; Mandija et al., 2021), various combinations

of brain tissue conductivity values were assigned to the following tis-

sues: cerebrospinal fluid (1.80–2.20S/m with 0.10 step), white matter

(0.30–0.45 S/m with 0.05 step), gray matter (0.50–0.65 S/m with 0.05

step). Additionally, to further increase the model complexity, cylindri-

cal structures were included inside the head models mimicking lesions.

For these cylindrical structures, different conductivity values were

assigned: 0.60–1.60 S/m with 0.10 step (Hampe et al., 2020; Liao

et al., 2019; Tha et al., 2014, 2018).

The simulated Bþ
1 and B�

1 fields were then used for the syntheti-

zation of T2-w SE data (assuming TR�T1�TE) as follows

(Hoult, 2000; Katscher et al., 2013; Liu et al., 2017):

S α,rð Þ≈ V1M0 rð Þ � 1� exp �TR=T1ð Þð Þ � exp �TE=T2ð Þ �H� rð Þ
�exp iφþ rð Þð Þ � sin V2α Hþ rð Þ�� ��� �

ð1Þ

where V1 and V2 correspond to system dependent constants, α is the

flip angle, and r indicates space components: x,y,zð Þ. Hþ and H� are

the circular polarized magnetic fields, corresponding to the RF

transmit and receive fields, respectively. M0 (Initial magnetization),

which depends on relaxation effects and spin density, was utilized to

mimic conventional T2-w MR contrast (Lu et al., 2005). The T2-w con-

trast synthetization parameters were set as follows; V1 and V2 =1,

flip angle=90�, T1/T2: CSF=4100/1700ms, WM=1100/60ms,

GM=1600/80ms; TR/TE: 4500/85ms; M0 ratio (CSF:WM:GM)

=1:0.7:0.8 (Lin et al., 2001; Sabati & Maudsley, 2013; Spijkerman

et al., 2018; Stanisz et al., 2015). Additionally, the transceive phase

was obtained as the sum of Bþ
1 and B�

1 phase information

(i.e., φ� ¼φþþφ�). Then, the synthesized dataset was interpolated

to match the target image parameters. Ultimately, the dataset com-

posed of an approximated T2-w SE magnitude and transceive phase

was generated for network training. The final image parameters of

the synthesized T2-w data were FOV= 192�192 mm2, image

resolution=1.0�1.0 mm2, slice thickness=2 mm, and the total

number of the synthesized head models (consisting of approximated

T2-w magnitude and transceive phase information) used for network

training was 201 with their corresponding GTC pairs (for both Duke

and Ella models). An example synthesized image can be seen in

Figure 1.

F IGURE 1 Schematic diagram of the proposed method including network training procedure. The red-series panels correspond to the
training dataset generation steps. The blue-series panels summarize the network composition and all procedures that are repeated for each epoch
during the network training. For the given input patch, the orange panel describes the label/output for network input. The network estimates the
conductivity from the central voxel.
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2.2 | Data preparation

This section presents the data preparation steps, including augmenta-

tion of dataset and vectorization of input patches into the ANN

(Figure 1, data processing and input parts).

Firstly, each synthesized T2-w SE magnitude image was multi-

plied by a random normalization factor n (0.7–1.3) to generate various

intensity levels. Then, a random Gaussian noise N 0,γ2I
� �

was added to

the real and imaginary components of the synthesized dataset (n �S)
targeting the actual T2-w in-vivo data SNR levels. We controlled the

addition of noise to guarantee that the estimated decimal SNR level

ranged from 15 to 25 in the white matter regions. This process can be

expressed as follows:

