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A B S T R A C T   

Background: Navigation bronchoscopy has seen rapid development in the past decade in terms of new navigation 
techniques and multi-modality approaches utilizing different techniques and tools. This systematic review an-
alyses the diagnostic yield and safety of navigation bronchoscopy for the diagnosis of peripheral pulmonary 
nodules suspected of lung cancer. 
Methods: An extensive search was performed in Embase, Medline and Cochrane CENTRAL in May 2022. Eligible 
studies used cone-beam CT-guided navigation (CBCT), electromagnetic navigation (EMN), robotic navigation 
(RB) or virtual bronchoscopy (VB) as the primary navigation technique. Primary outcomes were diagnostic yield 
and adverse events. Quality of studies was assessed using QUADAS-2. Random effects meta-analysis was per-
formed, with subgroup analyses for different navigation techniques, newer versus older techniques, nodule size, 
publication year, and strictness of diagnostic yield definition. Explorative analyses of subgroups reported by 
studies was performed for nodule size and bronchus sign. 
Results: A total of 95 studies (n = 10,381 patients; n = 10,682 nodules) were included. The majority (n = 63; 
66.3%) had high risk of bias or applicability concerns in at least one QUADAS-2 domain. Summary diagnostic 
yield was 70.9% (95%-CI 68.4%-73.2%). Overall pneumothorax rate was 2.5%. Newer navigation techniques 
using advanced imaging and/or robotics (CBCT, RB, tomosynthesis guided EMN; n = 24 studies) had a statis-
tically significant higher diagnostic yield compared to longer established techniques (EMN, VB; n = 82 studies): 
77.5% (95%-CI 74.7%-80.1%) vs 68.8% (95%-CI 65.9%-71.6%) (p < 0.001). Explorative subgroup analyses 
showed that larger nodule size and bronchus sign presence were associated with a statistically significant higher 
diagnostic yield. Other subgroup analyses showed no significant differences. 
Conclusion: Navigation bronchoscopy is a safe procedure, with the potential for high diagnostic yield, in 
particular using newer techniques such as RB, CBCT and tomosynthesis-guided EMN. Studies showed a large 
amount of heterogeneity, making comparisons difficult. Standardized definitions for outcomes with relevant 
clinical context will improve future comparability.   
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prospective; PS, Part solid; RB, robot assisted bronchoscopy; rEBUS, radial endobronchial ultrasound; Re, retrospective; S, solid; SD, standard deviation; SEM, 
standard error of the mean; TB, Thin bronchoscope; UTB, ultrathin bronchoscope; VB, virtual bronchoscopy. 

* Corresponding author at: Department of Pulmonary Diseases, Radboud University Medical Center, Geert Grooteplein zuid 10, P.O. Box 9101, 6500 HB Nijmegen 
(614), The Netherlands. 

E-mail address: Stephan.kops@radboudumc.nl (S.E.P. Kops).  

Contents lists available at ScienceDirect 

Lung Cancer 

journal homepage: www.elsevier.com/locate/lungcan 

https://doi.org/10.1016/j.lungcan.2023.107196 
Received 15 February 2023; Received in revised form 11 April 2023; Accepted 16 April 2023   

mailto:Stephan.kops@radboudumc.nl
www.sciencedirect.com/science/journal/01695002
https://www.elsevier.com/locate/lungcan
https://doi.org/10.1016/j.lungcan.2023.107196
https://doi.org/10.1016/j.lungcan.2023.107196
https://doi.org/10.1016/j.lungcan.2023.107196
http://crossmark.crossref.org/dialog/?doi=10.1016/j.lungcan.2023.107196&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Lung Cancer 180 (2023) 107196

2

1. Introduction 

Peripheral pulmonary nodules are a common finding and often 
present a diagnostic challenge. The increased resolution of CT, the 
increased use of CT for a variety of indications (for both pulmonary and 
non-pulmonary disease), and the implementation of CT screening pro-
grams have led to an increase in their incidence [1]. When these pul-
monary nodules are suspected to be malignant, as determined by 
prediction models utilizing patient and nodule characteristics, image- 
guided minimally invasive biopsy is indicated [2]. 

Navigation bronchoscopy is a frequently performed method to 
sample peripheral pulmonary nodules. Conventionally, it conveyed 
fluoroscopy-guided transbronchial biopsy by a standard flexible bron-
choscope, with a limited diagnostic yield of around 37% [3]. To improve 
diagnostic yield, new technologies were developed. Electromagnetic 
navigation (EMN) and virtual bronchoscopy (VB) were primarily aimed 
at optimizing navigation. Ultrathin bronchoscopy (UTB) was often uti-
lized in combination with VB and facilitated the navigation process but 
also offered direct visualization. Radial endobronchial ultrasound 
(rEBUS) did not offer any additional navigation possibilities but could 
confirm correct positioning. In a meta-analysis, Wang-Memoli et al. 
already showed in 2012 that these techniques were able to obtain a 
navigation success of 95% and a diagnostic yield of 70% [4], illustrating 
that with navigation assistance considerable improvements in diag-
nostic yield could be achieved, but there was still a discrepancy between 
reaching the target and obtaining a diagnosis. 

Newer technologies integrating advanced imaging support have 
aimed to reduce this gap. Pre-existing techniques such as cone-beam CT 
are now being applied for navigation bronchoscopy (CBCT-NB) and can 
be used as a navigation technique but also gives precise positioning 
confirmation [5]. The implementation of tomosynthesis techniques in 
EMN aims at reducing CT to body divergence resulting in more accurate 
sampling (fEMN) [6]. Robot-assisted bronchoscopy (RB), aims at further 
optimizing navigation accuracy, positioning, and tissue sampling [7]. 
The combined use of these techniques might further increase diagnostic 
yield [5]. 

