
Citation: Nguyen, X.-T.-A.; Moekotte,

L.; Plomp, A.S.; Bergen, A.A.; van

Genderen, M.M.; Boon, C.J.F.

Retinitis Pigmentosa: Current

Clinical Management and Emerging

Therapies. Int. J. Mol. Sci. 2023, 24,

7481. https://doi.org/10.3390/

ijms24087481

Academic Editors: Carmelina

Daniela Anfuso and Gabriella Lupo

Received: 11 March 2023

Revised: 1 April 2023

Accepted: 15 April 2023

Published: 19 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Retinitis Pigmentosa: Current Clinical Management and
Emerging Therapies
Xuan-Thanh-An Nguyen 1,† , Lude Moekotte 2,† , Astrid S. Plomp 3 , Arthur A. Bergen 3,
Maria M. van Genderen 2,4 and Camiel J. F. Boon 1,5,*

1 Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
2 Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
3 Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9,

1105 AZ Amsterdam, The Netherlands
4 Bartiméus, Diagnostic Center for Complex Visual Disorders, 3703 AJ Zeist, The Netherlands
5 Department of Ophthalmology, Amsterdam University Medical Centers, Meibergdreef 9,

1105 AZ Amsterdam, The Netherlands
* Correspondence: Camiel.boon@amsterdamumc.nl
† These authors contributed equally to this work.

Abstract: Retinitis pigmentosa (RP) comprises a group of inherited retinal dystrophies characterized
by the degeneration of rod photoreceptors, followed by the degeneration of cone photoreceptors. As a
result of photoreceptor degeneration, affected individuals experience gradual loss of visual function,
with primary symptoms of progressive nyctalopia, constricted visual fields and, ultimately, central
vision loss. The onset, severity and clinical course of RP shows great variability and unpredictability,
with most patients already experiencing some degree of visual disability in childhood. While
RP is currently untreatable for the majority of patients, significant efforts have been made in the
development of genetic therapies, which offer new hope for treatment for patients affected by
inherited retinal dystrophies. In this exciting era of emerging gene therapies, it remains imperative to
continue supporting patients with RP using all available options to manage their condition. Patients
with RP experience a wide variety of physical, mental and social-emotional difficulties during their
lifetime, of which some require timely intervention. This review aims to familiarize readers with
clinical management options that are currently available for patients with RP.

Keywords: retinitis pigmentosa; clinical management; genetics; genetic counseling; gene therapy;
low vision; low-vision rehabilitation

1. Introduction

Retinitis pigmentosa (RP) is a collective term used to describe a heterogeneous group
of inherited retinal dystrophies (IRDs) that are characterized by primary loss of rod photore-
ceptors, followed by secondary loss of cone photoreceptors [1]. This degenerative process
leads to a gradual loss in visual function in affected individuals and may ultimately lead to
loss of visual functions in more advanced stages [1,2]. RP has a variable prevalence of 1 in
750–9000 individuals, depending on the geographic location of the reported study [1–8].
Higher incidences of RP are typically found in regions with high rates of consanguinity
and in (semi-)isolated populations [7,9]. In the Western population, the global prevalence
of RP has been estimated to be around 1 in 3000–5000 individuals [1,2].

The term ‘retinitis pigmentosa’ was first introduced by Dutch physician F.C. Donders
in 1857, after a few previous reports of possible RP, including potentially the first fundus
drawing of a patient with RP (or choroideremia) by Dutch physician Van Trigt, a PhD
student of Donders, soon after the introduction of the ophthalmoscope [10–13]. While
the term ‘retinitis pigmentosa’ is considered a misnomer, it is still widely used in clinical
and academic settings [1]. The term ‘rod–cone dystrophy’ is often used interchangeably

Int. J. Mol. Sci. 2023, 24, 7481. https://doi.org/10.3390/ijms24087481 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24087481
https://doi.org/10.3390/ijms24087481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8350-5896
https://orcid.org/0000-0002-5159-4262
https://orcid.org/0000-0002-4903-8232
https://doi.org/10.3390/ijms24087481
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24087481?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 7481 2 of 40

with RP, as it denotes the order of photoreceptor degeneration occurring in this retinal
disease [14–17].

While RP was previously considered to be untreatable, promising medical advances,
particularly the development of genetic therapies, have paved the way for potential thera-
pies that may slow down or halt photoreceptor degeneration, or even restore some degree
of visual function [18]. Our improved understanding of the cellular mechanisms and
genetic background underlying IRDs, along with the immune-privileged characteristics
of the eye, has heralded gene therapy as one of the most promising therapies for RP [19].
Proof-of-concept studies in murine and canine models have shown the potential of gene
therapy for RPE65-associated retinopathy, which has led to the initiation of human clin-
ical gene-therapy trials [20–24]. The positive results in both safety profiles and clinical
endpoints in these trials have resulted in the approval of voretigene neparvovec as the
first FDA-approved gene therapy for patients with RPE65-associated retinopathy, which is
now commercially available as Luxturna® [20,25–27]. This major milestone has sparked a
surge in interest for other IRDs and their candidate genes, and several gene-therapy clinical
trials have already commenced and terminated [19,27–31].

Despite rapid developments in genomic medicine, some important considerations
remain for the implementation of these therapeutic strategies. For instance, while gene
therapy holds promise for patients with IRDs, not every patient will be eligible for this
treatment. Generally, genetic therapies require identification of the causative gene and
photoreceptor viability in order to be effectively applied [28]. Many IRD patients do not
meet both of these criteria for gene therapy. As such, patients require therapy tailored
to their genetic condition and disease stage, or a therapy that can be universally applied
regardless of the underlying genetic cause [18,25,28]. Furthermore, when designing a
clinical trial, chosen outcome measures need to be relevant and meaningful for the intended
retinal disease and patient [32]. As RP is mostly a progressive, degenerative disease, timely
intervention would provide the most benefit [33].

Additionally, RP is associated with an increased risk of other ocular complications,
such as cataract and cystoid macular edema (CME), which may cause additional visual
disturbances [34,35]. The combination of RP with other potentially vision-impairing com-
plications often causes significant visual impairment at an early age, which also impacts a
patient’s physical and mental health [36]. Currently, several management options for RP
exist, ranging from genetic and psychological counseling to the treatment of RP-associated
complications. Although these management options are considered supportive, they cer-
tainly provide some relief of the physical, mental and social-emotional burden that patients
may experience [37].

In this review, we aim to update and familiarize readers with the current tools for the
clinical management of RP, as new management modalities have become available over
the years. This information can be used by clinicians to provide patients with updated
insights into current management options, to weigh their benefits and drawbacks, and in
turn, advise patients in the management of their disease.

2. Pathophysiology of RP

RP is mostly a monogenic disease, in which most disease-associated genetic variants
are expressed in photoreceptor or retinal pigment epithelium (RPE) cells, although digenic
inheritance has also been described [1,38]. As each gene has its own function, genetic
variants lead to different biochemical changes within the retina. Eventually, these changes
result in the degeneration of photoreceptors and RPE cells. To date, more than 90 genes have
been linked to RP, and it is likely that this number will increase over the years due to ongoing
improvements in diagnostic testing techniques (RetNet, https://sph.uth.edu/RetNet/;
accessed on 1 November 2022) [1,39,40]. RP is a highly heterogeneous disease, both
clinically and genetically, and shows considerable overlap with other IRDs. Identical
disease-associated genetic variants may manifest in different clinical entities, whereas
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different variants in different genes may also result in similar phenotypes [40]. An overview
of the different causative genes in RP and their overlap with other IRDs is shown in Figure 1.
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Figure 1. Venn diagram of currently identified genes associated with retinitis pigmentosa (RP) and
their genetic overlap with other inherited retinal dystrophies. For example, variants in the RHO gene
can manifest in either RP or congenital stationary night-blindness phenotypes. All genes included are
registered in the Online Mendelian Inheritance in Man (OMIM) database and follow the up-to-date
symbols of the HUGO Gene Nomenclature Committee (HGNC). Genes that are associated with
syndromic forms of RP are marked with an asterisk (*). ACHM = achromatopsia; CO(R)D = cone(-
rod) dystrophy; CSNB = congenital stationary night blindness; LCA = Leber Congenital Amaurosis;
MD = macular dystrophy.

3. Classification of RP
3.1. Mode of Inheritance

RP comprises a spectrum of retinal phenotypes, some of which may exhibit unique
clinical characteristics. Several classification systems have been proposed. The most
common method to classify patients with RP is by their Mendelian mode of inheritance.
RP can be inherited as autosomal dominant (adRP; 15–25%), autosomal recessive (arRP;
5–20%) or X-linked recessive (XLRP; 5–15%) [1,41]. Other inheritance patterns for RP, albeit
very rare, also exist, namely in X-linked dominant, mitochondrial, and digenic forms [14].
Patients with no positive family history or definitive molecular diagnosis are termed
isolated or simplex cases. These simplex cases are assumed to be primarily autosomal
recessive, although other inheritance forms are also conceivable [42].

3.2. Non-Syndromic and Syndromic Forms of RP

RP can also manifest with extra-ocular symptoms, which occurs in 20–30% of all
cases [1,14]. The most common extra-ocular symptom in combination with RP is hearing
loss, in the context of Usher syndrome [43]. Patients are classified into ‘syndromic RP’ or
‘non-syndromic RP’ categories based on the distinction of whether extra-ocular features
are present or absent, respectively. Additionally, most patients with syndromic RP can be
further classified into either ‘inborn errors of metabolism (IEM)’ or ‘ciliopathies’ [44].
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IEM includes a large group of genetic disorders in which the function of a crucial
enzyme in one of the metabolic pathways is lost (e.g., carbohydrate, protein, or glycogen
storage pathways) [44]. IEM has a predilection for the brain, and in turn can also affect
the retina as it is part of the central nervous system [44]. Examples include adult Refsum
disease (RP, neurodegeneration, ataxia, hearing loss, anosmia, and cardiac/skeletal/skin
involvement), Bassen–Kornzweig syndrome (RP, fat malabsorption, acanthocytosis, low
blood cholesterol, neurodegeneration) and PHARC syndrome (polyneuropathy, hearing
loss, ataxia, RP and cataract) [45–49].