Snoise ¼ real n �Sð ÞþN 0,γ2I
� �� �þ i imag n �Sð ÞþN 0,γ2I

� �� � ð2Þ

Secondly, the complex-valued Snoise data was converted to patched

images with a stride step of one (in other words, in an 2D image space

R¼ x,yð Þ, image patches can be extracted as

p¼ pixeli�m:iþm,pixelj�m:jþm j i, j�R
� �

) and split into synthesized T2-w

SE magnitude and transceive phase information based on a patch size

determination factor m (i.e., T2-w SE magnitude: S pð Þj j; transceive

phase: ∠S pð Þ). Since patched images for the transceive phase, which

consists of two-dimensional parabolic components, include offsets,

we shifted the patched phase value to have a minimum value of zero

as a data normalization procedure. Finally, all the processed patches

from both magnitude and phase data were vectorized to be fed into

the developed network as input. The vectorized input of the ANN can

be expressed as follow:

VP ¼ vec S pð Þj jð Þ0,vec ∠S pð Þð Þ0� �T
where S pð Þ¼ Snoise pð Þj j �∠Snoise pð Þ inR

ð3Þ

This implies that the ANN input layer is connected to 2 � 2 �mþ1ð Þ2
input features generated from both magnitude and phase patches.

2.3 | Network training procedure

We built an ANN architecture containing three fully connected hidden

layers attached with a rectifier linear unit (ReLU) and batch normaliza-

tion. The number of neurons for these hidden layers was 1024,

512, and 512, respectively (Hornik, 1991). The input data are the iter-

atively new simulated noisy T2-w SE magnitude and transceive phase.

The kernel size, 11 � 11 pixels (i.e., m = 5), was set empirically in con-

sideration of the network performance and computational load.

In training, one single GTC label was assigned to each patch. This

GTC label corresponds to the conductivity value of the pixel at the

center of the input kernel. Thus, the output layer has only a single

neuron attached with a sigmoid function. Adam optimizer (Kingma &

Ba, 2015) was used for updating network parameters with a learning

rate of 0.0001 and the model was trained for 500 epochs, with each

epoch taking approximately 350 s. The mean-squared error between

the label σ pixeli,j
� �

, and output ANN Vpð Þ was utilized as a loss

function:

bσ pixeli,j
� �¼ σ pixeli,j

� ��ANN Vpð Þ�� ��2
2

ð4Þ

The network was implemented using the Pytorch platform (Paszke

et al., 2019). All of the ANN procedures were performed on a GPU

workstation (GeForce GTX 1080 TI GPU; Nvidia, Santa Clara, CA)

with an Intel Core I7-7500U at 2.70 GHz (Intel, Santa Cruz, CA).

2.4 | In-silico testing

In-silico tests were used to evaluate the performance of the proposed

ANN-based reconstruction method since knowledge of GTC is avail-

able for the simulated data. All synthesized T2-w test datasets were

generated based on rotationally augmented Ella datasets, which

were excluded from the training dataset. The image parameters of the

test datasets were the same as the training dataset, and Gaussian

noise was added to the datasets mimicking realistic noise levels in

clinical T2-w TSE data (SNR = 20). For comparison purposes, various

2D phase-based reconstruction methods, including Savitzky–Golay

kernel (S-G kernel) + Gaussian filter with standard deviation (SD) = 1,

magnitude weighted polynomial-fitting phase-based EPT (Poly-Fit

method), and integral-based phase-based EPT (Integral-based method)

were used (Karsa & Shmueli, 2021; Lee et al., 2016; Lee et al., 2015b).

In the first in-silico experiment, the rotationally augmented Ella

head model (simulated rotation directions: x–y plane = 0�, x–z

plane = 5�) with the following properties was used: CSF = 2.00 S/m,

WM = 0.30 S/m, and GM = 0.50 S/m. Additional network (referred

to as network A) was implemented for further investigation and com-

parison (Figure S1a). Network A had a single input channel comprised

of transceive phase, while the GTC values were used as a label, similar

to the proposed ANN-based reconstruction method. This network A

was implemented to investigate whether the use of only the 2D trans-

ceive phase information as input would be sufficient for conductivity

reconstructions, in contrast to the proposed network where both

magnitude and phase information are provided.