There is a growing body of literature on these different techniques, 
with unfortunately a large amount of heterogeneity in the definitions 
used for outcomes such as diagnostic yield. This makes it difficult to 
compare results across studies, especially because it is not always clearly 
reported which definition researchers applied. A recent study has 
increased interest in creating more uniform definitions to improve the 
comparability of different studies [8]. 

Given the development of new technologies and their increased 
combined use in the last decade, it is important to assess if diagnostic 
yield for pulmonary nodule evaluation has improved while applying the 
newly proposed definitions for reporting this outcome. This systematic 
review evaluates the diagnostic yield and safety of navigation bron-
choscopy in the diagnostic work-up of patients with peripheral pulmo-
nary nodules suspected of lung cancer. 

2. Methods 

2.1. Search strategy and study selection 

Using the search strategies in supplemental Table S1, we searched 
Embase, Medline, and Cochrane Central Register of Controlled Trials 
(CENTRAL) for primary diagnostic studies published from inception to 
the 6th of May 2022. Subsequently, two researchers independently 
assessed titles and abstracts of all retrieved records for potential rele-
vance and disagreements were discussed. Full texts of potentially 
eligible studies were independently assessed for final inclusion by both 

researchers. Again, discrepancies were discussed until a consensus was 
reached. Additionally, previously published systematic reviews were 
checked for missed studies, which were included for further assessment 
if found (n = 14) [9–11]. We included primary studies that evaluated the 
diagnostic accuracy or diagnostic yield of EMN, VB, CBCT, or RB as the 
primary navigation tool in patients with peripheral pulmonary nodules 
suspected of lung cancer. We excluded studies focusing on other navi-
gation techniques as the sole tool under investigation, such as 
(augmented) fluoroscopy (AF), UTB,and rEBUS. These tools assist in the 
navigation process but are not a strict navigation technique itself. 
However, we included studies performed in a multi-modality setting, 
where a combination of navigation techniques (e.g., CBCT with EMN or 
VB with UTB) was used. We excluded studies with average or median 
pulmonary nodule sizes larger than 3 cm (limiting lesion size to T1 tu-
mors[12]), or studies explicitly reporting that lesions could be reached 
with traditional bronchoscopy. We also excluded studies with tumor 
marking as research aim (e.g. marking of a nodule with a radiopaque 
marker with the aim to assist in surgery), studies in languages other than 
English, or studies including <10 study participants. 

2.2. Data extraction 

For every included study, one researcher extracted the following 
data, which was checked by a second researcher: type of data collection 
(prospective versus retrospective), number of patients and lesions 
included, size of pulmonary nodules, navigation technique, additional 
navigation tools used, sampling tools used, if a structured sampling 
strategy was described, bronchus sign, nodule location, diagnostic yield, 
and adverse events. If a study compared two different navigation tech-
niques (e.g. VB vs EMN), data from the subgroups were extracted 
separately. If a study compared aspects of a procedure (e.g. VB with 
guide sheath vs. VB with UTB) data were extracted separately. In cases 
where a study had more than one study arm, but only one of those arms 
fulfilled the inclusion criteria, only this study arm was included. 

2.3. Study quality assessment 

Two researchers independently used the QUADAS-2 tool [13] to 
assess risk of bias and applicability concerns of included studies. Dis-
agreements were solved through discussion. No applicability concerns 
were expected for the ‘reference standard’ domain and were considered 
not applicable for all studies. If a subcategory of patients was excluded 
or exclusively included from the study, risk of bias and applicability 
concerns for the ‘patient selection’ domain were considered high. If 
insufficient information was provided on patient selection, risk of bias 
for this domain was considered unclear. In the ‘flow and timing’ domain, 
a separate signaling question was added for the adverse events outcome. 
This domain was considered at low risk of bias if structural monitoring 
and reporting of adverse events were described. However, if this was 
only described on indication, this domain was considered at high risk of 
bias. Risk of bias in the ‘flow and timing’ domain for diagnostic yield was 
considered high if follow-up duration was not described or was < 1 year. 

2.4. Outcomes 

The primary outcome parameter was diagnostic yield, defined as the 
number of nodules in which the procedure was diagnostic (either ma-
lignant or non-malignant), relative to the total number of attempted 
navigation procedures. If studies excluded patients (e.g. loss to follow- 
up), these were manually added to the total number of included nod-
ules, and diagnostic yield was recalculated. A variety of definitions for 
diagnostic yield with differing strictness are used in the medical 
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literature on navigation bronchoscopy, and included studies were 
categorized based on the three categories recently proposed by Vachani 
et al. [8]: 

(1) Strict: diagnosis can only be made at the moment of the proced-
ure. Diagnostic outcomes are malignant or specific benign di-
agnoses (e.g., granulomatous inflammation). All other findings 
are categorized as non-diagnostic.  

(2) Intermediate: as strict definition, but also non-specific benign 
outcomes (e.g. non-specific inflammation) are considered diag-
nostic if confirmed benign with follow-up.  

(3) Liberal: as intermediate, but also nondiagnostic samples (e.g., 
alveolar tissue and blood) are considered diagnostic if confirmed 
benign with follow-up. 

The definition was classified as not reported (fourth category) if 
insufficient explanation was given on how diagnostic yield was calcu-
lated or if mandatory follow-up to confirm non-specific benign outcomes 
was not specified and could not be deduced from the study report. 

2.5. Data analysis 

Meta-analysis was performed using a random effects model. Diag-
nostic yield was transformed using a logit transformation, then pooled 
and transformed back. The results were aggregated in a forest plot with 
95% confidence intervals (95%-CI), using the Hartung-Knapp-Sidik- 
Jonkman correction. A 95% prediction interval (95%-PI) was calcu-
lated for the summary diagnostic yield. The 95%-PI provides a 95% 
probability of what the diagnostic yield of a new (future) study will be 
and is therefore a measure to assess the variability across included 
studies. A generalized mixed linear model was used to perform subgroup 
analyses. Subgroup analyses were performed following two strategies.  