Ciliopathies are a group of disorders that affect the assembly or function of primary
cilia. Cilia are microtubular extensions of the plasma membrane and are a component of
nearly every cell type. As a consequence, genetic defects in the cilia are typically pleiotropic,
affecting more than one system [44]. In the retina, the proximal end of the photoreceptors’
outer segments is connected to their inner segments via the connecting cilium. Other organs
that are often affected in ciliopathies are the inner ear, kidney, liver, and central nervous
system [44]. Known ciliopathies that can manifest with retinal degeneration include Usher
syndrome, Joubert syndrome (retinal degeneration, intellectual disability, polydactyly,
ataxia), Senior–Loken Syndrome (retinal degeneration and nephronophthisis) and Bardet–
Biedl syndrome (RP, intellectual disability, polydactyly, obesity, and hypogonadism), among
others [44,46,47,50–52].

4. Clinical Symptoms

RP involves the primary degeneration of rods, followed by the secondary degeneration
of cones [2]. As each photoreceptor type plays a specific role in the establishment of vision,
there is a classic order in which the clinical symptoms of RP manifest. Due to the initial
loss of rod photoreceptors, which are primarily used for vision in dim light conditions
and peripheral visual functions, patients experience difficulty or inability to see in dark or
dimly lit environments, which is commonly known as ‘night blindness’ or nyctalopia [15].
The second symptom found in RP is a progressive loss of peripheral visual fields, although
this may be unnoticed in the initial stages of disease due to compensating mechanisms [53].
When the degeneration of photoreceptors further expands, so do the visual field defects.
Constriction of visual fields progresses over time, eventually reaching the central part of
the visual field. In advanced stages of RP, only a small residual central island of visual field
may remain—with or without peripheral remnants—which results in severely constricted
vision known clinically as ‘tunnel vision’ (Figure 2) [54,55]. As a result of visual field loss,
one of the major perceived difficulties in patients with RP is mobility, which requires input
from both central and peripheral vision [56].
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Figure 2. Illustrative example of typical visual field progression in a patient with retinitis pigmentosa
using kinetic perimetry. Visual fields can be within normal limits in early stages of disease (I),
although visual field defects may already be present but not detectable within the used target
stimulus. With time, constriction of the visual fields occurs, with defects typically being symmetric
and expanding more rapidly outwards and slower inwards (II,III). Ultimately, a small central remnant
of visual field may remain in end-stage retinitis pigmentosa, which is commonly experienced and
known as ‘tunnel vision’ (IV). Note that the clinical course of visual field loss varies between
individuals and may follow a progression pattern that is different from this illustration.
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Cone photoreceptors, which are densely packed in the macula, are responsible for
visual acuity and color vision [57]. Gene variants that target specifically rods but not cones
(e.g., disease-associated variants in the RHO gene affecting rhodopsin, a rod-specific protein)
can still cause death of cone photoreceptors. It remains unclear how cone degeneration in
these specific circumstances occurs. Several theoretical concepts have been suggested for the
secondary degeneration of cones, including the lack of trophic factors, such as rod-derived
cone viability factor, nutrient shortages, oxidative stress and microglial activation, which
are induced following rod photoreceptor apoptosis [57–60]. Loss of cone photoreceptors
leads to a gradual loss of central vision once sufficient cones in the macula are compromised.
This process can ultimately lead to severe visual impairment or even functional blindness
based on criteria established by the World Health Organization [61]. Importantly, most
patients with RP in advanced stages of their disease will likely retain some degree of
residual vision, and total blindness, i.e., no light perception, is uncommon [62]. Previous
studies reported that 7–8% of patients with generalized RP end up with a vision of counting
fingers or worse in their fourth or fifth decade of life, while less than 1% of RP patients
progress to no light perception [62,63]. In addition to central vision loss, patients may lose
color vision, and they may have increased sensitivity to light (i.e., photophobia) [15,64].
Photopsia, i.e., seeing light flashes or static noise when no light enters the eye, is very
common in RP, possibly due to reduced afferent nerve impulses or spontaneous signaling
from the inner retina [1,65].

5. Disease Onset and Prognosis

The onset, severity and progression of symptoms in RP are highly variable, even in af-
fected individuals from the same family. (Epi)genetic and possibly environmental modifiers
are believed to contribute to phenotypic variability, which complicates the establishment of
potential genotype–phenotype correlations [66]. It remains difficult to establish a visual
prognosis for RP as a group of conditions, although a rough estimate of disease progression
can be determined based on the mode of inheritance and the underlying genetic defect, as
well as previous information on the clinical course [67]. More severe phenotypes with early-
onset disease and the rapid decline in visual function are typically observed in patients
with arRP or XLRP, as these variants generally result in loss of function of a crucial protein
in the visual pathway [14,68–71]. High myopia (refractive error of −6 diopters or more)
may be associated with a more rapid disease progression, for instance in RPGR-associated
X-linked RP [69,71,72]. In contrast, patients with adRP (e.g., due to RHO mutations) mostly
demonstrate a relatively mild disease course compared to arRP or XLRP, and they may
even retain considerable central and peripheral visual function up until the eighth decade
of life [73–75]. The disease course of RP is best understood in the most prevalent genes
associated with RP (e.g., RHO and RPGR) as more extensive retrospective and prospective
studies have been performed in these genes; thus, their visual prognosis can be more
accurately estimated [23,68,71,73,74,76–78].

6. Diagnostic Testing in RP

The management of RP starts by establishing the diagnosis through extensive clinical
and genetic testing. Early diagnosis of RP enables early prevention and management of
complications, disease monitoring and genetic counselling (e.g., family planning). Clinical
examination, including the assessment of visual functions, provides relevant information
for visual rehabilitation services and helps affected individuals make informed choices
about their professional life. Genetic testing is important for visual prognosis, family
planning, and for potential inclusion into clinical trials and gene therapy when available.
In this chapter, we discuss the principles of clinical and genetic testing methods used for
the diagnosis of RP.
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7. Clinical Testing and Evaluation

Clinical evaluation of patients with presumed RP consists of a comprehensive oph-
thalmic examination that includes best-corrected visual acuity (BCVA), intraocular pressure,
slit-lamp, fundus, perimetric, retinal imaging, and electrophysiological evaluation.

7.1. Fundus Findings

The classical clinical hallmarks of RP seen in fundus examinations include a pale
optic disc, retinal vessel attenuation and intraretinal hyperpigmentation. While intraretinal
hyperpigmentation typically has a bone-spicule-like appearance, it may also present as
nummular, salt and pepper-like, or with granular pigmentation A non-pigmented form of
RP also exists (‘RP sine pigmenti’), instead of the typical bone-spicule-like hyperpigmenta-
tion [1,79,80]. These retinal changes typically occur bilaterally and show a high degree of
symmetry, although cases of unilateral RP have also been described [81,82]. Other fundus
findings, albeit less common, include optic nerve drusen, CME, epiretinal membrane for-
mation, and Coats-like disease, a (mid)peripheral exudative vasculopathy characterized
by telangiectatic vessels, focal serous retinal detachment and lipid exudate deposition [66].
The onset and presentation of the aforementioned fundus findings differ highly between
individuals and may even present in atypical forms. Sector RP is considered an atypical,
mild form of RP, which is more common in patients with adRP [69,73,83–85]. Degeneration
in sector RP has a predilection for the inferior nasal hemisphere of the retina with corre-
sponding superior visual field defects [58]. A widespread, generalized disease similar to
classic RP may develop with time, although this is not necessarily the case for all patients
with sector RP [73].

7.2. Differential Diagnosis

A complete medical history, review of other body systems and sometimes laboratory
testing is necessary to distinguish between RP and other conditions that can masquerade as
RP. The list of differential diagnoses in RP is extensive and includes infectious (e.g., syphilis
or congenital rubella), drug-induced (e.g., chloroquine or thioridazine), iatrogenic (e.g.,
laser photocoagulation), metabolic (e.g., gyrate atrophy due to hyperornithinemia) and
nutritional etiologies (e.g., vitamin A and zinc deficiencies), as well as a range of non-RP-
inherited retinal dystrophies (e.g., choroideremia, congenital stationary night blindness and
Oguchi disease) [15,86]. In addition, it is important to rule out several metabolic diseases
that may present with fundus findings mimicking RP, including abetalipoproteinemia
(Bassen–Kornzweig disease), ataxia with vitamin E deficiency and adult Refsum disease,
among others [51,87,88]. This distinction from RP is crucial as disease progression in some
metabolic diseases can be combated. For instance, in the case of Abetalipoproteinemia and
ataxia with vitamin E deficiency, disease progression can be slowed with specific vitamin
supplements, while disease progression in adult Refsum disease can be slowed by limiting
the intake of food high in phytanic acid [89,90]. A delayed diagnosis and, consequentially,
delayed treatment may have significant and irreversible consequences for patients with
these diseases [88].

7.3. Electrophysiological Testing

Electrophysiological testing plays a major role in the diagnosis and follow-up of RP, as
well as the differentiation of RP from other diagnoses. Among all electrophysiological tools,
full-field electroretinography (ffERG) is the most common technique used for diagnosing
RP, which follows the guidelines established by the International Society for Clinical
Electrophysiology of Vision (ISCEV) [91]. In brief, the ffERG evaluates the retinal function
in response to light stimulus. A dim white single flash in a dark-adapted eye (i.e., scotopic
test conditions) invokes a rod response, whereas a flickering white light (30-Hz) in a
light-adapted eye elicits a cone response [91]. When RP becomes detectable in ffERG,
i.e., when the retina is sufficiently affected, scotopic responses demonstrate a significant
reduction in amplitudes of both a- and b-waves, which are responses mostly derived
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from photoreceptor and bipolar cells, respectively (Figure 3). Ultimately, both scotopic
and photopic responses can be fully extinguished and are non-recordable in end-stage
disease [15]. Other diagnostic tools that measure retinal function include multifocal ERG
(mfERG), which assesses macular function, and dark adaptometry, which measures the
time it takes for photoreceptors to retain maximal sensitivity following photoreceptor
bleaching [92–94]. These other electrophysiological testing tools play a smaller role in
the initial diagnosis of RP, and are instead sometimes used to complement ffERG/clinical
findings and to rule out other potential diagnoses.
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Figure 3. Example full-field electroretinography recordings in a healthy patient and in patients
with different disease stages of retinitis pigmentosa. Different stimuli are used to establish the
diagnosis of retinitis pigmentosa, which is based on the guidelines of the International Society for
Clinical Electrophysiology of Vision (ISCEV). In patients with advanced stages of diseases, rod-driven
responses are severely diminished or even absent, whereas residual cone-driven responses may
still remain.

7.4. Perimetry Testing

As ffERG responses eventually become non-recordable in patients with advanced
forms of RP, ffERG is not useful for monitoring disease progression [95]. Instead, kinetic
visual fields and multimodal imaging techniques are used to further monitor progression,
as these can be utilized even in advanced stages of disease.