In the second in-silico experiment, the proposed ANN-based

method was tested on two rotationally augmented Ella head models

with simulated lesions (cylindrical inclusions). The first model (simu-

lated rotation directions: x–y plane = 5�, x–z plane = 0�) contained

three inclusions with constant conductivity values (lesion 1: 0.80 S/m,

lesion 2: 0.90 S/m, and lesion 3: 1.20 S/m), while the second model

(simulated rotation directions: x–y plane = 0�, x–z plane = 0�) had

one inclusion with two compartments (lesion 1: 1.00 S/m, and lesion

2: 1.50 S/m). For all these inclusions, the same T2-w image intensity

was used to avoid any direct correlation between signal intensity and

lesion conductivity. ANN-based reconstructions were then compared

to GTC values and conductivity reconstructions from Poly-Fit method

and Integral-based methods.

In the third in-silico experiment, the correlation between signal

intensity and the reconstructed conductivity values was further

4990 JUNG ET AL.
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investigated. For such analysis, we evaluated whether there could be

any dependency between the reconstructed conductivity values in

simulated lesions and the input signal intensity for the conductivity

range 0.60–1.50 S/m and signal intensity range 0.10–1.00 a.u. (SNR

level: 8–70) based on the reported conductivity values for brain

lesions (Hampe et al., 2020; Liao et al., 2019; Tha et al., 2014, 2018).

2.5 | In-vivo testing

For in-vivo testing, the proposed method was tested on T2-w TSE

datasets acquired using 3 T MR systems. The scans were performed

under the approval of the local institutional review board (Yonsei Uni-

versity Gangnam Severance Hospital, IRB, no: 3-2022-0443). For all

in-vivo datasets, the multi-channel receive (multi-RX) coil combination

method (Kim et al., 2022) was performed as a coil

combination method to approximate the transceive phase information

from the clinical settings with the multi-RX head coil. In addition, since

there is no knowledge of the ground-truth tissue conductivity values

for in-vivo brain, conductivity values reconstructed using the Poly-Fit

method (Lee et al., 2016) were used for comparison purposes.

In-vivo datasets were acquired from two healthy volunteers using

a 3 T MRI scanner (Tim Trio, Siemens Healthineers) with a 16-channel

RX mode head coil (3 T Head/Neck 20 MR Coil, with 16-channel used

for the head). 2D TSE sequence scans were conducted with the fol-

lowing parameters; Healthy volunteer 1 data: TR/TE = 4500/85 ms,

image resolution = 1.0 � 1.0 mm2, slice thickness = 3.0 mm, and the

number of signal averages (AVG) = 8, AVG = 1, and scan time = 7 m

51 s; Healthy volunteer 2 data: TR/TE = 4500/85 ms, image

resolution = 1.0 � 1.0 mm2, and slice thickness = 3.0 mm, AVG = 1,

and scan time = 59 s.

For the first and second in-vivo experiments, AVG was performed

eight times on healthy volunteer 1 data to investigate the network

performance for various SNR levels (AVG = 1 + addictive Gaussian

noise, 1, 4, and 8; SNR levels = 10, 20, 40, and 58) and repeatability

(the eight acquisitions with AVG = 1). As the third in-vivo experiment,

the network was tested for various brain slices on the second healthy

volunteer (healthy volunteer 2 data).

For the fourth in-vivo experiment, three meningioma patient data

scanned using a 3 T scanner (MR750, GE Healthcare) with a 12-channel

RX mode head coil (3 T 16CH Head Neck Spine (HNS) Array MRI Coil,

with 12-channel used for the head) were tested. 2D TSE sequence scans

were conducted with the following parameters; TR/TE = 4363/95 ms,

image resolution = 0.625 � 0.75 mm2, slice thickness = 2.0 mm, and

AVG = 1 and scan time = 6 m 42 s. The patient datasets were resized

to 1.0 � 1.0 mm2 to match the input image resolution for the network.

Additionally, we investigated whether the reconstructed conductivity

maps would be correlated only to the T2-weighted MR contrast informa-

tion or whether phase information was also relevant for in-vivo conduc-

tivity reconstructions. For this purpose, an additional comparison

network (referred to as network B) was implemented and tested on

patient datasets. Such network B was trained to reconstruct conductivity

maps from only the synthesized T2-w MR contrast images. Details of

implementation information are summarized in Figure S1b.

