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Abstract 

Purpose  To generate and extend the evidence on the clinical validity of an artificial intelligence (AI) algorithm to 
detect acute pulmonary embolism (PE) on CT pulmonary angiography (CTPA) of patients suspected of PE and to 
evaluate the possibility of reducing the risk of missed findings in clinical practice with AI-assisted reporting.

Methods  Consecutive CTPA scan data of 3316 patients referred because of suspected PE between 24-2-2018 and 
31-12-2020 were retrospectively analysed by a CE-certified and FDA-approved AI algorithm. The output of the AI was 
compared with the attending radiologists’ report. To define the reference standard, discordant findings were indepen‑
dently evaluated by two readers. In case of disagreement, an experienced cardiothoracic radiologist adjudicated.

Results  According to the reference standard, PE was present in 717 patients (21.6%). PE was missed by the AI in 23 
patients, while the attending radiologist missed 60 PE. The AI detected 2 false positives and the attending radiologist 
9. The sensitivity for the detection of PE by the AI algorithm was significantly higher compared to the radiology report 
(96.8% vs. 91.6%, p < 0.001). Specificity of the AI was also significantly higher (99.9% vs. 99.7%, p = 0.035). NPV and PPV 
of the AI were also significantly higher than the radiology report.

Conclusion  The AI algorithm showed a significantly higher diagnostic accuracy for the detection of PE on CTPA 
compared to the report of the attending radiologist. This finding indicates that missed positive findings could be 
prevented with the implementation of AI-assisted reporting in daily clinical practice.

Critical relevance statement   
Missed positive findings on CTPA of patients suspected of pulmonary embolism can be prevented with the imple‑
mentation of AI-assisted care.

Key points

•	 The AI algorithm showed excellent diagnostic accuracy detecting PE on CTPA.
•	 Accuracy of the AI was significantly higher compared to the attending radiologist.
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•	 Highest diagnostic accuracy can likely be achieved by radiologists supported by AI.
•	 Our results indicate that implementation of AI-assisted reporting could reduce the number of missed positive 

findings.
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Graphical abstract

Background
Workload for radiologists during regular working hours 
and on-call hours has dramatically increased in the last 
decades. CT scans during on-call hours were reported 
to have increased with 500% between 2006 and 2020 
and the number of CT pulmonary angiography (CTPA) 
to detect pulmonary embolism (PE) even showed an 
increase of 1360% [1]. As many studies continue to show 
the added value of medical imaging in patient care and 
technical developments lead to the acquisition of more 
complex and larger datasets, the workload is expected to 
increase even further in the future [2].

Unfortunately, the increased workload is not with-
out risk to the quality of radiologists’ reports, as it has 
been shown to result in radiologists developing read-
ing fatigue, which may cause diagnostic errors [3, 4], 
and additionally in an increased rate of burn-out among 
radiologists and residents [5]. Missed PE can influ-
ence patient care and outcome, as it is a potentially life 
threatening condition with risk of developing severe 

complications such as pulmonary hypertension. Radi-
ologists reading CTPA have shown excellent perfor-
mance to detect PE [6, 7], but the continued increase in 
workload could lead to additional missed findings in the 
future.

Artificial intelligence (AI) applications are increasingly 
evaluated in studies to determine their value in support-
ing radiologists through workflow improvement and 
assisted diagnosis [8].