Visual field testing is a key in the functional evaluation of RP. When performed in
early phases of disease, visual field testing demonstrates progressive, midperipheral visual
field loss. With time, a midperipheral ring scotoma develops, which typically expands
more rapidly towards the periphery than centrally [66]. Goldmann perimetry is often
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considered the standard for the detection of visual field progression in RP. In Goldmann
perimetry, a light stimulus is presented outwards and is slowly moved inwards by an
operator until the stimuli are visibly seen by the patient [96]. This process is then repeated
multiple times while using different stimuli, in order to map the extent of a patient’s visual
field. Limitations of Goldmann kinetic perimetry include significant variability in patients
with low vision/unstable fixation and inter-operator variability [97–99]. While Goldmann
kinetic perimetry is still commonly used in clinical settings, it is gradually being replaced
by other visual-field-testing methods, such as computerized (semi-)automated perimetry
devices, in clinical practice, research and clinical trials [95,100].

Microperimetry (MP) is a semi-automated perimetry device that correlates stimuli
presented to the central retina using fundus tracking [100]. The test is performed by
having the patient fixate on a central point while different stimuli are presented at various
locations on the retina. The patient’s ability to perceive the stimulus at each location
is recorded and used to create a ‘retinal sensitivity map’. This yields a more precise
point-by-point correlation and follow-up [100]. MP is often employed in clinical trials
for IRDs in combination with traditional outcome measures (i.e., visual acuity and visual
fields) [101–103]. Recent studies have shown that changes in retinal sensitivity can be
detected within relatively short time frames, preceding changes in BCVA [95,104,105]. As
BCVA is affected in later stages of RP, it is difficult to assess disease progression based on
BCVA in short follow-up periods, such as in the context of clinical trials [103]. Therefore,
MP can prove beneficial in clinical trials as a complementary outcome measure to detect
disease progression and to assess treatment outcome. It is important to note that MP is not
a replacement for traditional visual acuity testing as it is not appropriate for all patients
with RP. Measuring disease progression with MP becomes more difficult in patients with
poor fixation (e.g., patients with low vision or nystagmus), which in turn causes variability
in measurements. Another limitation is that MP only allows for sensitivity mapping of the
central retina.

Dark-adapted (DA) static perimetry was developed to measure rod-and-cone function
across larger extents of the retina [106,107]. In contrast to light-adapted perimetry, DA
can be used to discriminate between rod and cone functions by testing each loci with
different stimuli [108]. Each testing loci is exposed to a cyan (505 nm) and red (626 nm)
stimuli. As rods are less sensitive to red stimuli, a large threshold difference between
stimuli indicates rod mediation [109]. DA static perimeters are commercially available but
can also be performed on current standard perimeters by modifications [108].

7.5. Full-Field Stimulus Threshold Testing

Another psychophysical tool is the full-field stimulus threshold (FST), which has
become a key outcome measure in gene-therapy trials [31,68,110]. The FST was developed
as a tool to quantify retinal sensitivity in patients with end-stage IRD as these patients com-
monly lacked the vision and fixation needed for other outcome measurements tools [111].
In brief, the purpose of the FST is to measure the retinal threshold, which is defined as the
stimulus intensity and is seen 50% of the time by a patient. Different stimuli (red, blue and
white) yield differentiation between rod, cone or mixed rod–cone responses, and stimuli are
typically presented multiple times to account for test–retest reliability. As the FST measures
the thresholds of the entire retina, a limitation of this measurement tool is the lack of spatial
information. Still, the FST has been able to demonstrate treatment efficacy across multiple
gene-therapy trials [20,21,23,111,112].

7.6. Multimodal Imaging

Multimodal imaging, including widefield fundus imaging, spectral-domain optical
coherence tomography (SD-OCT), and fundus autofluorescence (FAF) imaging, is used to
visualize the extent of retinal degeneration in patients with RP. Widefield fundus imaging
yields a comprehensive overview of the retina, which can be used to monitor progression
in RP. Multiple studies have used structural markers on SD-OCT, such as the central retinal
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thickness and/or ellipsoid zone (EZ) band width, as another means of tracking disease
progression [113–119]. In addition, SD-OCT yields the detection of secondary complica-
tions associated with RP, such as the presence of CME and epiretinal membrane. FAF is
a non-invasive imaging technique that measures the level of autofluorescent lipofuscin
components in the photoreceptors and RPE. A hyperautofluorescent macular ring can
typically be observed in earlier disease stages of RP and indicates the transition zones
between healthy and degenerating retina, which are often accompanied by progressive
thinning of the EZ, external limiting membrane (ELM) and outer nuclear layer (ONL) on
SD-OCT (Figure 4) [78]. It is important to note that hyperfluorescent rings are not specific
to RP and can also be seen in other retinal diseases such as cone–rod dystrophies. Gradual
constriction of hyperautofluorescent rings towards the central retina occurs in RP, whereas
gradual expansion of the ring is observed in cone–rod dystrophies due to differences in
order of photoreceptor degeneration. In advanced stages of RP, when extensive photore-
ceptor and RPE degeneration has occurred, resulting in the depletion of lipofuscin levels in
the retina and RPE, extensive hypo-autofluorescent areas are seen on FAF (Figure 4).
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Figure 4. Multimodal imaging in three patients with retinitis pigmentosa (RP). (A–C): Multimodal
imaging in a patient with RP caused by a variant in the RHO gene showing the clinical hallmarks of
RP, including attenuated vessels and bone-spicule-like hyperpigmentation in the (mid)peripheral
retina (A). On autofluorescence imaging, a small hyperfluorescent ring is observed in the macula
(B). Spectral-domain optical coherence imaging shows a relatively intact central retina with loss of
the outer retinal layers (i.e., ellipsoid zone and external limiting membrane) outside this area (C).
(D–F): Multimodal imaging in a different patient with RHO-associated RP reveals hypo-
autofluorescent areas in the midperipheral retina and around the vascular arcades, with a broad hyper-
autofluorescent ring-like region in the macula (E). The foveal area shows hypo-autofluorescence some
petaloid, likely due to the presence of cystoid macular edema that masks underlying autofluorescence (F).
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SD-OCT confirms the presence of CME, along with the perifoveal loss of the outer retinal layers.
(G–I): More extensive bone-spicule-like hyperpigmentation is observed in this patient with advanced
RPGR-associated RP, showing not only hyperpigmentation in the midperipheral retina, but also in
the fovea (G). Autofluorescence imaging (H) shows some residual regions of normal or increased
autofluorescence, together with regions of mottled hypo-autofluorescence that also include the
fovea. As expected, there is clear outer retinal and retinal pigment epithelium on optical coherence
tomography (I).

8. Genetic Testing

Due to the clinical variability of RP and its phenotypic overlap with other IRDs,
a diagnosis based on clinical findings alone is not sufficient. Therefore, genetic testing
has become indispensable in the diagnosis and management of RP. With the approval
of gene therapy for RPE65-associated IRD, and several first-in-human trials on other
genetic therapies for a range of IRD-associated genes, it is pivotal to offer genetic testing
to patients when available and affordable. Genetic testing allows for the assessment of a
patient’s potential eligibility for these ongoing and upcoming trials and facilitates genetic
counseling and provides a more accurate clinical prognosis [120]. There are several genetic
diagnostic techniques available, and we briefly discuss the advantages and disadvantages
of these modalities.

8.1. Sanger Sequencing

Sanger sequencing, a first-generation sequencing technique, has been the gold stan-
dard for DNA sequencing for several decades and is still considered by many to be the gold
standard for single-gene or low-throughput sequencing [121]. Sanger sequencing starts
with polymerase-chain-reaction amplification of the region of interest, followed by targeted
sequencing of up to 800 base pairs [122–124]. While Sanger sequencing is fast and cost
effective for single genes, it is outperformed by newer techniques when the sequencing of
multiple targets is needed [125].

8.2. Next-Generation Sequencing

Next-generation sequencing (NGS), also called second-generation sequencing, is cur-
rently the primary approach for molecular analysis in IRDs. NGS distinguishes itself from
Sanger sequencing by allowing for parallel sequencing of multiple parts of DNA from
multiple samples (i.e., multiplexing). Because large amounts of DNA and RNA snippets
can be sequenced in a short time using this method, it is also called high-throughput
sequencing [126,127]. Currently, NGS can genetically solve up to 60–80% of all sequenced
RP/IRD patients [128–131]. In the remaining unsolved patients, periodic re-examination of
genomic data could prove valuable as new disease-causing variants are discovered and new
bioinformatic and data analytical tools are developed over time. Within NGS, three main
techniques exist that are used for the identification of genomic variants: targeted gene
sequencing, whole-exome sequencing (WES) and whole-genome sequencing (WGS).

8.3. Targeted Gene Sequencing

Targeted gene sequencing allows for the sequencing of specific regions that are clini-
cally relevant to the disease of interest. For RP, a custom gene panel is created that sequences
all exonic and intronic regions associated with RP and related IRDs [122]. Targeted sequenc-
ing is an effective approach for initial screening of RP for several reasons as follows: it
allows for greater read depth of targeted regions; regions are predefined and therefore more
likely to be clinically relevant; and samples are screened at reduced costs and computational
burden when compared to WES and WGS techniques [120]. Targeted gene sequencing is
not useful for the detection of novel genes as these new regions are not sequenced until they
are specifically added to the existing gene panel. If a novel gene is found for RP, previously
used gene panels need to be redesigned and revalidated [120].
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8.4. Whole-Exome Sequencing

WES exclusively targets protein-coding exons, also known as the exome, which makes
up to approximately 1–2% of a patient’s entire genome [120,132]. WES provides coverage
of more than 95% of the entire exome, in which 85% of all pathogenic variants are expected
to reside [132]. Furthermore, WES can screen intronic variants close to target exons, e.g.,
splice-site variants [131]. As such, WES is a reliable tool to detect novel, mostly monogenic,
variants in patients with genetically unsolved RP. A major limitation of WES is its inability
to comprehensively detect structural variants, copy-number variants and chromosomal
rearrangements [131].

8.5. Whole-Genome Sequencing

WGS targets the entire genome, which consists of over three billion nucleotides, and
thus exceeds the coverage of previously mentioned NGS techniques [120]. This allows WGS
to uncover variants not detected using WES, including copy-number variants, intergenic
variants and deep intronic variants [120]. Despite the better coverage of WGS, there are
several drawbacks that should be considered. Due to its wider coverage, WGS generates
large clusters of information, more so than any other NGS technique, which includes an
increase in secondary, accidental findings [133]. These large datasets obtained from WGS
require greater levels of processing and analyzing, not to mention larger amounts of data
storage and increased financial costs, compared to other NGS techniques [130,131].