3 | RESULTS

3.1 | In-silico testing

Figure 2 shows the result of the first in-silico experiment. When using

only transceive phase information as the network input, the DL results

F IGURE 2 In-silico experiment 1. A brain simulation dataset was used to investigate conductivity reconstruction performance for four phase-
based EPT reconstruction methods (a: S-G kernel, b: cr-EPT method, d: Poly-Fit method, e: Integral-based Method) and two neural networks (c:
Network A, f: Proposed method) at SNR = 20. GTC, transceive phase, simplified Helmholtz phase-based EPT reconstruction under noiseless case,
and magnitude information are shown on the left.

JUNG ET AL. 4991

 10970193, 2023, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26421 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [31/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



(Figure 2c, Network A) show that the networks can estimate the con-

ductivity values with lower SD compared to the S-G kernel result

(Figure 2a), but loss of structural information was still observed. As a

further step, when both T2-w SE magnitude and transceive phase

information were fed to the network as an input, tissue structural

information was improved as shown in Figure 2f, proposed ANN

method. In addition, the proposed method demonstrated better qual-

ity and more accurate conductivity reconstructions with lower SD

values for each region of interest (ROI) inside the CSF, WM, and GM

regions, compared to the conventional reconstruction methods

(Figure 2b,d,e). The ROI analysis results are summarized in Table 1.

The average processing time for one 2D slice head image with a

192 � 192 matrix was 0.19 s.

Figure 3 illustrates the results of the second in-silico experiment,

demonstrating how the proposed method was able to distinguish the

different conductivity values between lesions with the same T2-w sig-

nal intensity on the first head model (Figure 3: Head 1). Upon visual

observation, the conventional phase-based EPT reconstruction

methods (Figure 3a,b) were also able to differentiate the conductivity

between these lesions. In addition, from the quantitative analysis

(Table 2: Head 1), the mean and SD values for each lesion show that

the proposed method can reconstruct conductivity values with more

accuracy and precision than the conventional reconstruction methods.

Additionally, as shown from the results on the second head model

characterized by a lesion with two compartments with different con-

ductivity values but same T2-w signal intensity (Figure 3: Head 2), the

proposed method can better reconstruct these two areas distinctively

compared to conventional reconstructions. While the conventional

reconstruction methods show the small contrast between the two

area inside the lesion, the proposed method can define these areas

with improved distinction. The more accurate mean and SD values

obtained with the proposed method for each ROI also support these

observations (Table 2: Head 2).

Figure 4 illustrates the dependency of the proposed network on

the input signal intensity in the simulated lesions (in-silico experiment

3). As shown in the figure, the reconstructed conductivity values are

minimally affected by changes in the input signal intensities, demon-

strating that the network did not learn a painting procedure from

magnitude signal to conductivity values. Ultimately, a slight overesti-

mation occurred for very low (0.00–0.20 a.u.) or high (0.80–1.00 a.u.)

signal intensities.

3.2 | Result for in-vivo testing

The first in-vivo experiment results on a healthy subject with various

SNR levels (i.e., SNR = 10, 20, 40, and 58) are shown in Figure 5. The

proposed method is more robust than the conventional method in

preserving structural information for each SNR level. Additionally, the

proposed method appears more noise robust as indicated by

the lower SD values compared to the conventional reconstruction

method Poly-Fit. Ultimately, the reconstructed averaged conductivity

values in the adopted ROI are in good agreement with reported

TABLE 1 ROI analysis result for the in-silico experiment 1.