1) Subgroup analysis was performed by dividing all included studies 
based on the following criteria: different navigation techniques 
(EMN vs. VB vs. RB vs. CBCT), longer established and more recent 
techniques (EMN and VB vs. CBCT, RB, and fEMN), strictness of 
definition of diagnostic yield (strict vs. intermediate vs. liberal vs. 
not reported), median/mean nodule size (<20 mm vs. ≥ 20 mm), 
and year of publication (before 2012 vs. after 2012, to provide a 
comparison with a previous meta-analysis by Wang-Memoli et al. 
[4]). For all EMN studies, an additional subgroup analysis was per-
formed (no additional navigation tools vs. additional navigation 
tools vs. fEMN).  

2) Additional explorative analyses were performed for studies that 
specifically reported on diagnostic yield for subgroups based on 
nodule size < 20 mm vs. ≥ 20 mm or bronchus sign presence 
(negative vs. positive). These subgroups of individual studies were 
separately pooled, and the overall summary results were compared. 
In this analysis, only studies that reported results for both the sub-
groups (i.e. both for patients with nodules < 20 mm and ≥ 20 mm, or 
both for patients with a negative bronchus sign and a positive 
bronchus sign) were included, while studies that only reported re-
sults for a single subgroup (e.g. only for patients with nodules < 20 
mm, or with a negative bronchus sign) were excluded. 

3. Results 

3.1. Study selection 

The literature search retrieved 3,297 papers, of which 2,361 
remained after deduplication. After screening titles and abstracts, 274 

papers remained for full-text assessment, of which 95 fulfilled the in-
clusion criteria. Fig. 1 shows the study selection process in detail. 

3.2. Study characteristics 

A total of 95 studies were included, from which data of 10,381 pa-
tients with a total of 10,682 lesions were extracted. Fifty studies (52.6%) 
reported to have collected data prospectively. Eleven studies had two 
study arms included separately. The median sample size was 61 patients 
(IQR 35–111) with 61 lesions (IQR 35–109). In 82 study arms (77.4%) 
additional navigation tools such as rEBUS, fluoroscopy, and (ultra)thin 
bronchoscopes were used. Thirty studies (or study arms) versus 70 
studies (or study arms) had median/mean nodule sizes of < 20 mm and 
≥ 20 mm, respectively. Only categorical data on nodule size was pre-
sented in 6 studies. The median percentage of lesions with bronchus sign 
per study was 66.9% (range 0%-100%, IQR 51.1%-81.5%), with 44 
studies (study arms) not reporting on bronchus sign. The median per-
centage of nodules located in the upper lobes per study was 57% (IQR 
50.0%-62.4%), with 13 studies not reporting on lesion location. Median 
percentage of a solid nodule aspect was per study 79.3% (range 0%- 
100%, IQR 70.0%-89.2%) with 57 study(arms) not reporting on the 
lesion aspect. Most studies reported how samples were collected (e.g. 
brush and forceps were used), but only 43 studies reported a structured 
sampling strategy. A multimodality sampling strategy was employed in 
31 of these studies and a single modality sampling strategy in 12 studies. 
Individual study characteristics are presented in Table 1. 

3.3. Quality assessment 

A detailed QUADAS-2 assessment for individual studies is presented 
in supplemental Table S2. A high risk of bias or applicability concerns in 
at least one domain was present in 63 studies (66.3%). Most risk of bias 
was found in the ‘flow and timing’ for diagnostic yield (n = 47, 49.5%). 
Risk of bias for the ‘flow and timing’ domain for adverse events was 
unclear in the majority of studies (n = 65, 68.4%), because monitoring 
and registration of adverse events was seldomly described in a system-
atic manner. Six studies (6.3%) had a low risk of bias in all domains, and 
an additional 12 studies (12.6%) had a low risk of bias in all domains 
aside from the ‘flow & timing’ domain for adverse events. 

3.4. Diagnostic yield 

Summary diagnostic yield after meta-analysis was 70.9% (95%-CI 
68.4%-73.2% and 95%-PI 48.1–86.5%) (Fig. 2, Table 2). Summary re-
sults for subgroup analyses are reported in Table 2, with detailed results 
in supplemental Figs. S1–S5. Subgroup analysis based on navigation 
technique showed that diagnostic yield appears highest when CBCT is 
utilized (as sole primary navigation technique or in combination with 
other navigation techniques such as RB, EMN or VB): 77.3% (95%-CI 
72.8–81.3% and 95%-PI 66.3%-85.5%). However, no statistically sig-
nificant difference between navigation techniques was found (Fig. 2). 
When distinguishing recently developed navigation techniques (CBCT, 
RB and fEMN) and longer established navigation techniques (EMN and 
VB), a statistically significant difference was observed with a diagnostic 
yield of 77.5 (95%-CI 74.7–80.1% and 95%-PI 69.5%-83.9%) compared 
to 68.8% (95%-CI 65.9%-71.6% and 95%-PI 45.5%-85.4%), respectively 
(p < 0.001) (supplemental Fig. S1). 

Subgroup analyses for strictness of definition of diagnostic yield, 
median nodule size and publication year (before and after 2012) did not 
show significant differences (Table 2 and supplemental Figs. S2–S4), and 
this also applied to further subgroup analysis of EMN studies (supple-
mental Fig. S5). However, the explorative analyses of the pooled 
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Fig. 1. Flowchart describing the study selection process.  

Table 1 
Study characteristics.  