Various requirements have to be met in order to guar-
antee successful clinical implementation of AI in daily 
practice [9, 10]. Besides technical validity, clinical valid-
ity needs to be assessed in diagnostic accuracy studies. A 
limited number of studies were already reported on the 
diagnostic performance of AI algorithms to detect PE 
on CTPA [11–16]. A recent meta-analysis reviewed five 
studies and showed variability in performance of the dif-
ferent AI algorithms in detecting PE in research settings 
[17]. Possible reasons for the discrepancy in results could 
be that not all of the algorithms had been thoroughly 
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externally validated for use in clinical practice and/or the 
large variation in sample sizes and PE prevalence [18]. A 
commercially available FDA-approved and CE-marked 
AI algorithm to detect PE on CTPA has shown a prom-
ising diagnostic accuracy to detect PE with a sensitivity 
and specificity of over 90% [12, 15]. Cheikh et al. showed 
that this AI detected 19 PE that were missed by the initial 
report in a sample of 1202 CTPA with a PE prevalence of 
15,8%, resulting in a higher sensitivity of the AI than the 
initial report. However, the AI had a significantly lower 
specificity leading to more false positives. Thus, the AI 
could cause overdiagnosis when radiologists would rely 
on the algorithm, which raises the question whether 
widespread implementation is currently beneficial and 
safe [9].

The goal of this comparative diagnostic accuracy study 
was to generate and extend the evidence on the perfor-
mance of this FDA-approved and CE-marked AI algo-
rithm to detect PE on a large sample of > 3000 CTPA and 
to determine the additional value of using AI assistance 
in daily clinical practice.

Methods
Patient inclusion
This comparative diagnostic accuracy study was approved 
by the institutional review board, and informed consent 
was waived (no. 2021-78371). CTPA scans of all consecu-
tive patients ≥ 18 years referred to the Radiology depart-
ment between 24-2-2018 and 31-12-2020 because of 
suspected PE were retrospectively included.

Artificial intelligence algorithm
All anonymised scans were analysed by an FDA-
approved and CE-marked PE (dedicated CTPA) AI algo-
rithm (Aidoc Medical). The architecture of the algorithm 
has been recently described in detail by Petry et al. [19]. 
The algorithm was deployed on a virtual machine and 
integrated with our PACS (SECTRA). The CTPAs within 
our set time-frame were automatically analysed by the 
algorithm, where after we received AI activation maps 
that provided possible PE findings. Aidoc Medical was 
not involved in study design or analysis of the AI output 
they provided. No financial support was provided for this 
study. Their algorithm has not been trained on data origi-
nating from our hospital.

Local reading and CT scanning protocol
In our hospital, CT scans are reviewed and reported just 
once by either a radiologist or by a radiology resident 
with an Entrusted Professional Activity level 3, 4 or 5 to 
read CTPA. During the study period, there was no algo-
rithmic support for PE detection in usage.

The hospital had access to the Somaton Force (Sie-
mens Healtineers), Brilliance 64 (Philips Healthcare), iCT 
(Philips Healthcare) and the IQon (Philips Healthcare). 
All CT scans were acquired and reconstructed with thin 
slices of about 1 mm.

The standard scanning protocol for CTPA included a 
bolus tracking in the pulmonary trunk with a trigger at 
200 Hounsfield Units. The post threshold delay was 5 s (or 
minimal possible). The patients were instructed to main-
tain a regular breathing pattern and avoid deep inspira-
tion. We used a flow of 5 mL/sec and inject 55–65 mL of 
contrast depending on body weight and 50 mL of NaCL, 
except for the spectral detector CT (IQon) where we 
used a kVp as low as possible to boost the iodine.

Reference standard
The reference standard was established using the report 
by the attending radiologist or resident with adequate 
Entrusted Professional Activity level, the AI output and 
an evaluation of discordant cases. Cases classified as PE 
positive by both the radiology report and the AI were 
considered positive according to the reference standard. 
Similarly, cases classified as PE negative by both the radi-
ology report and the AI were considered negative. Dis-
cordant cases were independently reviewed by a chest 
radiologist (P.A.J., > 10 years of experience) and a medical 
doctor (L.A.) who had access to the images, the radiology 
report and the AI output. When these readers agreed on 
the presence or absence of PE, the reference standard was 
set. In case of discrepancies a third adjudicator (a cardio-
thoracic radiologist (F.M.H., > 10 years of experience)) 
was consulted, who was given access to all available infor-
mation, to determine the reference standard.