Mean (SD) [S/m]

CSF WM GM

GTC 2.00 (�) 0.30 (�) 0.50 (�)

S-G kernel 2.47 (9.04) 0.38 (1.12) 0.67 (1.37)

cr-EPT method 1.56 (0.24) 0.34 (0.10) 0.64 (0.21)

Network A 1.38 (0.58) 0.29 (0.05) 0.46 (0.18)

Poly-Fit method 1.75 (3.10) 0.37 (0.36) 0.60 (0.48)

Integral-based method 2.56 (2.31) 0.39 (0.12) 0.68 (0.33)

Proposed method 1.97 (0.20) 0.33 (0.04) 0.52 (0.08)

F IGURE 3 In-silico experiment 2: two test datasets with different simulated lesions. Comparison between two phase-based EPT
reconstruction methods (a: Poly-Fit method, b: Integral-based method) and the proposed network (c: Proposed method).
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literature brain conductivity values in healthy subjects (Gabriel,

Gabriel, & Corthout, 1996; Gabriel, Lau, & Gabriel, 1996a, 1996b;

Hancu et al., 2019; Mandija et al., 2021), although they appear slightly

lower than the values computed using the Poly-Fit method, used here

as a second independent reference. ROI analysis results are summa-

rized in Table 3, and the corresponding tissue segmentation informa-

tion is shown in Figure S2.

The second in-vivo experiment results on the repeatability of con-

ductivity reconstructions are shown in Figure 6. As seen Figure 6a,

the Poly-Fit reconstructions seem more unstable compared to the

proposed method between each scan. Magnitude and phase data

showed a strong positive correlation among the repeated scans

(Figure 6b left). The reconstructed conductivity maps with the con-

ventional method (Poly-Fit method) showed a moderate positive cor-

relation with inconsistent values (coefficient SD = 0.037), whereas

the proposed method showed much higher and strong positive corre-

lation (coefficient SD = 0.005) between each scan (Figure 6b right). A

factor that affects the repeatability experiment of conductivity recon-

structions is the variation of the phase as shown in the zoom-in part

of the phase maps (Figure 6a).

While defected contrast information is not observed in T2-w

magnitude images, differences in the reconstructed conductivity

values are revealed with respect to two groups of different phase dis-

tributions among the different repetitions. Areas with overall underes-

timated values (yellow box) and overestimated values (red box) are

indicated. These differences are more evident for the conventional

Poly-Fit method used here as a reference.

The third in-vivo experiment shows conductivity reconstructions

on a second healthy subject on different brain slices (Figure 7). The

results illustrate consistent conductivity values in the WM, GM, and

CSF across slices, demonstrating the capability of the proposed

method to reconstruct conductivity maps for various brain slices from

T2-w TSE dataset.

Figure 8 shows the result on three meningioma patients. In this

figure, the reconstructions using the network B are also included for

comparison purposes. As shown in Figure 8b,d, the difference

between the proposed method and the network B (reconstruction of

conductivity maps from only T2-w magnitude intensity information)

was noticeable, especially in WM and lesion regions. In addition, the

WM inhomogeneity was observed in the T2-w images for patients

1 and 3 (Figure 8a), the network B was significantly affected by the

MR contrast and showed defective results, while this was not

observed using the proposed network. Furthermore, as illustrated in

Figure 8d, the proposed method shows sharper boundaries, making a

distinction between tissue structures better visible compared to the

other methods. Quantitative comparison for the reconstructed

TABLE 2 ROI analysis result for the in-silico experiment 2.

Mean (SD) [S/m]

CSF WM GM Lesion 1 Lesion 2 Lesion 3

Head 1

GTC 1.90 (�) 0.40 (�) 0.60 (�) 0.80 (�) 0.90 (�) 1.20 (�)

Poly-Fit method 1.35 (1.64) 0.44 (0.40) 0.65 (0.54) 0.85 (0.12) 0.96 (0.11) 1.25 (0.18)

Integral-based method 1.38 (1.46) 0.47 (0.17) 0.73 (0.41) 0.86 (0.04) 0.98 (0.09) 1.22 (0.15)

Proposed method 1.94 (0.29) 0.37 (0.05) 0.58 (0.06) 0.82 (0.05) 0.93 (0.07) 1.18 (0.08)

Head 2

GTC 2.10 (�) 0.30 (�) 0.60 (�) 1.00 (�) 1.50 (�) – (�)

Poly-Fit method 1.66 (2.11) 0.40 (0 35) 0.66 (0.50) 1.15 (0.22) 1.39 (0.35) – (�)

