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An automatic entropy method
to efficiently mask histology
whole-slide images
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Tissue segmentation of histology whole-slide images (WSI) remains a critical task in automated digital
pathology workflows for both accurate disease diagnosis and deep phenotyping for research purposes.
This is especially challenging when the tissue structure of biospecimens is relatively porous and
heterogeneous, such as for atherosclerotic plaques. In this study, we developed a unique approach
called ‘EntropyMasker’ based on image entropy to tackle the fore- and background segmentation
(masking) task in histology WSI. We evaluated our method on 97 high-resolution WSI of human carotid
atherosclerotic plaques in the Athero-Express Biobank Study, constituting hematoxylin and eosin

and 8 other staining types. Using multiple benchmarking metrics, we compared our method with four
widely used segmentation methods: Otsu’s method, Adaptive mean, Adaptive Gaussian and slideMask
and observed that our method had the highest sensitivity and Jaccard similarity index. We envision
EntropyMasker to fill an important gap in WSI preprocessing, machine learning image analysis
pipelines, and enable disease phenotyping beyond the field of atherosclerosis.

Atherosclerosis is a chronic inflammatory process resulting in arterial stiffening and plaque formation, and is the
leading cause of myocardial infarction, ischemic stroke, and peripheral artery disease'*. Historically, researchers
and pathologists have characterized atherosclerotic plaque through standard histology and light microscopy
analysis®®. The composition of atherosclerotic plaques is highly variable, with different plaque types having
distinct clinical manifestations®’. For instance, more stable, fibrous-rich atheroma plaques are typically asymp-
tomatic, whereas unstable, thin-cap fibroatheroma plaques are more prone to rupture and thrombus formation
underlying cerebral or coronary events>®. However, the value of atherosclerotic plaque composition in predicting
cardiovascular events remains a subject of debate and ongoing research’=.

Histological analysis of atherosclerosis is mainly used in the research setting and can reveal the extent of dis-
ease progression as well as underlying etiology. For example, in pre-clinical models of atherosclerosis, the amount
of smooth muscle content and collagen extracellular matrix in the plaque often correlates with greater plaque
stability®. These features can now be easily captured from stained tissue sections and digitized as high-resolution
whole-slide images (WSI). WSI data provides a rich resource for quantitative and qualitative image analysis and
has been a focus of digital pathology'’. Overall, this has simplified archiving, enabled remote diagnosis, and
accelerated both clinical decision-making and research investigations!®.

Accurately identifying tissue (foreground) from background is a necessary initial step in WSI analysis in
digital pathology workflows. However, the process of WSI acquisition has its own technical challenges. It is
often challenging to identify or "mask” the entire non-tissue region from WSI, e.g., due to factors such as dust,
translucent tissue, or weak immunostaining, which may lead to incorrect diagnosis'. Since rescanning and
manually inspecting slides is labor-intensive, automated algorithms that highlight the tissue-specific areas to
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be analyzed is a more efficient solution'?. These algorithms also adjust for inter- and intra-image aberrations in
color, staining and slide preparation through more robust tissue segmentation.

The most straightforward method for identifying tissue on a white background is to set a specified threshold
for the grayscale version of the image'?, specific color channels’, or the optical density of the red, green, and blue
(RGB) color channels'®. Alternatively, tissue can be identified from WSIs split into a uniform patch grid that is
subjected to grayscale image threshold'”!®. Otsu’s thresholding' is a commonly used tissue masking method in
WSI analysis studies'*?*?!. Several image segmentation methods have been developed to extend Otsu’s method
and improve foreground extraction from WSI, such as GrabCut?? and Foreground Extraction from Structural
Information (FESI)*. While these methods are easy to implement, it has been difficult to generalize to more
variable stains or clinical specimens. A more accurate approach is still needed in digital pathology workflows,
especially for specimens containing small empty spaces between extracellular matrix fibers (e.g., collagen) or
due to decalcifying procedures, and transparent tissue (e.g., adipose or lipid droplets) in atherosclerotic plaques.
Image thresholding techniques based on entropy maximization have been routinely applied to infrared image
analysis?~?¢. Similar to infrared images with poor contrast and noise, WSI may also benefit from entropy thresh-
olding to distinguish tissues from the slide background; to our knowledge this approach has not yet been applied
to WSIL

In this paper, we propose a fully automated approach for separating foreground (tissue) and background
in WSI of HE-stained atherosclerotic plaque samples. Our method, EntropyMasker, is unaffected by changes
in scanning or image processing conditions, by using a measure of local entropy and generating correspond-
ing binary tissue masks. This allows for increased scalability across various tissue contexts and implementa-
tion in both machine learning and computer vision cell segmentation pipelines, e.g., using CellProfiler” and
slideToolKit?.