8.6. Recommendations for Genetic Testing

In summary, considering the sheer number of genes involved in the pathogenesis of
RP, NGS is often preferred over conventional Sanger sequencing. Out of all NGS tech-
niques, targeted gene sequencing is typically the primary approach for genetic screening.
Using broad, IRD-based gene panels allows for maximum coverage of relevant regions
using a single test and provides the best balance between sensitivity, cost efficiency and
computational burden compared to other NGS techniques [131]. When the underlying
cause remains unresolved following targeted gene panel testing, other higher-targeting
sequencing techniques (WES or WGS) can be employed to elucidate the exact genetic basis
of the disease. Newer third-generation sequencing techniques also exist, which employ
real-time DNA molecular sequencing and allow for longer reads [134,135]. However, these
methods are still under development and are not commonly used in clinical practice.

9. Genetic Counseling

Because RP is a heritable disease, genetic counseling plays an important role in the
management of RP. The aim of genetic counseling is to advise and inform patients of
the physical, psychosocial and familial implications of genetic findings on RP [120,136].
Genetic counseling takes place prior to and after genetic testing and can be provided
by a subspecialized ophthalmologist, clinical geneticist or by another specialized genetic
counselor [40,136–139]. The organization of genetic counseling services differs between
centers and across different countries, depending on the availability of genetic counseling
professionals [120]. A recent study in the US demonstrated that most ophthalmologists
(and/or optometrists) performed some degree of genetic counseling during patient visits,
but these practices were often limited to taking a family history or explaining the inheri-
tance pattern due to time constraints and/or due to limited knowledge in genetics [140].
Therefore, in most cases, patients should be referred to a clinical geneticist or genetic
counselor for more comprehensive counseling. While both professions provide genetic
counseling, clinical geneticists are physicians subspecializing in genetic testing, counseling
and establishing the diagnosis, whereas genetic counselors primarily focus on providing
counseling services [138].

Genetic counseling starts prior to genetic testing (i.e., pre-test counseling), in which pa-
tients are informed of the potential importance and implications of genetic testing for their
disease, the limitations of genetic testing and potential ethical concerns [139,141]. Genetic
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counseling needs to be tailored to the needs and profile of the patient. Genetic counseling
involves informing patients of the hereditary nature of their disease, the prognosis and
management and the risk of the disease expressing itself in other family members [142].
Obtaining family data is important to determine the causality of newly discovered variants,
for example, through pedigree mapping, linkage analysis and segregation analysis [143].
Recurrence risks are best estimated if the disease follows Mendelian inheritance laws and if
the underlying genetic defect is known; thus, it is best discussed following genetic testing
(i.e., post-test counseling). The diagnostic rates of genetic testing have improved due to the
advent of NGS testing techniques, which have led to more personalized counseling and
more accurate estimates of recurrence risks. However, these increased diagnostic rates have
also led to an increase in incidental findings of variants of unknown significance. Genetic
findings need to be correctly interpreted, placed into clinical contexts and appropriately
conveyed to patients, which requires a high level of expertise on ophthalmogenetics [140].

With regard to genetic testing techniques, the likelihood of finding genetic mutations
unrelated to the retinal disorder increases when techniques are able to detect more genetic
variations [144,145]. These findings are known as secondary findings and are mostly found
with WES and WGS [121]. This is an important aspect of counseling because patients also
have the right “to not know”, which should be disclosed in the consent form for genetic
testing [136,146,147]. Once a secondary finding is found, it may be ethically problematic
to uphold this right to not know because a secondary finding can have implications for
patient health or reproduction [137,148]. Each secondary finding should be assessed for
their causality, clinical significance and actionability [149]. A list of recommended genes
and variants has been published by the American College of Genetics and Genomics, which
includes clinical significant genes, such as BRCA1 and BRCA2 [150]. Additionally, due to
the lower read depth of WES and WGS (compared to more narrow techniques), there is a
higher chance to miss a variant [124]. Another important aspect of genetic counseling is
to psychologically guide patients who consider presymptomatic testing and to assess the
social impact for the patient. For patients with RP, this may have an impact on informed
choices about education, professional life and lifestyle. In some cases, diagnosis also
has consequences for insurance, such as disability income insurance. If there is a higher
risk of having affected offspring, then the option for preconception and pre-implantation
counseling can and should be discussed.

9.1. Preconception Counseling

Once the mode of inheritance is established, genetic counselors are able to estimate the
risk of recurrence and to counsel on reproductive choices. Several reproductive choices are
as follows: (1) to conceive naturally—if the risk of inheritance is relatively low, the disease
impact is judged acceptable, or if other options are in contrast with their personal beliefs;
(2) to receive gamete or embryo donation—which allows for one parent to keep a genetic
link with the child (via gamete donation), while also decreasing the risk of passing genetic
conditions to their offspring; (3) to adopt—so that the genetic trait is not inherited, although
the possibility for the adoptee to carry other medical health problems still remains; (4) or to
decide to remain childless [120,151].

If patients decide to conceive naturally, it is also possible to screen whether the fetus
is affected with an inherited eye condition, using prenatal testing if the causative genetic
variants are known. Invasive prenatal genetic tests, such as chorionic villus sampling or
amniocentesis, carry a small chance of miscarriage, which may deter patients from taking
these tests, although this risk has been significantly reduced over recent decades [152].
Non-invasive prenatal testing (NIPT) also exists, which yields the detection of genetic
conditions based on cell-free DNA in maternal blood, but this is not available yet for RP. A
genetic counselor will be able to guide patients in selecting the right option for prenatal
screening if required [153].
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9.2. Pre-Implantation Genetic Testing

Another option for family planning is conceiving via assisted means, such as in vitro
fertilization (IVF) or intracytoplasmic sperm injection (ICSI). Pre-implantation genetic
testing (PGT) is then employed prior to IVF or ICSI, which is formerly known as pre-
implantation genetic diagnosis [154,155]. PGT is a technique that screens the genetic
material of an embryo after in vitro fertilization and before implantation [154–157]. In
many ways, PGT resembles other forms of prenatal diagnostics. PGT can be subcategorized
into six categories as follows: PGT-A (focused on aneuploidies screening); PGT-M (focused
on monogenic disorders and diagnosing); PGT-SR (focused on structural rearrangements in
a chromosome); combined PGT (combining PGT-A and PGT-M); extended PGT (focused on
polygenic disorders); and non-invasive PGT (using blastocentesis or analysis of exhausted
culture media as an alternative for embryo biopsy) [154,156]. PGT-M and combined PGT
are mainly used to detect underlying gene variants linked to RP, while PGT-A and PGT-
SR are subcategories describing screening focused on chromosome abnormalities. The
subcategory also determines what kind of genetic screening method is used, with PGT-M
mainly using NGS techniques [154]. The amount of DNA extracted for PGT-M testing is
very low, thus pre-screening of the variants of interest is usually performed in order to
increase the accuracy of the testing. This can be carried out by genetically testing both
parents and possibly other family members, increasing the accuracy of detecting a single
gene mutation [154]. The main advantage of PGT is the avoidance of selective abortion, as
PGT makes it unlikely for the fetus to carry the screened genetic defect. Genetic counseling
must always precede PGT, as patients must be informed of the advantages and limitations
of this technique, and patients must understand that the possibility of misdiagnosis due to
allele dropout, contamination or mosaicism is still present, although small [158,159].

10. Management of RP-Associated Complications

In the majority of patients, clinical management of RP remains symptomatic and is not
curative in nature. There are several complications commonly found in association with
RP, which should be closely monitored and, if possible, managed timely to minimize their
impact. Below, we list several common and uncommon complications associated with RP,
their potential impact on RP and suggested treatment options.

10.1. Cataract

Cataract is a common anterior segment complication in RP patients [160–163]. Cataract
associated with RP is present at a younger age than those with age-related cataract, and
most commonly is posterior subcapsular cataract (PSC), suggesting differences in the
etiology of cataract formation between these two groups [161,162,164]. Previous studies
have demonstrated that increased levels of pro-inflammatory cytokines and chemokines
are present in the aqueous humor and vitreous fluid of patients with RP compared to
the controls [164,165]. These increased inflammatory levels were mainly observed in
younger patients and in those with significantly lower visual function, suggesting that a
pro-inflammatory environment may play an important role in cataractogenesis in RP [164].

Significant cataract impairs visual function and additionally causes visual disturbances
that may exacerbate existing functional symptoms in patients with RP [166–168]. The
type of visual disturbances varies with the morphology of the lens opacity and includes
symptoms of glare, photophobia and decreased contrast sensitivity, among others [166].
Straylight effects caused by cataract can aggravate visual disability [169,170]. Considering
the impact of cataract in patients with RP, surgical removal of the lens opacity can be
offered to improve visual function and to relieve any functional symptoms. Currently, the
most used surgery technique for cataract removal is phacoemulsification of the natural
lens and implantation of an artificial intraocular lens (IOL) [171,172]. In the absence
of other (ocular) comorbidities, cataract surgery leads to significant improvements in
visual function. However, in patients with RP, visual prognosis is less certain as the
cause of progressive vision loss can be caused by the increased clouding of the lens, by
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the ongoing retinal degeneration by RP or a combination thereof. Patients with RP are
also at increased risk for intra- and postoperative complications, including intraoperative
phototoxic damage to the retina, (increase in existing) CM and zonular dialysis, among
others [34,173–177]. Furthermore, higher rates of posterior capsular opacification and
anterior capsule phimosis have been described following cataract surgery in patients with
RP, which may also negatively influence visual outcomes if left untreated [178]. Despite
the challenges regarding cataract surgery in RP, several studies have demonstrated its
benefit, showing average BCVA improvements between studies (Table 1) [105,162,178–186].
Subjectively, visual improvement was reported in 44.8–96.7% of patients included in these
studies [177]. Possible predictors for visual outcomes suggested by previous studies include
the integrity of the EZ and ELM in the fovea and baseline BCVA [187–189]. Extensive
loss of macular EZ integrity, often seen in patients with advanced stages of RP, may cause
irreversible vision loss, leading to no or only modest visual gains after cataract surgery [179].
Some authors have advocated the use of low-light settings during surgery and the use of
blue-light filtering IOLs in an attempt to limit additional retinal phototoxicity, although the
evidence to support these preventive measures in RP is very limited [169,190].