Statistical analysis
For data analysis R version 4.2.0 was used (R Foundation 
for Statistical Computing, Vienna, Austria). All tests were 
two-sided. A p value < 0.05 was considered statistically 
significant.

Diagnostic accuracy measures of the AI algorithm were 
compared with the diagnostic accuracy measures of the 
radiology report using the DTComPair package of R. 
McNemar test was used to compare sensitivity and speci-
ficity. Relative predictive values were used to compare 
positive and negative predictive values.

Results
Patient inclusion
We included CT scans of 3316 patients suspected 
of PE (1615 females, 48.7%). The mean ± SD age was 
58.6 ± 16.1  years. Given the retrospective nature of our 
study and the absence of informed consent, we did not 
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have other clinical variables available in this study. All 
images were analysed by the AI.

Radiology report versus AI output
In 633 patients, both the radiology report and the AI out-
put were positive for PE. In 2588 patients, both the radi-
ology report and the AI output were negative for PE. In 
95 patients, the diagnosis was discrepant.

According to the reference standard, after re-evalua-
tion by two readers and if needed adjudication, 717 CT 
patients were positive for PE, resulting in a prevalence of 
21.6% (95% confidence interval 20.2–23.1%). Of those, 
60 (8.4%) cases of PE were not reported by the attend-
ing radiologist and 23 (3.2%) were not detected by the AI 
algorithm. The cases of missed PE by the attending radi-
ologist concerned two central/lobar, 12 segmental and 
46 subsegmental PE. Solely peripheral PE were missed 
by the AI algorithm (7 segmental, 16 subsegmental). The 
attending radiologist reported 9 false positive findings, 
while the algorithm marked 2 false positives.

Overall, the algorithm showed significantly higher 
diagnostic accuracy measures compared to the radiology 
reports with sensitivity of 96.8% versus 91.6%, respec-
tively, and specificity of 99.9% versus 99.7%. PPV and 
NPV of the AI algorithm were also significantly higher 
than of the radiology report (Table 1).

Discussion
Our study showed that both radiologists and the FDA-
approved and CE-marked AI algorithm have an excel-
lent performance on CTPA, with a significantly higher 
diagnostic accuracy for the AI algorithm to detect PE on 
a large sample of CTPA of patients suspected of PE com-
pared to the radiology report.

Diagnostic accuracy AI algorithm
Only two previous studies reported on the performance of 
the FDA-approved and CE-marked automated integrated 
workflow AI algorithm to detect PE on CTPA used in our 

study. Weikert et al. reported that this AI algorithm had 
a sensitivity of 92.7% and specificity of 95.5% when ana-
lysing a sample of 1465 consecutive patients suspected of 
PE with a PE prevalence of 18.5% [12]. The initial report, 
reviewed by two physicians served as reference standard. 
Contrary to our study, they could not compare the perfor-
mance of the AI to the initial report. A similar approach 
to ours was used by Cheikh et al., who compared the per-
formance of the same AI algorithm to the initial report 
of the radiologist using a sample of 1202 consecutive 
patients suspected of PE from 3 different hospitals with a 
PE prevalence of 15.8%. They found that the sensitivity of 
the AI was slightly higher than the radiology report, albeit 
not significantly (92.6% versus 90%). However, radiolo-
gists showed a significantly higher specificity compared to 
the AI (99.1% vs. 95.8%) [15]. It is not uncommon that the 
performance of a single AI algorithm varies in different 
clinical settings [18]. Their scanning protocol was fairly 
similar to our scanning protocol, but the reference stand-
ard was obtained using one radiologist with access to the 
initial report and the AI output who, in case of doubt, 
could request the judgement of another senior radiologist. 
The difference in sample size and prevalence of PE may 
also at least in part explain the discrepancies between our 
study and the study of Cheikh et al.

Our results might be suggestive of a general statement 
that AI could replace radiologists as it reached higher 
diagnostic accuracy than the initial report of the attend-
ing radiologist. This has for example been previously sug-
gested for digital mammography screening [20].