Integral-based method 1.74 (1.92) 0.41 (0.17) 0.82 (0.35) 1.18 (0.19) 1.33 (0.12) – (�)

Proposed method 2.13 (0.13) 0.32 (0.03) 0.57 (0.05) 1.07 (0.14) 1.51 (0.08) – (�)

F IGURE 4 In-silico experiment 3. Reconstructed conductivity
values for different magnitude signal intensity and conductivity
combinations (Note that SNR level index is plotted inside the
reference color index for magnitude signal intensity). The results show
that the output of the proposed network is minimally affected by
input magnitude signal values.
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conductivity values in the lesions using the conventional reconstruc-

tion method (Poly-Fit method) and the proposed method is also

shown in Figure 8. The measured mean and SD values over each

patient's lesion were as follows; Patient 1: Poly-Fit = 0.84 (0.70) S/m,

Proposed = 0.80 (0.38) S/m; Patient 2: Poly-Fit = 0.69 (0.29) S/m,

Proposed = 0.74 (0.20) S/m; Patient 3: Poly-Fit = 0.99 (0.26) S/m,

Proposed = 0.97 (0.18) S/m.

4 | DISCUSSION

In this work, we implemented a 2D patch-based non-linear conductiv-

ity estimator for T2-w SE images by training an ANN using phase

maps from FDTD simulations at 3 T and synthetic T2-w magnitude

maps with 1 � 1 mm2 resolutions. The in-silico experiments demon-

strated the capability of the proposed method to accurately recon-

struct conductivity values in a pixel-wise manner while preserving the

tissue structural information in contrast to conventional methods,

which suffer from errors at tissue boundaries and noise amplification

in the reconstructed conductivity maps. The in-vivo experiments

showed that the proposed network, which was trained only on the

simulated dataset, can provide good-quality conductivity maps at vari-

ous SNR levels, demonstrating its noise robustness. Furthermore, the

repeatability experiment using in-vivo data demonstrated that

the proposed method could produce almost consistent conductivity

maps with revealing phase distributions from data acquired multiple

times using the same MRI acquisition (i.e., 8 � AVG = 1 T2-w TSE

datasets) (Arduino et al., 2023). We applied our proposed method to

three meningioma patients. The preliminary investigations suggest

that the network trained on simulated data may distinguish and char-

acterize pathological tissues. Previously, it has been shown that tissue

stiffness can be different depending on the hardness and heterogene-

ity of the meningiomas in magnetic resonance elastography images

(Hughes et al., 2015). Given the different tissue structures and com-

positions, conductivity values may also differ for different tumor stiff-

ness. This was our main motivation to investigate the proposed

method on meningioma patients. In this study, we observed charac-

teristics and distribution of the conductivity for meningioma cases,

which were classified into the following two groups: tumors with soft

consistency (Patients 1 and 3) and tumors with hard consistency

(Patient 2). As an initial observation, it was seen that the soft consis-

tency tumors had a higher conductivity than the hard consistency

tumor. However, since this was investigated on only three patients

F IGURE 5 In-vivo
experiment 1: conductivity
reconstructions on a healthy
volunteer for various SNR levels
(Healthy volunteer data 1) for the
proposed method (bottom line)
and the reference Poly-Fit
method (middle line).

TABLE 3 ROI analysis result for the first in-vivo experiment.

Mean (SD) [S/m]

CSF WM GM

Poly-Fit method

SNR 10 2.47 (4.95) 0.36 (0.38) 0.62 (2.52)

SNR 20 2.10 (2.54) 0.36 (0.28) 0.63 (1.61)

SNR 40 2.09 (1.14) 0.37 (0.19) 0.65 (1.24)

SNR 58 2.11 (0.98) 0.37 (0.17) 0.63 (1.09)

Proposed method

SNR 10 1.93 (0.45) 0.40 (0.08) 0.62 (0.26)

SNR 20 1.95 (0.39) 0.34 (0.06) 0.61 (0.25)

SNR 40 1.95 (0.38) 0.34 (0.06) 0.61 (0.25)

SNR 58 1.95 (0.37) 0.33 (0.05) 0.61 (0.23)
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with meningioma, further validation is needed from a large amount of

patient datasets with various lesions to validate and demonstrate the

diagnostic capability of the proposed approach.