Table 1. Overview of studies on cataract surgeries in patients with retinitis pigmentosa.

Study Pts Eyes Follow-Up Baseline
BCVA

Postoperative
BCVA BCVA Change Complications

Jackson et al.,
2001 [160] 89 142 32.7 months 1.05 ± 0.38

logMAR
0.63 ± 0.49

logMAR −0.42 logMAR PCO (63%), CME (14%), CCS (10%)

Dikopf et al.,
2013 [173] 47 80 23.3 months 1.23 ± 0.99

logMAR
0.81 ± 0.87

logMAR −0.42 logMAR PCO (83%), IOL dislocation (3%)

Bayyoud et al.,
2013 [175] 52 46 26.0 months 1.45 ± 0.85

logMAR
1.32 ± 0.95

logMAR −0.13 logMAR PCO (44%), CME (4%), CCS (4%)

Garcia-Martin et al.,
2013 [183] 35 35 1.0 month 0.10 ± 0.23

Snellen
0.48 ± 0.21

Snellen 0.38 Snellen N/A

Nakamura et al.,
2015 [188] 43 58 3.0 months 0.81 ± 0.51

logMAR
0.34 ± 0.43

logMAR −0.47 logMAR None

Yoshida et al.,
2015 [162] 40 56 37.5 ± 22.6

months
0.76 ± 0.65

logMAR
0.45 ± 0.53

logMAR −0.31 logMAR PCO (84%), CCS (23%)

Davies et al.,
2017 [174] 18 30 3.7 ± 3.3

months
1.09 ± 0.69

logMAR
0.61 ± 0.45

logMAR −0.47 logMAR CME (13.3%), PCO (66.7%)

Chan et al.,
2017 [180] 42 67 6.9 ± 4.4

years
1.27 ± 0.42

logMAR
1.18 ± 0.49

logMAR −0.09 logMAR N/A

De Rojas et al.,
2017 [179] 19 19 259 days 0.33 ± 0.20

logMAR
0.19 ± 0.17

logMAR −0.14 logMAR CME (32%), PCO (95%)

Lu et al.,
2017 [186] 52 101 5.09 ± 2.2

months
0.12 ± 0.09

Snellen
0.21 ± 0.16

Snellen 0.09 Snellen CCS (2%), increased IOP (2%)

Mao et al.,
2018 [184] 70 109 3 months 0.80 ± 0.59

logMAR
0.45 ± 0.41

logMAR −0.35 logMAR N/A

Chatterjee et al.,
2021 [185] 103 132 13.5 ± 25.1

months
1.21 ± 0.87

logMAR
0.66 ± 0.64

logMAR −0.55 logMAR PCO (17%), CME (5%), zonulolysis
(3%). PCR (2%), uveitis (4%)

Chen et al.,
2021 182] 63 84 6 months 1.3 ± 0.7

logMAR
0.91 ± 0.88

logMAR −0.39 logMAR CCS (5%)

Miura et al.,
2021 [105] 62 62 3 months 0.45 ± 0.25

logMAR
0.11 ± 0.19

logMAR −0.33 logMAR None

Nakamura et al.,
2022 [181] 64 96 5.8 ± 2.4

years
0.64 ± 0.52

logMAR
0.61 ± 0.52

logMAR −0.03 logMAR PCO (53%), CME (3%), ERM (2%),
macular hole (1%), VMT (1%)

Nguyen et al.,
2022 [178] 225 295 0.8 ± 1.6

years
1.03 ± 0.79

logMAR
0.81 ± 0.87

logMAR −0.22 logMAR

PCO (38%), CME (5%), zonulolysis
(5%), CCS (2%), IOL dislocation

(1%), PCR (<1%), endophthalmitis
(<1%)

BCVA = best-corrected visual acuity; PCO = posterior capsule opacification; CME = cystoid macular edema;
CCS = capsular contraction syndrome; IOP = intraocular pressure; N/A = not available; PCR = posterior capsule
rupture; Pts = number of patients; ERM = epiretinal membrane; VMT = vitreomacular traction.
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The presence of new CME or the exacerbation of existing CME, with reported rates of
up to 32% (Table 1), can negatively influence the visual outcome, and chronic CME may
even aggravate photoreceptor loss in patients and thus should be timely managed [187].
For patients with RP, a previous study recommended the simultaneous postoperative use of
topical nonsteroidal anti-inflammatory drugs and CAIs for at least 3 months to prevent the
risk of CME [174]. Alternatively, or in addition, parabulbar steroids may be administered at
the end of the operation in an attempt to reduce the likelihood of postoperative (increase in)
CME. SD-OCT imaging in the pre- and postoperative care of patients with RP-associated
cataracts is useful to monitoring CME.

Incidence rates of up to 13% of zonular dialysis following surgery have been reported.
This increased risk of zonular dialysis is believed to be caused by a low-grade intraocular
inflammation process in RP that causes weakened zonular attachments [173]. During
preoperative intake, signs of zonular weakness can be present, including phacodonesis and
lens subluxation, indicative of moderate to severe zonular weakness. However, zonular
weakness is best observed while maneuvering the nucleus intraoperatively. Surgeons
should avoid unnecessary manipulation and strain on the lens zonules by using optimal
hydrodissection and bimanual rotation of the nucleus. Large capsulorrhexis can assist
with optimal maneuvering, while also reducing the risk of capsular phimosis. The use of a
capsular tension ring may also provide stability and decrease the risk of IOL (sub)luxation
and anterior capsular phimosis, although the insertion itself of the capsular tension ring
may also cause strain on the lens zonule system, so prophylactic insertion of such a ring
may not be indicated [177,182]. IOL (sub)luxation at short- or long-term follow-up in RP
has been reported in several case studies, and these cases were managed using scleral suture
fixation or by replacing them with a range of anterior chamber IOLs after the (sub)luxated
IOL had been removed, often requiring accompanying vitrectomy [191–193].

Posterior capsular opacification is another common complication after cataract surgery
and is believed to develop faster in patients with RP, with a significant posterior capsular
opacification occurring after a median time of 12–15 months postoperatively, reported by
two studies [173,178]. It may already be pre-existent because of the presence of residual
posterior capsular cataract remnants at the end of cataract surgery. Posterior capsular
opacification can be treated with neodymium-doped yttrium-aluminum-garner laser capsu-
lotomy, preferably using low energy levels, considering that this procedure can also induce
CME [194].

In summary, the current literature suggests that cataract surgery is beneficial for a
large group of patients with RP, provided that there is a good preoperative diagnostic
evaluation, with postoperative improvements in both objective and subjective visual out-
come measures [177]. Ophthalmologists are advised to employ SD-OCT imaging pre- and
postoperatively to evaluate EZ integrity and CME, and to be aware of signs of zonular
weakness. Patients should be counseled about the increased risk of complications and the
guarded visual prognosis following surgery in order to set realistic expectations.

10.2. Cystoid Macular Edema

The presence of CME has been variably reported, with prevalence rates from 10%
to up to 70% in at least one eye between different study populations [195–197]. While
CME can occur in every genetic subtype of RP, it is more commonly found in patients
with adRP [198]. Significant CME in RP may cause reduction in visual acuity, and if left
untreated, it might cause further degenerative changes in the retina, including macular
hole formation [199]. However, the short-term and long-term additional visual impact and
detrimental influence of CME in RP has not been firmly established [196]. The advent of
OCT imaging in clinical practice has made the detection of CME more efficient, allowing
for earlier diagnosis and treatment. It should be noted that cystoid changes in patients with
RP are not necessarily consistent with active fluid leakage and CME [67,200–204].
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The specific pathophysiology of RP-CME remains to be elucidated, but multiple
mechanisms have been proposed: leakage of fluid through the RPE due to insufficient RPE
pumping fluid function; vitreomacular traction; breakdown of the blood–retina barrier;
Müller cell dysfunction; and antiretinal antibodies [195,196]. Previous studies demonstrated
that RP-CME typically resides within the inner nuclear layers (INLs) of the retina and does
not cause significant disruption of the vascular plexus [205,206]. These findings support the
hypothesis that RP-CME is more likely to be related to Müller cell dysfunction, rather than
being vasculogenic, although other possible underlying mechanisms cannot be excluded
to date. In the case of postoperative occurrence of CME, which occurs in up to 20% of RP
patients after cataract extraction, there may be a more important role for a vasculogenic
factor and active leakage [34,160,187].

Because the pathophysiology is not completely understood and different gene mu-
tations are associated with different likelihoods of RP-CME, the appropriate treatment
remains a subject of debate [207–210]. An in-depth review by Bakthavatchalam and col-
leagues on the treatment of RP-CME suggested that the oral carbonic anhydrase inhibitor
(CAI) acetazolamide is an effective first-line treatment [197,209–212]. The exact mecha-
nism of CAIs on RP-CME remains to be elucidated, but it has been postulated that CAIs
selectively inhibit different carbonic anhydrase isozymes located in RPE cells, improv-
ing the polarity of RPE cells and improving fluid transport [213,214]. Several relatively
small prospective and retrospective studies showed that oral intake of acetazolamide
causes a significant reduction in central macular thickness in up to 80% of patients with
CME [210,212,215]. While CAIs may restore retinal structure, its effect on retinal function,
i.e., visual acuity, appears to be limited, and the long-term functional and anatomical benefit
of reducing CME in RP remains to be observed [195,197,209,212,214,216]. In addition, there
is a range of potential adverse effects of systemic CAIs, including paresthesia, malaise,
nausea, altered taste, depression and drowsiness, as well as potential serum biochemical
changes, including decreased serum potassium and increased chloride levels, thus discour-
aging prolonged use of CAIs [217,218]. In rare cases, patients also develop renal stones as a
consequence of prolonged CAI use [219,220].

As an alternative to systemic CAIs, topical CAIs such as dorzolamide and brinzo-
lamide can be used for the treatment of CME. Previous studies have shown a signif-
icant decrease in CME in 30–81% of study eyes following the use of topical CAIs, al-
though the efficacy of systemic CAIs in reducing CME was higher than that of topical
medication [197,209,215,221,222]. Topical CAIs can be prescribed if patients experience any
adverse effect from systemic medication. Despite the significant reduction in CME, re-
occurrence of CME after a period of discontinued use of CAIs is common [197,215,221–226].
Therefore, patients need to be actively monitored for recurrent CME, which requires restart-
ing CAIs.

Furthermore, intravitreal injections with anti-vascular endothelial growth factor (anti-
VEGF) have also been proposed as treatment for RP-CME [195,227]. Vascular endothelial
growth factor (VEGF) is a protein important for angiogenesis, as well as for vasculogene-
sis [228,229]. Thus far, given the limited evidence of efficacy as well as the patient burden,
there is no indication for anti-VEGF treatment for uncomplicated RP-CME.