Author + year Guidance 
technique 

Additional navigation 
tools 

Study 
design 

Size of lesion (mm) Bronchus sign 
(%) 

Upper lobe 
(%) 

Solid lesion 
(%) 

Casal 2018 [14] CBCT Fl, rE, UTB Pr 21; 11–30 (median; range) 60% 60% 65% 
Hohenforst-Schmidt 2014  

[15] 
CBCT Fl Pr NR NR NR NR 

Lin 2022 [16] CBCT Fl, rE Re 24; 6–62 (median; range) 82.6% 55.6% 76.5% 
Verhoeven 2021 [17] CBCT Fl, GS, rE Pr 13; 5–65 (median; range) 61% 61% NR 
Yu 2021 [18] CBCT Fl, GS, rE Re 28; 10–69 (median; range) 75.5% 5.8% 86.8% 
Bowling 2017 [19] CBCT + EMN Fl Re 23.5 (mean) 0% 57.1% 85.7% 
Kheir 2021 [20] CBCT + EMN Fl, rE Re 16; 12.6–25.5 (median; 

IQR) 
45.2% 67.7% 61.3% 

Pritchett 2018 [21] CBCT + EMN AF Re 16; 7–55 (median; range) 39% 71% NR 
Sobieszczyk 2018 [22] CBCT + EMN Fl, rE Re 21 ± 10 (mean ± SD) NR 68.2% NR 
Verhoeven 2021 [17] CBCT + EMN Fl, GS, rE Pr 13; 5–65 (median; range) 61% 61% NR 
Katsis 2021 [23] CBCT + fEMN AF, rE Pr 12.8 ± 3.8 (mean ± SD) 17.2% 62% NR 

(continued on next page) 
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Table 1 (continued ) 

Author + year Guidance 
technique 

Additional navigation 
tools 

Study 
design 

Size of lesion (mm) Bronchus sign 
(%) 

Upper lobe 
(%) 

Solid lesion 
(%) 

Benn 2021 [24] CBCT + RB CBCT Pr 21.9 ± 11.6 (mean ± SD) 54% 66% 70% 
Reisenauer 2022 [25] CBCT + RB Fl, rE Pr 17.5 ± 6.8 (median ± SD) 40% 60% 76.7% 
Ali 2019 [26] CBCT + VB Fl Pr 20; 9–30 (median; range) 100% 50% 70% 
Kawakita 2021 [27] CBCT + VB Fl Re 21; 17 – 24 (median; IQR) 100% 49.3% 69.6% 
Aftab 2022 [28] EMN None Re 24.5 (mean) 52% 60% NR 
Al-Jaghbeer 2016 [29] EMN Fl Re 26 (mean) 60% 59.2% 94% 
Andersen 2020 [30] EMN None Pr 21 ± 11 (mean ± SD) 37.6% 64.2% 100% 
Belanger 2019 [31] EMN None Re 20; 15–29 (median; IQR) 63.4% 62.4% 89.2% 
Bellinger 2021 [32] EMN Fl, rE Re 24.2 ± 12.1 (mean ± SD) 93% 48.9% 56.1% 
Bhatt 2018 [33] EMN rE Re 22 ± 9 (mean ± SD) NR 58% 86.7% 
Bowling 2015 [34] EMN Fl Re NR NR NR NR 
Chee 2013 [35] EMN rE Pr 22 ± 10 (mean ± SD) 20.0% 74% NR 
Cheng 2019 [36] EMN Fl, rE Re 26; 20–37 (median; IQR) 84% 26.3% 86% 
Eberhardt 2007 [37] EMN None Pr 24 ± 8 (mean ± SD) NR 56.5% NR 
Eberhardt 2007 [38] EMN rE Pr 24 ± 5 (mean ± SD) NR 57% NR 
Eberhardt 2007 [38] EMN None Pr 28.9 ± 8 (mean ± SD) NR 51% NR 
Eberhardt 2010 [39] EMN rE Pr 23.3 ± 4.4 (mean ± SD) NR 60% NR 
Flenaugh 2016 [40] EMN rE Re 22.1 ± 9.8 (mean ± SD) NR 49.3% NR 
Folch 2022b [41,42] EMN CBCT, Fl, rE Pr 20; 14–29 (median IQR) 50.8% 58.1% 93.8% 
Garwood 2016 [43] EMN rE Re 22.7 ± 16.0 (mean ± SD) NR 58.7% NR 
Gildea 2006 [44] EMN None Pr 22.8 ± 12.6 (mean ± SD) NR 62.5% NR 
Gu 2017 [45] EMN Fl, GS Re 19 ± 6.2 (mean ± SD) 100% 68% NR 
Jensen 2012 [46] EMN None Re 26 ± 14 (mean ± SD) NR 64.1% NR 
Kheir 2021 [20] EMN Fl, rE Re 21.5; 16–27 (median; IQR) 41.9% 64.5% 58.1% 
Lamprecht 2012 [47] EMN None Pr 27.1 ± 1.3 (mean ± SD) NR 50.9% NR 
Loo 2014 [48] EMN None Re 26; 3–80 (mean; range) NR NR NR 
Ma 2020 [49] EMN GS, rE Re 20.9 ± 9.6 (mean ± SD) 26.9% NR NR 
Mahajan 2011 [50] EMN Fl Re 20 ± 13 (mean ± SD) NR 57.8% NR 
Makris 2007 [51] EMN None Pr 23.5 ± 1.5 (mean ± SEM) NR NR NR 
Mukherjee 2017 [52] EMN Fl Re 18 ± 10 (mean ± SD) NR 54.9% NR 
Odronic 2014 [53] EMN rE Re 27; 7 – 71 (mean; range) NR 63.2% NR 
Oh 2021 [54] EMN None Pr 25.2 ± 7.8 (mean ± SD) 66.7% 56.7% 73.3% 
Oh 2021 [55] EMN None Re 27.9 ± 13.7 (mean ± SD) 71% 49% 55% 
Ost 2016 [56] EMN Fl, rE Pr NR NR 58.7% 95.4% 
Patrucco 2018 [57] EMN Fl Re 24.6 ± 10.1 (mean ± SD) 61% 80% 91% 
Patrucco 2021 [58] EMN None Re 28.9 ± 14.3 (mean ± SD) 28.2% 77.8% 79.6% 
Pearlstein 2012 [59] EMN None Re 28; 8–100 (median; range) NR NR NR 
Sato 2018a [60] EMN None Re 15.3 ± 5.5 (mean ± SD) NR 45.7% NR 
Seijo 2010 [61] EMN None Pr 25; 15–35 (median; IQR) 74% 61% NR 
Steinfort 2016 [62] EMN rE Pr 22.8 ± 12.4 (mean ± SD) 23.2% NR NR 
Stenger 2020 [63] EMN None Re 15.5 ± 4 (mean ± SD) NR 67.9% NR 
Sun 2017 [64] EMN Fl, rE Pr 21.1 ± 5.3 (mean ± SD) 100% 50% NR 
Taton 2018 [65] EMN Fl, rE Pr 16 ± 3 (mean ± SD) 34.3% 46.9% 96.9% 
Toennesen 2021 [66] EMN Fl, rE Pr 25; 2–74 (median; range) 77.2% 62.3% NR 
Wang 2021 [67] EMN rE Re 23.3 ± 10.1 (mean ± SD) NR 59.5% 62.2% 
Wilson 2007 [68] EMN Fl Re 21 ± 14 (mean ± SD) NR 50.4% NR 
Yutaka 2022 [69] EMN Fl, rE Re 19.4 ± 9 (mean ± SD) 58% 47% NR 
Avasarala 2022 [70] fEMN Fl, rE Pr 20.1; 12–30.3 (median; 