To solve the full Helmholtz equation for conductivity reconstruc-

tions, not only Bx and By but also Bz information is required. However,

in conventional MRI settings, only partial information Bx and By is

available. Such restriction leads to rely on the simplified Helmholtz

equation with certain assumptions (i.e., piece-wise constant assump-

tion and negligible Bz assumption) for the observations of EPs maps

from in-vivo dataset. Here, we used the B-map simulations in the

training dataset to take into account these restrictions.

Based on the simulation dataset, we used a rather simple ANN

architecture to perform conductivity reconstruction. In general, DL

models can intentionally apply inductive bias to achieve better perfor-

mance on specific datasets (Battaglia et al., 2018). Especially, in the

convolutional neural network (CNN) based approaches mostly applied

in the DL studies for EPT (Gavazzi et al., 2020; Hampe et al., 2020;

Inda et al., 2022; Jung, Lee, et al., 2021; Jung, Mandija, et al., 2021;

Leijsen et al., 2022; Mandija et al., 2019), the spatial feature extraction

process using convolutional layers may introduce such inductive bias

even with a small training dataset (Lecun et al., 1998; Ronneberger

et al., 2015; Ulyanov et al., 2020). However, if the inductive bias is

designed to be inappropriate or too strong, the trained model can lead

to a poor variance with spurious results, subsequently degrading gen-

eralization performance. The trade-off between inductive bias and

generalization performance should be handled carefully (Battaglia

F IGURE 6 In-vivo experiment 2: repeatability (Healthy volunteer data 1). (a) The eight individual conductivity reconstructions are shown.
Note the variations in the conductivity (e.g., boxed-area). Yellow box indicates estimated conductivity, and red box indicates underestimated
conductivity. (b) correlation maps between the eight scans, (left) magnitude and phase data correlation showing very small changes, (right)
reconstructed conductivity maps correlation showing larger variations for the Poly-Fit method with respect to the proposed method.
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et al., 2018). Motivated by these observations, a multi-layer percep-

tron (MLP) has been taken notice again with its characteristics where

all weights are independent and not shared (Battaglia et al., 2018; Liu

et al., 2021). Thus, if a large number of physics-coupled datasets can

be constructed, ANN may also be an efficient estimation solver to

tackle various non-linear computation problems.

F IGURE 7 In-vivo experiment 3: reconstructed conductivity over the whole brain volume (Healthy volunteer data 2). The magnitude image
and its corresponding conductivity are shown over multiple slices.

F IGURE 8 In-vivo experiment 4 for three patient datasets. In each lesion, the estimated conductivity distribution was compared between
results for Poly-Fit and proposed method. (a) T2-w magnitude images, (b) Network B, (c) Poly-Fit reconstruction result, (d) Proposed method
result, (e) Box & Whisker plot over lesions areas.
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The proposed network was implemented based on a pixel-wise

estimation approach, and it also demonstrated the significance of pro-

viding MR contrast information into the network for better resolving

of tissue boundaries. As observed in Figure 2c,f, the additional T2-w

magnitude image acts as a regularization factor in the network for

conductivity estimations, and this implicit regularization has been

learned by the network via T2-w images. As shown in Figures 4 and 5,

the implicit regularization exhibited the ability to discriminate against

the potential issue where the T2-w magnitude images exhibit a homo-

geneity, yet the conductivity properties may possess in variations

(Note that too high or low magnitude intensities tend to be overesti-

mated). In addition, in Figure 8, the results for the proposed method

and the network B suggest that the network effectively utilizes trans-

ceive phase information along with the implicit regularization from

T2-w magnitude information. Notably, distinct differences were

observed in the pathological regions and WM with hyperintense

regions (Patients 1 and 3). Alternative contrast images such as T1-w

and PD-w could likewise be used for training.