Intravitreal injection of a dexamethasone implant has also been used for the treatment
of RP-CME. A prospective study by Veritti and colleagues compared the efficacy of dex-
amethasone implants versus oral acetazolamide (30 eyes in each arm), demonstrating that
dexamethasone implants caused more reduction in central macular thickness and a higher
BCVA letter gain compared to oral acetazolamide [230]. While the use of dexamethasone
implants for RP-CME may be promising, current evidence on its usage and long-term ef-
fects in RP-CME is limited [231–233]. Furthermore, intravitreal injections of dexamethasone
implants can cause increased intraocular pressure, cataract formation and subconjunctival
hemorrhages, as well as more severe and rare complications, such as retinal detachments,
misplacement of the implant and endophthalmitis [234].
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Based on the available literature, if there an indication for the treatment of RP-CME,
CAIs are currently the preferred choice, with systemic CAIs preferred over topical CAIs
because of their comparatively superior efficacy, provided that the profile of side effects are
acceptable for the patient. Oral acetazolamide can be prescribed when there is significant
central (fovea-involving) CME and patients should be informed of the common adverse
effects, the possibility of refractory CME and the uncertainty regarding long-term benefit
for visual function. More studies are needed on the long-term natural course of RP-CME,
the use of anti-VEGF and steroid implants, the potential detrimental effect of cystoid fluid
in the macula of RP patients and if treatment of CME has a short-term and long-term
functional benefit.

10.3. Other Macular Abnormalities and Retinal Detachments

The prevalence of macular abnormalities, such as epiretinal membrane (ERM), macular
hole and vitreomacular traction syndrome, has been estimated to be around 1.9% in patients
with RP [235]. Significant epiretinal membranes cause visual disturbances (e.g., visual
acuity loss, metamorphopsia and diplopia) and can also result in macular holes. The exact
etiology behind epiretinal membrane formation remains unknown, although elevated
inflammatory factors have been observed in the vitreous of patients with RP, suggesting
that inflammation is likely a contributing factor [236]. Surgical outcomes for the treatment
of the ERM in RP are limited; a study involving 10 RP patients that underwent pars plana
vitrectomy and inner limiting membrane peeling for ERM showed improvements in retinal
morphology for the majority of cases (82%), but no significant improvement in BCVA was
observed [237].

Similarly, the occurrence of macular holes is rare in RP and, as a consequence, outcome
rates of vitreoretinal surgery in patients with RP have only been reported in a select few case
studies involving a small number of eyes [199,238–240]. The study by Jin and colleagues
showed an improvement in visual acuity and structural integrity of the retina following
pars plana vitrectomy in three out of five treated eyes, as well as an improvement in
the sealing of the macular hole. The remaining patient, who also had extensive retinal
detachment, showed no change in visual acuity [238]. A different case report by Garcia-
Fernandez and colleagues showed that primary surgery resulted in closure of the macular
hole in the treated patient, but reopening of the hole occurred after two years [240].

The prevalence of retinal detachments (RDs) in RP has been reported to be between
0.7% and 1.3% [241–243]. Retinal detachments occur at a relatively younger age in patients
with RP than in those without RP. Retinal detachments are often rhegmatogenous in nature,
although exudative and tractional forms have also been described [241]. In the study of
Chan and colleagues, exudative RDs were mainly seen in patients with CRB1-associated
IRDs [241]. In three previous studies, final reattachment rates between 86% and 96%
were reported, using scleral buckling or vitrectomy, suggesting a favorable anatomical
outcome [241–243]. An overview of surgical outcomes for retinal detachments in RP can be
found in Supplementary Table S1.

10.4. Uveitis

Uveitis in patients with RP is relatively rare, with a prevalence estimated in one study
at approximately 0.26%, although this is likely an underestimation as most patients have
milder forms of uveitis and/or are asymptomatic [244]. Uveitis in RP most commonly
presents as anterior uveitis, followed by intermediate uveitis and, even more rarely, as pos-
terior uveitis [244–247]. Some forms of uveitis, such as acute zonal occult outer retinopathy
and (atypical) advanced birdshot chorioretinopathy may mimic features of RP, such as pig-
ment clumping and retinal vessel attenuation, which leads to initial misdiagnosis [248,249].
A specific form of uveitis found in patients with RP is Fuchs’ heterochromic uveitis, which
has been reported in several case series [250–256]. The co-occurrence of uveitis in RP can
be coincidental, but there may also be a role for underlying immunological abnormalities
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that play a role in the disease etiology of RP, which is supported by several animal and
immunohistochemical studies [247,250,257,258].

Currently, there is limited evidence on the treatment of uveitis in RP. Only a few
studies describe treatment modalities, and these case reports seem to show a low efficacy
in preventing uveitis relapse [246,247]. Majumder and colleagues have described the use of
topical, periocular and oral corticosteroids for the treatment of 22 patients with anterior
and/or intermediate uveitis, with varying results. Two patients with anterior uveitis
developed CME, which was resolved using topical nonsteroidal anti-inflammatory drugs.
The management of uveitis did not show improvements in visual acuity at follow-up [244].
While the treatment of uveitis does not necessarily improve visual function, monitoring
the activity of inflammation remains important to prevent further complications that may
worsen visual function, such as CME formation and leakage of the optic nerve and/or
retinal vessels, findings which have all been described in patients with RP [259–261].

10.5. Glaucoma

A common form of glaucoma found in RP is primary angle-closure glaucoma (PACG),
with prevalence rates between 1.0% and 2.3% [262–264]. Previous studies have shown that
the association between RP and PACG are related to nanophthalmos, short axial length,
cataract and lens subluxation [263]. Anatomically, patients with a short axial length and/or
cataract have a relatively shallow anterior chamber more prone to occlusion. Furthermore,
the presence of zonular insufficiency and ectopia lentis in RP may cause forward displace-
ment of the lens, which may also induce closing of the anterior chamber angle [264]. As
PACG can cause irreversible optic nerve damage that may lead to further loss of remaining
visual function in patients with RP, clinical work-up and timely intervention is crucial. In
the acute setting, the overall goal for the management of PACG is to reduce intraocular
pressure and to relieve angle closure. Glaucoma medications are given to lower intraoc-
ular pressure, to reduce pain and in preparation for laser peripheral iridotomy, which is
the definitive treatment for PACG. Fellow eyes should also prophylactically receive an
iridotomy as they are also at risk for developing PACG [265].

11. Rehabilitative and Psychological Management

The visual impairment caused by RP and the progressive nature of this disease may
have detrimental effects on patients’ general health, self-sufficiency and independence,
which can profoundly impact their own quality of life and that of their caretakers [266].
The impact of RP is diverse and may result in physical, mental, emotional and social
disabilities. The extent to which the lives of patients are affected by RP varies greatly
between individuals and relies on several factors, including their functional ability, age,
daily activities, work, education, family, support networks and coping mechanisms [266].
Not all patients are aware of the rehabilitation services that can provide assistance for
some of these aspects, and thus are left with unmet clinical needs [266]. Healthcare
providers should screen patients for rehabilitation needs and, if desired, refer them to
the appropriate services, such as low-vision rehabilitation, psychological counseling and
mobility training services, which are commonly present in visual rehabilitation centers.
The aim of these services is to help patients manage the consequences of their disease
and to lead a lifestyle as autonomous as possible, optimizing their quality of life [267].
Low-vision rehabilitation services (LVRSs) encompass a multidisciplinary team that aims
to achieve the maximum potential of a patient’s residual vision [268,269]. The composition
of this multidisciplinary team varies between different countries and may include, but
is not limited to, ophthalmologists, optometrists, occupational therapists, social workers
and psychologists [267,270]. Multiple studies have demonstrated improvements in the
quality of life in patients with visual impairment following LVRSs [271,272]. Rehabilitation
services are tailored to a patient’s individual situation, which are based on a patient’s
current visual abilities and their own rehabilitation goals [273]. Several instruments exist
that can be used at the intake to screen for important rehabilitation needs, and to measure
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the efficacy of rehabilitation services. Common tools used at initial assessment within
LVRSs may include variations of the National Eye Institute Visual Function Questionnaire,
an instrument to measure vision-related quality of life, as well as the Activity Inventory,
which systematically assesses the most important life domains and specific tasks for a
patient [273–275]. A limitation of these aforementioned questionnaires is that they are
not tailored to patients with RP, who may experience different difficulties than those, for
example, with glaucoma. New questionnaires are being developed specifically for patients
with IRDs in light of new upcoming therapies as a subjective outcome measure, such as the
Michigan Retinal Degeneration Questionnaire [276].

Without rehabilitation, patients with visual impairment may have to abandon tasks,
for instance, those that require detailed vision, such as reading [277]. A low-vision aid
(LVA) yields improvement in visual performance and encompasses corrective glasses;
filtering lenses; optical and non-optical LVAs (e.g., magnifiers, telescopes, reading stands);
electronic assistive technologies, such as closed-circuit television, screen readers; and,
more recently, portable electronic devices (e.g., Orcam or eSight) [278–280]. The efficacy
of LVAs is demonstrated by improvements in reading speed and acuity in clinical studies,
although knowledge on other important factors, such as the subjective preference and cost
of LVAs, can also play an considerable role in the recommendation of these devices [277].
Simple adaptations can also be made at home, at school or at work to improve autonomous
function and to create a safe environment [281]. Examples of these adjustments include
improving lighting control, removing trip hazards and creating contrasts between objects
for easier identification.

Blindness is often ranked as the worst medical condition by the general population
among other very severe diseases, as well as being considered the medical condition with
the highest impact on day-to-day life [282]. Nevertheless, the psychological consequences
may be under-recognized. Loss of vision has been associated with depression, social isola-
tion, sadness, anxiety and fear [283–285]. Few studies have investigated the psychological
impact of LVRSs, which showed improvements in mental well-being following rehabilita-
tion [286]. Further studies are needed to understand the effectiveness of LVRSs on mental
health and whether the implementation of psychological interventions, such as cognitive
behavioral therapy, should be routinely embedded in LVRSs [287].

For individuals with extensive visual field loss such as in RP, traveling independently
can become increasingly difficult, especially in unfamiliar and poorly lit environments [288].
Many aspects of life are impeded by the inability to travel, such as social interaction and
work; therefore, mobility impairment may also significantly impact an individual’s quality
of life. In such cases, orientation and mobility training can be useful, which aims to teach
patients to ambulate (un)known environments safely and independently. Examples of
mobility training objectives include training on the use of a white cane when using public
transport, riding a bike and using navigation devices while traveling [289].