IQR) 
36% 47% 80% 

Dunn 2022 [71] fEMN Fl, rE Re 20; 8–40 (median; range) NR 69.2% NR 
Katsis 2021 [72] fEMN AF, rE Re 19 ± 11 (mean ± SD) 24% 53.2% 89.3% 
Agrawal 2022 [73] RB Fl, rE Re 24; 13–30 (median; IQR) 75% 54.8% 57.3% 
Chaddha 2019 [74] RB rE Re 25.0 ± 15 (mean ± SD) 63.5% 51.5% 74.9% 
Chen 2021 [75] RB Fl, rE Pr 23.2 ± 10.8 (mean ± SD) 59.3% 57.4% NR 
Ekeke 2022 [76] RB None Re NR 84% 64% NR 
Fielding 2019 [77] RB Fl, rE Pr 14.8 ± 4.5 (mean ± SD) 58.6% 68.9% 79.3% 
Kalchiem-Dekel 2022 [78] RB Fl, rE Pr 18; 13–27 (median; IQR) 62.9% 59.1% 73% 
Asahina 2005 [79] VB Fl, GS, rE Pr 18.9 ± 6.5 (mean ± SD) NR 60% NR 
Asano 2006 [80] VB Fl, UTB, CT Pr 18.5; 6–30 (median; range) NR 55.2% NR 
Asano 2008 [81] VB Fl, GS, rE, UTB Pr 21; 10–53.3 (median) NR 65.7% NR 
Asano 2013 [82] VB Fl, UTB Pr 17.5; 7.5 – 29.0 (median; 

range) 
NR 51.5% NR 

Bae 2020 [83] VB GS, rE Pr 28.43 ± 18.20 (mean ± SD) 6% 54% 75% 
Bo 2019 [84] VB GS, rE Pr 21.8 ± 4.8 (mean ± SD) NR 52.2% NR 
Diez-Ferrer 2019 [85] VB Fl Pr 23 ± 13 (mean ± SD) 67% NR NR 
Eberhardt 2010 [86] VB UTB Pr 28 ± 7 (mean ± SD) NR NR NR 
Fukusumi 2016 [87] VB rE, GS Pr 20.2 (mean) NR 49.9% NR 
Haidong 2017 [88] VB Fl, rE, GS Re 24 ± 13 (mean ± SD) NR 45.8% NR 
Ikezawa 2017 [89] VB Fl, GS, rE Re 23 ± 8 (mean ± SD) 76% 66.9% 0% 
Ishida 2011 [90] VB rE Pr 18; 9.5–30.0 (median; 

range) 
NR 55.9% NR 

Iwano 2011 [91] VB Fl Re 27.5; 12–58 (median; 
range) 

NR 65.5% 71.3% 

Kato 2018 [92] VB CT-Fl Pr 13.3 ± 3.9 (mean ± SD) 100% NR NR 
Kawakita 2021 [27] VB CT-Fl Re 19; 15 – 23.5 (median; IQR) 100% 51.6% 76.3% 

(continued on next page) 
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subgroups for individual nodule size and bronchus sign did show sig-
nificant differences. Sixty studies reported subgroup analysis for indi-
vidual nodule size < 20 and ≥ 20 mm, resulting in a summary diagnostic 
yield of 67.4% (95%-CI 63.1%-71.5% and 95%-PI 43.9%-83.9%) versus 
79.4% (95%-CI 76.0%-82.4% and 95%-PI 46.6%-94.8%), respectively. 
Furthermore, 36 studies reported subgroup analysis for bronchus sign 
positive or negative lesions, resulting in a summary diagnostic yield of 
73.7% (95%-CI 69.4%-77.6% and 95%-PI 50.8%-88.3%) versus 54.1% 
(95%-CI 48.5%-59.6% and 95%-PI 25.2–80.3%), respectively. 

To illustrate the clinical correlation of the different definitions for 
diagnostic yield, a hypothetical diagnostic patient pathway is shown in 
Fig. 3. When a patient is diagnosed based on the navigation procedure 
without follow-up, the summary diagnostic yield is 68.6% (95%-CI 
61.7%-74.8%) for patients with nodules < 20 mm and 66.7% (95%-CI 
56.8%-75.3%) for nodules ≥ 20 mm. This is based solely on studies with 
a strict definition for diagnostic yield as it does not incorporate follow- 
up. The diagnostic yield after follow-up is 72.1% (95%-CI 66.1%-77.5%) 
and 69.7% (95%-CI 65.4%-73.7%) for nodules < 20 mm and ≥ 20 mm, 
respectively, based on both studies with a strict and intermediate defi-
nition of diagnostic yield. These studies require representative plausible 
samples for both malignant and benign lesions, which need to be 
confirmed by follow-up in case of non-specific outcomes. The outcomes 
from all studies with a liberal definition for diagnostic yield or from 
those who did not report a definition cannot be extrapolated to real life 
practice and were therefore excluded from this hypothetical diagnostic 
patient flow. 