The proposed method may be affected by various confounding

factors, such as B1 inhomogeneities, noise, motion, and vessel pulsa-

tion. Although the proposed method is expected to be more robust

to such factors compared to the conventional phase-based EPT

reconstruction methods (Lee et al., 2021), the experiment results

show that noise still impairs the estimation accuracy (Figure 5), and

changes in the phase distribution are reflected in the conductivity

estimations for the in-vivo dataset (Figures 6 and 8). Thus, it would

be worthwhile to investigate the combination of various artifact

reduction or denoising algorithms (Cui et al., 2022; Jung, Mandija,

et al., 2021; Michel et al., 2014) with the proposed method to

improve the estimation performance for datasets affected by arti-

facts or high noise.

This method has the following limitations. Firstly, since the pro-

posed method was implemented by targeting the network using one

specific MR contrast (i.e., T2-w images), the network may perform

improperly for other contrast-weighted images. Using tissue segmen-

tation instead of magnitude contrast information may allow the pro-

posed method to generalize with respect to the image contrast

(Ashburner & Friston, 2005; Karsa & Shmueli, 2021; Shattuck &

Leahy, 2002; Smith et al., 2004). Secondly, the proposed method was

implemented based on the premise of the transceive phase assump-

tion. Since the transceive phase assumption typically holds for bird-

cage coils, in this study, the transceive phase was approximated from

the multi-RX coil by using the multi-RX combination method (Kim

et al., 2022). Although the use of birdcage coils may facilitate access

to transceive phase information, multi-RX coils may be preferred in

clinical settings for SNR or compatibility with parallel imaging tech-

niques. However, the use of a multi-RX coil may still be a factor that

could affect the estimation performance of the proposed method.

Therefore, as a future study, if a simulation environment can be con-

structed to match the coil configuration used in actual clinical settings,

the performance of the proposed method could be improved. In addi-

tion, it may not be directly applicable to ultra-high field systems where

the wavelength of the RF pulse is shortened (e.g., 7 and 9.4 T). Thirdly,

ground-truth conductivity information was not available for in-vivo

cases. Thus, we could not accurately evaluate the reconstruction

capability of the proposed method in-vivo. Here, we compared con-

ductivity maps with reported literature values and alternative conven-

tional methods. We observed that the reconstructed conductivity

values in the WM, GM, and CSF tissue are in line with reported litera-

ture values. Further investigations should be performed using realistic

brain phantoms with knowledge of GTC information (Meerbothe

et al., 2022).

Recently, several studies have been conducted to further ensure

network reliability. As a future study, uncertainty estimations could be

added to the proposed method (Gal & Ghahramani, 2016; Glang

et al., 2020; Jung et al., 2022; Roy et al., 2019; Tanno et al., 2021),

thus evaluating network instability, for example, by employing drop-

out with Bayesian approximation. As another option, physics-

informed networks (Inda et al., 2022; Lim & Psaltis, 2022; Raissi

et al., 2019; Yu et al., 2023) can be considered. Nevertheless, since Bz

information is required to solve the full Helmholtz equation, it may

still be difficult to apply the method in practice for phase-based EPT

reconstruction algorithms. Thus, for applications, it would be worth-

while to investigate the methods of composing the physics-driven loss

by (1) utilizing modified equations with their underlying assumptions

(e.g., piece-wise assumption or neglecting Bz component), (2) partially

combining the network with the physics equation included in estimat-

ing Bz (Eda et al., 2022; Guo et al., 2017), or (3) applying iterative inte-

gral based EPs estimation methods (Balidemaj et al., 2015b;

Giannakopoulos et al., 2021).

5 | CONCLUSIONS

In summary, we proposed an ANN-based method to reconstruct con-

ductivity maps in a pixel-wise manner using only simulated data in the

training procedure. The results show accurate and good-quality

reconstructions in-silico. In addition, the estimated in-vivo brain con-

ductivity maps suggest the feasibility of directly applying this method

to in-vivo volunteer and meningioma patient data. Finally, the pro-

posed method can potentially be applied to patient data whose con-

ductivity values are known to change.
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