LVRSs should be an integral part of the care for eye diseases, especially in patients with
significant visual impairment, such as those caused by RP, to improve their independence
and overall well-being. It is advisable to refer patients to LVRSs when unmet needs are
evident, as well as when these needs are not so apparent, as low-vision centers provide
many helpful services that are not necessarily known to a patient.

12. Investigational Treatment Modalities

Improved understanding of the underlying mechanisms of RP has driven current
research, resulting in the dawn of novel treatment strategies. The timing and underlying
mechanism causing retinal degeneration determines a patient’s eligibility for treatment.
Below, we briefly explain the key features of current and emerging treatment modalities,
their relevance in the treatment of RP and IRDs and their advantages and limitations.



Int. J. Mol. Sci. 2023, 24, 7481 20 of 40

12.1. Gene-Dependent Strategies

Ocular genetic therapies have become an emerging treatment modality for a wide
variety of IRDs and have been successfully used in mice, dogs and now clinically in
patients [18,23,24]. Retinal diseases appear to be excellent targets for gene-based therapies
as the eye is highly compartmentalized, immune privileged, and are relatively accessible
for local administration, while there is an elaborate armamentarium of structural and
functional tests to evaluate treatment efficacy. Gene-based strategies are most effective in
the early stages of disease as they aim to prevent further degeneration of the surviving
target cells, whereas they are unable to restore cells that have already degenerated [1]. The
term gene therapy encompasses different strategies based on the transfer and application
to different nucleic acids.

12.2. Gene Augmentation Therapy

The most straightforward strategy is gene augmentation therapy, in which a wild-type
(normal) copy of the mutant gene is delivered to the site of interest with the use of a
vector in which the correct gene is packaged for delivery at the target cells. The vector
that is generally used is an adeno-associated virus (AAV), which has been extensively
researched, has high transduction efficiency and exhibits relatively low immunogenic-
ity [290]. However, other viral and non-viral vectors are also studied, and each has its
advantages and disadvantages [291]. The correct copy of the gene carried by the vector
aims to compensate for the disease by restoring wild-type expression, thus preventing fur-
ther disease. This method can be particularly useful for autosomal recessive and X-linked
RP as these variants typically result in loss of function. In contrast, adRP may result in
gain of function or dominant-negative variants, which may require alternative approaches,
such as gene silencing or knockdown-and-replacements strategies [292]. In patients with
RPE65-associated IRDs, subretinal administration of functional copies of RPE65 using
an adeno-associated virus vector resulted in functional improvements (e.g., BCVA, FST
blue, and multi-luminance mobility test) [24,27,110,112,293]. A meta-analysis revealed that
changes in BCVA were significant at 1 year after treatment, but afterwards declined to
baseline BCVA 2–3 years post-treatment. It is possible that photoreceptors continue to
degenerate due to insufficient delivery of functional genes, or that photoreceptors had
already reached a pre-apoptotic state at the moment of therapeutic intervention [294]. A
recent review demonstrated that the treatment effects of RPE65 gene therapy lasts up to
7.5 years after administration, which suggests that multiple gene-therapy doses are needed
to provide clinical stability during a patient’s lifetime [295]. A single dose of FDA-approved
Luxturna costs approximately USD 425,000 per eye per treatment. Furthermore, a sub-
set of RPE65 patients developed chorioretinal atrophy as a side effect of the subretinal
administration of gene therapy [296,297].

The challenges in gene augmentation strategies lie in the fact that it is a gene-specific
therapy and thus cannot be universally applied for all IRDs. Each gene in RP varies in its
clinical course, affected cell types and size, among other factors. Therefore, each gene may
differ in its optimal timing for therapeutic intervention, the method of administration and
its therapeutic delivery. While subretinal delivery has a more direct effect on photoreceptor
cells, it provides treatment only for a limited region of the retina, thus requiring multiple or
larger treatment zones for better outcomes [298]. Furthermore, intravitreal and subretinal
delivery can induce immune and inflammatory responses, which can typically be managed
with steroid therapy, but in rare cases may result in significant ocular inflammation with
sight-threatening complications [299]. For many large genes in RP, such as USH2A, ABCA4,
and EYS, AAV vectors cannot be used as a vehicle considering the limited packaging
capacity of approximately 4.7 Kb [293,300]. Different viral vectors have been suggested,
which differ in their gene-carrying capacity, cellular tropism, immunogenicity and muta-
genicity [18]. Aside from RPE65, a range of RP-associated genes are currently targeted in
gene-therapy trials, including but not limited to RPGR, GUCY2D, XLRS, and CRB1 [18,294].



Int. J. Mol. Sci. 2023, 24, 7481 21 of 40

12.3. CRISPR/CAS9-Based Therapy

Gene editing strategies, such as repurposing the Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR)-Cas9 system, have recently emerged as a potential
solution for the limitations brought by gene augmentation strategies [293,294,301–303].
In CRISPR-Cas9 gene therapy, a Cas9 endonuclease is delivered to the target region via
guide RNA, which causes double-strand breaks in the predefined regions of the genome.
Subsequently, DNA-repair mechanisms are activated, namely non-homologous end joining
(NHEJ) or homology-directed repair (HDR). Based on these two repair mechanisms, several
types of gene editing can be performed. Using NHEJ, the ends of the cleaved DNA are
ligated with or without the addition of base pairs, often resulting in gene inactivation.
If multiple guide RNAs are introduced that target separates sites, NHEJ can be used to
delete specific sequences. If a DNA template homologous to the target region is introduced
alongside the CRISPR-Cas9 system, cells can even correct a gene, or insert a new gene using
HDR mechanisms [301].

As with any form of gene therapy, the main challenges of CRISPR-Cas9 include the
delivery of the CRISPR-Cas9 complex, and the potential risk of an immune response. In
addition, a major drawback for the use of CRISPR-Cas9 therapies are potential off-target
effects. When using the CRISPR-Cas9 system, the guide RNA may target different regions
than intended due to similarities within the genome, subsequently resulting in unwanted
genomic modifications [304]. Furthermore, HDR efficiency, which is required to correct
IRD-causing variants, in retinal cells is low. HDR functions mainly in dividing cells and is
not highly efficient in post-mitotic retinal cells [302].

12.4. Antisense Oligonucleotide Therapy

RNA therapies, such as antisense oligonucleotides (AONs), are an interesting treat-
ment modality for IRDs, as they provide a possible solution for some patients with genetic
variants not suited for AAV gene therapy, e.g., patients with splice-site defects [305,306].
AONs are short chains of nucleic acids that bind to a specific complementary messenger
RNA (mRNA) to modify the expression of a given nucleotide sequence. The exact working
mechanism differs between AONs, as they can be used, for example, to correct pre-mRNA
splicing, for exon skipping or for mRNA knockdown [294].

There are some potential advantages of AONs over DNA-based therapies: AONs
are relatively small in size and can fit current vectors; they do not directly modify DNA;
and they do not induce double-strand breaks, thus not interfering with the endogenous
expression of the target gene [307]. A limitation is that AONs have a limited duration effect
based on their half-life and multiple intravitreal injections over the course of disease are
likely needed [306]. Currently, no approved RNA therapies are available for IRDs and more
data are needed to support the efficacy in this group of diseases, although several clinical
trials are ongoing for variants in CEP290, USH2A and RHO [306].

13. Gene-Independent Strategies
13.1. Optogenetics

In late-stage RP, degeneration of photoreceptors may reach a point in which the
window of therapeutic opportunity for ocular genetic therapies is surpassed. The remain-
ing neurons, such as dormant cones and bipolar and retinal ganglion cells, are typically
preserved until end-stage disease, making them possible targets for optogenetic therapies.

The key idea of optogenetic therapy is to deliver and express genetically encoded
light-sensitive proteins called opsins to the remaining light-insensitive neurons in the inner
retina of patients with RP via viral vectors [308]. Once opsins are expressed in these target
cells, they can be stimulated by light and invoke a visual response, thus bypassing lost or
damaged photoreceptors. If the targeted cells are connected to other cell types in the retinal
circuit, light also modulates the activity of these cells. Optogenetic therapy can theoretically
be applied to all patients with end-stage RP, regardless of genotype [309].
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Several human clinical trials are ongoing that involve optogenetic therapy in patients
with RP (NCT02556736, NCT03326336, NCT04919473, and NCT04278131). Different types
of opsins have been used; however, all studies use an AAV2 or similar variant as a viral
vector via intravitreal injections, targeting retinal ganglion or bipolar cells. In the study
by Sahel and colleagues, partial recovery of visual function was observed in a patient
with light perception vision that received the AAV vector containing the light-sensitive
protein ChrimsonR. With light stimulation via engineered goggles, the patient was able to
locate and perceive different objects in a controlled environment, demonstrating proof of
concept for the use of optogenetic therapy in RP, although further optimization is likely
needed [310].

13.2. Stem Cell Therapy

Stem cell therapy involves the use of stem cells to replace or repair cells in the retina
and can be applied in patients with end-stage RP, regardless of genotype [302]. The treat-
ment can be categorized by effect, i.e., the replacement or preservation of cells, and stem
cell type as follows: embryonic stem cells (ESCs); induced pluripotent stem cells (iPSCs);
hematopoietic stem cells; mesenchymal stem cells (MSCs); and retinal progenitor cells
(RPCs) [311–317]. Stem cells with a higher cell potency, such as pluripotent ESCs and
iPSCs, come with more extensive differentiation properties and can be used for the re-
placement of retinal cells [311]. These cells, as well as their derivatives, have a higher
risk of tumorigenesis and uncontrollable cell migration when compared to lower-cell-
potency stem cells [311,318]. The tumorigenesis of a treatment dose is closely monitored
before administrating it to a patient, but no extensive long-term data are currently avail-
able [311]. RPCs can be derived from ESCs, iPSCs and MSCs, among others. These cells
show promising results with increased BCVA outcomes in injected eyes but are relatively
self-limiting regarding expansion compared to pluripotent cell lines [319,320]. RPCs also
retain their capacity to differentiate in preclinical studies, which poses challenges post-
transplantation [311,319,321]. MSCs, with their lower cell potency, are considered safer and
have more long-term data on the risk of tumorigenesis. Patients treated with bone-marrow-
derived MSCs showed initial improvements in BCVA, although their vision reverted to
baseline at 12-month follow-up [313,314]. Stem cell therapy is still in the early stages of
development, and further research is needed to refine and optimize its technique and to
determine its safety and effectiveness in the treatment of IRDs. Important hurdles of stem
cell therapy include potential immune rejection, tumorigenicity and surgical complica-
tions [321]. Nevertheless, it can be a promising treatment option for patients with end-stage
retinal disease [313,322].