3.5. Adverse events 

Adverse event analyses were performed on a per procedure analysis. 
Five studies (including 519 patients) did not report if adverse events 
occurred and were excluded from analyses. Table 3 specifies adverse 
events among the remaining 90 studies (including 9862 patients). 
Overall adverse event rate was 5.6% (n = 547 patients), with pneumo-
thorax occurring in 2.5% (n = 246 patients) and pneumothorax 
requiring intervention occurring in 1.2% (n = 115 patients). Bleeding 
was reported in 2.1% of all cases (n = 205 patients), however, the 
clinical significance of the bleeding was reported only sporadically. 
There was one reported case of procedure related death. Other reported 
adverse events were pneumonia/infection in 0.2% (n = 17), respiratory 
insufficiency/hypoxemia in 0.3% (n = 31), arrythmia in 0.02% (n = 2), 
minor complaints (e.g. nausea, headache) in 0.4% (n = 37), and other in 
0.1% (n = 8). 

4. Discussion 

This systematic review shows that the pooled diagnostic yield of all 
included navigation bronchoscopy studies is approximately 71%. In the 
subgroup analysis comparing more recently developed navigation 
techniques using advanced imaging and/or robotic support (CBCT, RB 
and, fEMN) against longer-established navigation techniques using EMN 
and VB, a statistically significant higher diagnostic yield for the newer 
techniques was found (p < 0.001). Additionally, explorative analyses 
performed on studies that reported diagnostic yield for individual 

Table 1 (continued ) 

Author + year Guidance 
technique 

Additional navigation 
tools 

Study 
design 

Size of lesion (mm) Bronchus sign 
(%) 

Upper lobe 
(%) 

Solid lesion 
(%) 

Li 2020 [93] VB GS, rE Pr 24; 7–68 (median; range) 75.2% 60.5% NR 
Maekura 2017 [94] VB GS, Fl, rE Pr 22; 10–29 (median; range) NR 64.4% NR 
Matsumoto 2017 [95] VB rE, GS Re NR NR 45.5% 72.7% 
Miyoshi 2018 [96] VB Fl Re NR 71.4% 64.3% 91.1% 
Nakai 2017 [97] VB Fl, GS, rE Re 17.9 ± 5.3 (mean ± SD) 80% 48.6% 0% 
Nakai 2017 [97] VB Fl, GS, rE Re 19.6 ± 5.8 (mean ± SD) 82.1% 46.2% 0% 
Oki 2015 [98] VB Fl, rE, UTB Pr 19; 8.8–30.0 (median; 

range) 
77% 45% 77% 

Oki 2015 [98] VB Fl, rE, GS, TB Pr 19.4; 7–30 (median; range) 82% 58% 81% 
Oki 2019 [99] VB Fl, rE, UTB Pr 19.1; 7.4–29.9 (median; 

range) 
74.3% 54.2% 85.5% 

Oki 2019 [99] VB Fl, rE, TB Pr 18.9; 7.7–30 (median; 
range) 

73.4% 48% 83.6% 

Oki 2021 [100] VB Fl, TB, GS Pr 20; 6.7–30 (median; range) 80% 53.3% 86.7% 
Oki 2021 [100] VB Fl, rE, UTB Pr 19; 6.9–30 (median; range) 87% 54.7% 85.9% 
Oshige 2011 [101] VB rE, GS Pr 28.4 ± 2.2 (mean ± SD) NR 40.4% NR 
Shinagawa 2007 [102] VB CT-Fl, UTB Re 13.6 (mean) 48% 49% NR 
Sun 2022 [103] VB rE, Fl Pr 24 ± 11.3 (mean ± SD) 56.1% 56.2% NR 
Tachihara 2017 [104] VB rE Pr 19; 12–30 (median; range) 100% NR 100% 
Tachihara 2017 [104] VB rE, Fl Pr 22; 15–30 (median; range) 100% NR 100% 
Tamiya 2013 [105] VB Fl, GS, rE Pr 22; 10–30 (median; range) NR 50% 53% 
Wong 2014 [106] VB rE Unclear 28.8 ± 9.3 (mean ± SD) NR NR NR 
Xu 2019 [107] VB rE Pr 27 ± 2 (mean ± SD) NR 38.2% NR 
Yutaka 2021 [69] VB Fl, rE Re 27.6 ± 8.9 (mean ± SD) 70% 46% NR 
Zhang 2020 [108] VB rE Re 20.3 ± 4.8 (mean ± SD) NR 25% NR 
Zheng 2021 [109] VB UTB Pr 26.3 ± 11.4 (mean ± SD) 100% 53.4% 95% 
Zheng 2021 [109] VB Fl, UTB Pr 29.0 ± 11.3 (mean ± SD) 100% 63.3% 97% 