However, standalone use of AI algorithms in read-
ing CTPA is currently not warranted as reading CTPAs 
doesn’t solely include analysis of possible occlusion of 
the pulmonary arteries. Radiologists can identify other 
pathology and thus remain responsible for good patient 
care [21]. Aside from the possibility of the AI missing 
clinically relevant PE without the additional reading of 
the radiologist, current algorithms focused on the detec-
tion of PE will miss other relevant findings. This might 
include thrombus in the right atrial appendage, signs of 
significant pulmonary hypertension and right-ventricular 
pressure overload, and a variety of additional clinically 
relevant findings of infectious, oncological or cardiovas-
cular aetiology [22–25].

A strength of our study was the use of a large consecutive 
cohort of > 3000 patients in an academic medical centre 
with a PE prevalence of 21.6%, reflecting every day clini-
cal practice [26, 27]. As the AI found 60 additional cases 
of PE in our study population of 3316 patients, to detect 
a single additional acute PE case would require a number-
needed-to-analyse by AI of 56 patients. Due to the low rate 
of false positive AI findings, evaluating the AI output could 
be considered minimal additional effort for radiologists.

Table 1  Diagnostic accuracy measures of radiology report and 
AI algorithm on CTPA

PPV = positive predictive value, NPV = negative predictive value, CI = confidence 
interval, p values concern the comparison between the diagnostic measures of 
the radiology report versus the AI algorithm

Radiology report AI algorithm p value

Sensitivity in % (95% 
CI)

91.6 (89.6–93.7) 96.8 (95.5–98.1) p < 0.001

Specificity in % (95% 
CI)

99.7 (99.4–99.9) 99.9 (99.8–100.0) p = 0.035

PPV in % (95% CI) 98.6 (97.8–99.5) 99.7 (99.3–100.0) p = 0.030

NPV in % (95% CI) 97.8 (97.2–98.3) 99.1 (98.8–99.5) p < 0.001
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Limitations
This study comes with some limitations. We did not re-
evaluate all images of patients that were classified posi-
tive by both the radiology report and the AI output and 
negative by both the radiology report and AI algorithm. 
It has been observed that for small PE there can be sub-
stantial disagreement between readers depending on 
expertise level and that small PE are often overdiagnosed 
in routine practice [28]. However, missed or false posi-
tive cases by both would not have affected the outcome 
of the comparison between the radiology report and the 
AI output.

The retrospective nature of our study did not allow a 
direct comparison of conventional care and AI-assisted 
care, which is considered the ideal design to evaluate 
the additional value of AI [29]. This would require a 
preferably prospective study design with large paired or 
parallel groups in a hospital where AI is implemented. 
However, the seamless workflow integration of the algo-
rithm complicates the conduct of such a prospective 
clinical study design, since the AI output is readily avail-
able to the radiologist. Another possibility would be to 
compare diagnostic accuracy of radiologists before and 
after the implementation of AI, which has the limitation 
of the time interval between the evaluation before and 
after implementation. Moreover, to acquire an accept-
able reference standard for such a design, several radi-
ologists would have to do a consensus reading of a large 
number of scans. It could be argued whether such a 
large investment in effort and costs is still required with 
the current excellent diagnostic accuracy results of this 
AI in mind.

Future perspectives
Our results combined with those of previous studies call 
out for clinical utility studies to determine the cost-effec-
tiveness and the impact of AI assistance on healthcare 
quality and efficiency, as a next step towards reimburse-
ment and clinical adoption of AI assistance for the detec-
tion of PE in CTPA [30–32].

Conclusion
In conclusion, this study showed that the AI algorithm 
had a significantly higher diagnostic accuracy to detect 
PE on CTPA of patients suspected of PE compared to 
the report of the attending radiologist. This indicates that 
missed positive findings can be prevented with the imple-
mentation of AI-assisted care in daily clinical practice.

Abbreviations
AI	� Artificial intelligence
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PE	� Pulmonary embolism
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