13.3. Retinal Prostheses

Electronic retinal implants are designed to provide a basic sense of visual function
in severely visually impaired patients [294]. In essence, retinal prostheses stimulate re-
maining retinal neural cells with electrical pulses via an electrode array. This treatment is
primarily intended for patients with little to no visual function as the current resolution of
vision is low [323]. The number of electrodes, amount of stimulation and the remaining
retinal function all play a role in the quality of perception created by retinal prostheses.
Furthermore, patients require a relatively intact posterior visual pathway to ensure correct
visual processing of light stimulation [323]. Retinal prostheses can be utilized via direct
electrical stimulation, where an external processing unit (e.g., a digital camera mounted on
eyeglasses) captures real-time images which are then transmitted to the retinal implant,
or via photodiodes arrays, which are directly imbedded into the retinal space and convert
projected light patterns into local electric currents.
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Retinal implants can be installed in the epiretinal, subretinal or suprachoroidal
space [324,325]. In epiretinal configuration, the implant is placed in the near vicinity
and directly interacts with the retinal ganglion cells. In the subretinal configuration, the
implant is positioned between the outer retinal layer and retinal pigment epithelium, at the
site of the photoreceptors. The suprachoroidal approach was developed to prevent damage
to the neural retina, as the stimulating electrode array is not directly attached to the retina.
However, this meant that electrodes were placed further away from the intended cells, thus
requiring higher currents for stimulation [324,326,327].

Several retinal implants have been developed, of which three have been regulatory-
approved and implanted in over 500 patients over the past two decades as follows: Argus
II, developed by Second Sight Medical Products, which was an epiretinal implant with
glasses paired to a processing unit; ad Retina Implant Alpha-AMS and the Retina Implant
Alpha-IMS by Retina Implant AG, which used a subretinal electrode array. Up to 20/1260
Snellen vision was achieved using Argus II, and 20/546 Snellen was achieved with the
Retinal Implant Alpha-AMS [323].

The implants do not come without risks as up to 30–40% of Argus II users showed
adverse events of conjunctival erosion, hypotony, conjunctival dehiscence or endophthalmi-
tis within five months after implantation [328,329]. Alpha-IMS (by Retina Implant AG)
showed increased intraocular pressure (IOP) caused by subretinal bleeding in 1 out of
19 patients (5.3%) [329]. Retina Implant AG and Second Sight Medical Products have
withdrawn their current products, with the latter now testing a cortical visual prosthesis in
an attempt to address a wider audience [323,330].

Retinal protheses are intended for patients with limited visual function, although the
visual benefit with current techniques appears modest. Future developments in retinal
prostheses should focus on increasing resolution of vision, visual fields and to minimize
adverse effects as result of electrode array implantation, which require innovation from
engineering, software and electrophysiological perspectives.

13.4. Neurotrophic Factors

Neurotrophic factors are proteins that promote the survival, differentiation and growth
of neuronal cells. Several neurotrophic factors have been studied in animal models for the
potential to treat retinitis pigmentosa, including ciliary neurotrophic, nerve growth, and
brain-derived neurotrophic factors [331]. Improvements in scotopic and photopic responses
were observed in eyes that received ciliary neurotrophic factor (CNTF) compared to control
eyes. For clinical delivery, direct intravitreal or subretinal neurotrophic factor injections
have been the most common route [331]. However, an implantable device has also been
suggested as it allows for the long-term release of neurotrophic factors, minimizing the risk
accompanied by repeated injections. Several clinical trials have been conducted to evaluate
the safety and effectiveness of CNTF as a treatment for retinitis pigmentosa. In one phase
1/2 clinical trial, CNTF was administered to patients with retinitis pigmentosa via a slow-
release implant in the eye. The results of this trial showed that CNTF was generally well
tolerated and may have some beneficial effects on visual function in patients with retinitis
pigmentosa [331]. Further randomized clinical trials evaluated the use of encapsulated-
cell-ciliary neurotrophic factor implants for RP, showing no significant improvements
in BCVA and visual field sensitivity for patients in the short (12 months) or long term
(60–96 months) [332,333].
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13.5. Neuroprotective Agents

In rod-specific retinal diseases, cone photoreceptors may still degenerate [49,50]. It
is hypothesized that when large amounts of rods degenerate in RP, oxygen consumption
in the retina is severely reduced, leading to the generation of large amounts of toxic free
radicals [57]. These compounds are harmful to the remaining cone photoreceptors [2].
Additionally, the production of rod-derived cone viability factor is also affected, making
cone receptors more vulnerable to degeneration [59,60]. N-acetylcysteine (NAC) and its
more potent version, N-acetylcysteine amide (NACA), are powerful antioxidants that have
shown to preserve cone function in animal models of RP [3,4]. In the FIGHT-RP1 study, the
therapeutic benefit of daily intake of NAC was investigated, which showed improvements
in visual function over the study period of 6 months [334]. These improvements dimin-
ished once patients discontinued the study medication. A retrospective study by the same
group found similar neuroprotective features in the macula, as measured on microperime-
try [334]. Another studied neuroprotective factor includes cerium oxide nanoparticles
(CeO2-NPs), which are nanocrystals with antioxidative effects derived from the rare earth
element cerium [335]. In rat models, these have been shown to be effective in preserv-
ing photoreceptor function, as well as slowing down the loss of photoreceptors [336,337].
So far, ophthalmological human clinical trials have not been conducted. Currently, no
neurotrophic drugs have been regulatory approved.

13.6. Nutritional Therapies

Dietary supplements, such as vitamin A, lutein and docosahexaenoic acid (DHA)
supplements, have been previously studied in patients with RP. Berson and colleagues
published their study in 1993, where they assigned 601 non-genotyped RP patients with
either 15,000 IU/d vitamin A, 15,000 IU/d vitamin A plus 400 IU/d vitamin E, trace
amounts of both vitamins or 400 IU/d vitamin E [338]. The first two groups showed a
slower decline in retinal function based on full-field cone electroretinography compared
to the latter two. This group conducted a follow-up study in 2004, assigning RP patients
with either DHA plus vitamin A (treatment group) or fatty acid plus vitamin A (control
group), with a follow-up of two years. The authors concluded that the DHA + vitamin A
group slowed the disease course of retinitis pigmentosa compared to patients in the group
not assigned to DHA [339]. Similar effects of vitamin A supplements were also found in
children by Berson and colleagues [340]. It has been postulated that because vitamin A is an
important chromophore in the visual cycle, vitamin A supplementation can compensate for
deficiencies in patients with RP [341]. Currently, less than 10% of the genes in RP involve
genes associated with vitamin A metabolism [342].

A randomized clinical trial by Hoffman and colleagues (DHAX trial) investigated the
use of high-dose DHA in patients with X-linked RP over the course of 4 years [343]. The
results of this study demonstrated that DHA was not effective in slowing down rod or
cone ERG progression. A second analysis of the DHAX trial revealed that DHA might
reduce the rate of progression in final dark-adapted thresholds and visual field sensitivity
parameters [343,344].

Recent reviews concluded that there was no clear benefit of vitamin A and/or DHA for
patients with RP in terms of mean change in visual fields or ERGs [345–347]. An editorial by
Massof and colleagues concluded that there was no convincing evidence that vitamin A is
beneficial, and may even carry potential health risks [348]. Excess vitamin A compromises
liver function and may cause birth defects [348]. Furthermore, careful consideration should
be given to the possibility that RP is caused by specific genetic variants (e.g., in the ABCA4
gene), as it has been shown in animal models that an excess of vitamin A may boost the
accumulation of lipofuscin in the retina and accelerate disease progression [342,349,350].
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Taken together, there is no strong evidence that supports the use of nutritional supple-
ments for patients with RP. Nutritional supplements may slow down disease progression in
IRDs closely tied to the vitamin A pathway in the retina (e.g., LRAT, RPE65, RLBP1, RDH5,
and RDH11), although its clear benefit has not yet been sufficiently proven in studies [342].
Vitamin A should be avoided in patients with genetic subtypes susceptible for excess vita-
min A (e.g., variants in ABCA4) as this may potentially accelerate disease progression [351].
Patients who do receive high doses of vitamin A should undergo laboratory work-up
prior to therapy as longstanding use of vitamin A can result in toxicity (e.g., birth defects,
liver failure, osteoporosis and central nervous system disorders) [142]. For these reasons,
most ophthalmologists do not prescribe nutritional supplements to patients with RP as
routine care.

14. Concluding Remarks

The management of patients with RP is multidisciplinary and requires a focused and
structured system where all healthcare providers involved in the care of patients with RP
closely collaborate. Our increased understanding of the underlying disease mechanisms
in RP have resulted in the development of novel treatment modalities, each with their
own advantages and limitations. The treatment landscape in RP continues to evolve,
and more research is needed to assess which treatment approaches are most beneficial
to specific subgroups of patients with RP. Confirming the clinical and genetic diagnosis
of patients with RP should be the first step in management, as many of the consecutive
management steps rely on a thorough knowledge on the genetic and clinical characteristics.
Disease monitoring, visual prognosis and enrollment of patients in upcoming and ongoing
clinical trials are all steps that can be taken to further aid the patient. The evaluation and
development of sophisticated, objective and subjective outcome parameters are needed
to measure treatment efficacy of future clinical trials. With the era of NGS, the arrival
of new diagnostic techniques has been one of the major milestones for unraveling the
genetic background of RP and has aided the molecular detection of disease-associated
genetic variants that could not be detected previously. A low threshold to refer to a
genetic counselor is recommended as genetic counselors can interpret and translate the
implications of genetic findings to patients with RP. Genetic counselors can facilitate
informed reproductive decisions through preconception counseling and pre-implantation
counseling, which can aid patients with family planning. The most common comorbidities
found in RP, such as CME and cataract, can be managed using current treatment options.
Coordination of visual rehabilitation between clinicians and low-vision rehabilitation
centers optimizing patient outcomes and assists patients in performing daily life activities in
order to maintain independence. Patients should be informed not only about new treatment
developments, but also about currently available clinical management possibilities outside
curative treatment, as they may provide relief of physical, psychological and social burden
until early therapeutic intervention and prevention are possible. An example flowchart of
the clinical management of RP is provided in Figure 5.
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