AF = augmented fluoroscopy; CBCT = cone beam computed tomography; CT-fl = computed tomography fluoroscopy; EMN = electromagnetic navigation; fEMN =
tomosynthesis guided electromagnetic navigation; Fl = fluoroscopy; GGO = ground glass opacity; GS = guide sheath; IQR = interquartile range; NR = not reported; Pr 
= prospective; PS = Part solid; RB = robot assisted bronchoscopy; rE = rEBUS; Re = retrospective; S = solid; SD = standard deviation; SEM = standard error of the 
mean; TB = Thin bronchoscope; UTB = ultrathin bronchoscope; VB = virtual bronchoscopy. a: no additional guidance aside from three cases where fluoroscopy was 
used. b CBCT was used as an additional navigation tool in 77/1388 cases. Guide sheaths were not counted as additional navigation tools for EMN studies, because EMN 
always utilizes a guide sheath with a locatable guide as part of its navigation. 
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Fig. 2. Summary diagnostic yield divided by 
different navigation techniques. 95% CI = 95% 
confidence interval; CBCT = Cone beam CT guided 
navigation bronchoscopy; EMN = electromagnetic 
navigation; RB = Robot assisted bronchoscopy; VB 
= virtual bronchoscopy. a: study with two arms 
presented separately; b: studies with a case mix of 
EMN and VB procedures. The two navigation mo-
dalities could not be differentiated and were pre-
sented in the EMN subgroup. c: studies that 
included patients with multiple sampled nodules 
per patient but with per patient analysis which 
could not be analyzed as a per nodule analysis. d: 
diagnostic yield differs from the primary results 
reported by primary study. Rationale for different 
outcomes can be found in supplemental Table S3. e. 
39 patients were also included in the study by 
Chaddha et al. [74].   
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variables showed a statistically significant higher diagnostic yield for 
subgroups with a positive bronchus sign and subgroups with individual 
nodules ≥ 20 mm. Navigation bronchoscopy has an excellent safety 

profile with an overall adverse event rate of 5.6%, most of which were 
minor (i.e. intra-procedural bleeding). 

The findings in our systematic review are comparable to several 

Table 2 
Summary of subgroup analyses.   

Number of 
studies or study arms (nodules) 

Summary 
diagnostic yield 
(95%-CI) 

p-value  

Overall 95 (n ¼ 10682) 70.9% (68.4–73.2)   
Navigation technique (1)   P ¼ 0.091  
EMN 46 (n = 5669) 70.3 (66.0–74.2)   
VB 39 (n = 3628) 69.4 (65.3–73.2)   
RB 6 (n = 558) 76.5 (68.4–82.9)   
CBCT 5 (n = 371) 78.2 (71.5–83.7)   
CBCT multimodality 10 (n = 456) 77.4 (70.7–82.9)  

Navigation technique (2)   P < 0.001  
Recent 24 (n = 1926) 77.5 (74.7–80.1)   
Longer established 82 (n = 8756) 68.8 (65.9–71.6)  

Strictness of definition of diagnostic yield   P ¼ 0.255  
Strict 27(n = 3331) 67.6 (62.0–72.7)   
Intermediate 34 (n = 2604) 72.9 (68.7–76.8)   
Liberal 28 (n = 3851) 70.7 (66.1–74.9)   
Not reported 17 (n = 896) 72.4 (65.5–78.3)  

Median nodule size (1)   P ¼ 0.506  
< 20 mm 30 (n = 2843) 72.1 (67.2–76.6)   
≥ 20 mm 76 (n = 7839) 70.4 (67.5–73.2)  

Publication year   P ¼ 0.254  
Before 2012 20 (n = 1489) 73.9 (69.0–78.3)   
After 2012 86 (n = 9193) 70.2 (67.3–72.9)  

Additional navigation tools in EMN   P ¼ 0.154  
No additional tools 20 (n = 1508) 64.0 (61.8–73.1)   
Additional tools 21 (n = 3109) 70.9 (63.5–77.4)   
Tomosynthesis guided EMN 3 (n = 541) 79.5 (65.4–88.8)  

Explorative subgroup analyses    
Individual nodule size (2)     

< 20 mm 60 (n = 3499) 67.4 (63.1–71.5) P < 0.001  
≥ 20 mm 60 (n = 3744) 79.4 (76.0–82.4)  

Bronchus sign     
Positive 36 (n = 3302) 73.7 (69.4–77.6) P < 0.001  
Negative 36 (n = 1826) 54.1 (48.5–59.6)  

95%-CI = 95% confidence interval; CBCT = Cone beam CT guided navigation bronchoscopy; EMN = electromagnetic navigation; RB = Robot assisted bronchoscopy; 
VB = virtual bronchoscopy. 

Fig. 3. Hypothetical diagnostic workup for patient with a peripheral pulmonary nodule. EMN = electromagnetic navigation; VB = virtual bronchoscopy; RB = Robot 
assisted bronchoscopy CBCT = Cone beam CT guided navigation bronchoscopy; 95%-CI = 95% confidence interval; DY = diagnostic yield. a = (adequate) follow up 
is defined as >1 year follow-up, or definitive diagnostic confirmation by follow up procedure (e.g., TTNB, surgery), or a study with a strict definition for diagnostic 
yield, eliminating the need for follow up. 
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systematic reviews published in recent years. Most recently Nadig et al. 
[110] reported a similar summary diagnostic yield of 69.4%, although 
applying different study selection criteria than we did. Despite the 
comparable overall results, our systematic review performed different 
subgroup analyses, and categorized and evaluated studies by newly 
proposed definitions of diagnostic yield [8] to underline the importance 
of their uniformity. We furthermore propose a workflow that helps 
interpret the clinical value of different navigation bronchoscopy tech-
niques during the diagnostic phase and follow-up in case of non- 
conclusive initial findings (Fig. 3). 

In the subgroup analyses, we compared more recently developed 
navigation techniques utilizing advanced imaging and/or robotics with 
longer-established ones. The diagnostic yield seems to improve with 
newer technologies based on this analysis. However, we also found that 
there is significant heterogeneity in study criteria, reflected by the large 
overall 95% prediction interval of 48.1%-86.6%. This heterogeneity 
limits the comparability of technologies and studies over time. We hy-
pothesize this might also explain the outcome that our diagnostic yield 
has not changed more considerably with the advent of improved tech-
nology when compared to the meta-analysis by Wang-Memoli et al. as 
published in 2012 [4]. 

The reported diagnostic yield estimates vary greatly across studies, 
ranging from 26.7% to 97%. There are multiple potential explanations 
for this variability: heterogeneity in study methodology (e.g. risk of 
bias), operator experience (e.g. learning curve analyses [17,66]), test 
characteristics or patient characteristics (e.g. nodule size ranging from 
12.8 mm to 29 mm mean/median size, or bronchus sign presence 
ranging from 0% to 100%). The impact of patient/nodule characteristics 
is highlighted by the results of our explorative subgroup analyses. We 
found that larger nodules and bronchus sign presence resulted in a 
significantly higher diagnostic yield. When looking at the entire group of 
included studies, however, this difference is averaged out. 

Previous studies have shown that the employed sampling strategy 
may also impact diagnostic yield [112,113]. For example, Gildea et al. 
[111] reported that by adding biopsy forceps or an aspiration needle to 
the sampling strategy, sensitivity improved by 9.3% and 5.8% respec-
tively. Although almost all studies described some form of sampling 
strategy, a clear presentation of results per sampling tool/strategy or a 
structured sampling strategy was rarely presented, precluding further 
subgroup analysis of this parameter. The same applied to other factors 
that may influence diagnostic yield, such as the type of lesion or pretest 
probability of malignancy. Such incomplete reporting makes it very 
difficult to evaluate and compare study results. 

In a hypothetical cohort, Vachani et al. recently illustrated that 
diagnostic yield may vary by 13%–22% depending on whether a strict 
versus a liberal definition was used [8]. We assessed how diagnostic 
yield was defined and calculated across primary studies, and applied the 
proposed categorization by Vachani et al.. This remains subject to dis-
cussion as especially older studies have not been designed with these 
definitions in mind. In our analysis, a considerable number of studies (n 
= 20) provided insufficient information on how diagnostic yield was 
calculated to allow categorization. This does not mean that these studies 
were not diligent in obtaining objective diagnoses, only that we could 
not reproduce how these diagnoses were made for non-malignant find-
ings. Moreover, follow-up duration to determine true benign findings is 

another point of attention as it is heterogeneously reported. The optimal 
follow-up duration is not well established, but shorter follow-up will 
increase the risk of missing slow-growing malignancies. All previously 
mentioned factors highlight the need for a standardized and objective 
description of the outcomes of navigation bronchoscopy. Improved 
adherence to reporting guidelines such as STARD 2015 for diagnostic 
accuracy studies [112] is likely to improve this situation. 

This systematic review showed a good safety profile for navigation 
bronchoscopy, but the QUADAS-2 assessment also showed that the risk 
of bias for the reporting of adverse events could not be determined 
adequately in 79% of included studies. Adverse events are most likely 
reported truthfully, but the methodological assessment shows that 
structured reporting of adverse events according to a predetermined 
protocol is uncommon. Similar to how diagnostic yield is defined, 
structured reporting of adverse events will most likely lead to better 
comparability between research. 

4.1. Clinical implications 

This systematic review illustrates that the navigation bronchoscopy 
field has become an important area of research with a multitude of 
technological options. Real-life practice resembles the large variability 
described in this systematic review. The peripheral nodule patient 
population is heterogeneous in nature and not every patient requires the 
same approach. Multimodality approaches to navigation bronchoscopy 
have become standard practice, with 75/95 studies in this systematic 
review employing such an approach. The use of multiple different 
navigation techniques and tools will most likely increase the possibility 
of obtaining a diagnosis. However, not every hospital has access to the 
same resources, both in access to technology and in financial assets. A 
recent decision analytical cost-effectiveness study [113] showed that 
diagnostic yield is the most important factor in determining the cost- 
effectiveness of a navigation bronchoscopy modality. This implies that 
the more recently developed navigation techniques can be cost- 
effective, even while being initially more expensive to acquire or 
implement. Also important, however, will be an optimal preprocedural 
patient selection. By selecting the correct patients for the employed 
navigation technique, a high diagnostic yield can be obtained. This will 
result in the most cost-effective manner of diagnosis. One of the chal-
lenges going forward will be to determine which patient in what hospital 
setting will benefit the most from which navigation approach. 

Regardless of how the navigation bronchoscopy research field will 
develop in coming years, standardized and clearly described definitions 
for outcomes and on how to report adverse events will be indispensable 
for more accurate comparisons between studies and technologies. 
Ideally, from a patient perspective, the strict and intermediate defini-
tions of diagnostic yield will become more widely employed as these 
definitions can be correlated to daily practice. 

5. Conclusion 

This systematic review and meta-analysis shows that navigation 
bronchoscopy is a safe procedure with the potential for a high diagnostic 
yield. Our analysis shows that more recently developed navigation 
techniques using advanced imaging and robotics are more accurate in 

Table 3 
Adverse events.   

Total patients All adverse events All pneumothorax (including intervention) Pneumothorax requiring intervention Bleeding 

Overall 9862 547 (5.6%) 246 (2.5%) 115 (1.2%) 205 (2.1%) 
EMN 5204 328 (6.3%) 175 (3.4%) 89 (1.7%) 99 (1.9%) 
VB 3330 157 (4.8%) 43 (1.3%) 11 (0.3%) 94 (2.9%) 
RB 528 30 (5.7%) 14 (2.7%) 8 (1.5%) 4 (0.8%) 
CBCT (including multimodality) 800 32 (4.0%) 14 (1.8%) 7 (0.9%) 8 (1.0%) 

EMN = electromagnetic navigation; VB = virtual bronchoscopy; RB = Robot-assisted bronchoscopy CBCT = Cone-beam CT-guided navigation bronchoscopy. 
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comparison to longer-established techniques, within the context of a 
highly heterogeneous population with a multitude of variables that can 
also affect diagnostic yield. High heterogeneity between studies in terms 
of patient and nodule characteristics limits extensive sensitivity ana-
lyses, but bronchus sign and nodule size appear to significantly impact 
the diagnostic yield. The standardized definitions for diagnostic yield as 
used in our systematic review can be utilized to improve comparability 
between future studies in this field and may result in a better clinical 
correlation of the outcomes and better comparison of the performance of 
different technologies. 
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