Methods
Our method: EntropyMasker. For WSI processing, ideally the slide background is evenly achromatic,
with the background mostly one color, e.g., black (fluorescence) or white (brightfield). Unfortunately, in prac-
tice, there is often inconsistency of the background color due to variations in image capturing color temperature
(e.g., from shades of blue to yellow), resulting in edge artifacts from tile-based scanning methods®. Therefore,
the slide background cannot be easily masked by transforming the images from RGB color space to the HSV
(Hue-Saturation-Value) and excluding the white color (0°, 0%, 100%).

In information theory®, entropy is defined as the log-base-2 of the number of possible outcomes for a sent/
received message. In image analysis, entropy refers to the degree of randomness or complexity of pixels in a
defined region or neighborhood of pixels. We defined the local entropy of a specific region as follows:

255

H(F) == pr(dlogapr (i),

i=0

where pr (i) represents the probability of a grayscale pixel, 7, in a local footprint region.
In the case of pr(i) = 0 for some i, the corresponding sum value and 0log>0 is set to 0, which is consistent
with the limit: lim p log (pr) = 0.
pr—0

Based on this approach, homogeneous pixels within local neighborhood regions (disk-shaped footprints
with radius of 5) have a low probability and contribute less to the local entropy, whereas heterogeneous pixels
within local neighborhood regions have a high probability and contribute more to the local entropy. Also, the
background of an image has lower entropy due to higher brightness and more homogeneous texture, whereas
foreground tissue has higher entropy due to the diversity of pixel intensities in the local neighborhood. In other
words, the heterogenous pixels in tissue with high entropy are more informative than homogenous background
pixels with low entropy’’.

The purpose is to extract the tissue (foreground) from the background. We first calculated local entropies
and then we made a histogram of all local entropies. Since the background of the image has a lower entropy
value, we first defined the threshold as the local minima of the histogram of the entropy map. Next, we applied
this threshold to convert the local entropy map into a binary map which distinguishes background noise from
tissue (foreground) in the WSI.

Otsu’s method. Otsu’s method is a clustering-based image thresholding algorithm'®, commonly utilized in
image analysis and digital histopathology applications?**?2-**. Following a bimodal histogram, the technique
assumes that the image has two classes of pixels (tissue pixels and background pixels). It determines the best
threshold for dividing the two groups such that their total intra-class variance is as low as possible.

Adaptive thresholding. Adaptive thresholding is another widely used method for calculating the thresh-
old value for smaller areas of WSIs**-*. Typically, these threshold values are calculated in two different ways,
either using the mean of the neighborhood area, or a Gaussian weighted sum of neighborhood values.

slideMask method from slideToolKit. The slideToolKit* is an assistive tool set for the histological
quantification of whole-slide images (https://github.com/swvanderlaan/slideToolKit). The slideMask tool in
slideToolKit uses convert from ImageMagick (https://imagemagick.org) and a miniature version of the WSI
to generate a mask (https://github.com/swvanderlaan/slideToolKit/blob/master/slideMask). The image is first
blurred to eliminate dust and speckles. Then Fuzz in ImageMagick® (which is computed as the root mean
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squared difference between two colors of the pixels) is used to create a fuzzy, non-stringent selection to identify
the white background, which is subsequently substituted with black. The slideMask tool has settings for blur and
fuzziness that may be explored and altered. Manual adjustments may be made to generated masks in any image
editor (such as free GNU Image Manipulation Program; GIMP***’). Unwanted regions on the WSI (such as
marker stripes or air bubbles beneath the coverslip) may necessitate this procedure.

All proposed methods were implemented in the Python programming language using OpenCV*! and other
required packages (see Data and code availability for more details).

Athero-express biobank study. Patient population. ~Atherosclerotic plaques were obtained from pa-
tients undergoing an arterial endarterectomy procedure and included in the Athero-Express Biobank Study
(AE), an ongoing biobank study at the University Medical Centre Utrecht (Utrecht, The Netherlands) and the St.
Antonius Hospital (Nieuwegein, The Netherlands)®. The medical ethical committees of the respective hospitals
approved the AE which was registered under number TME/C-01.18. This study complies with the Declaration
of Helsinki, and all participants provided informed consent. However, considering national laws plaque-material
are considered ‘waste biomaterial’ and are always allowed to be used without any personal information regard-
less of informed consent. In this study we also considered this ‘waste biomaterial, hence no clinical information,
e.g., age, is given here nor when sharing data of the relevant samples (n=3). The study design of the AE was
described before?, but in brief: during surgery blood and plaques are obtained, stored at — 80 °C and plaque mate-
rial is routinely used for histological analysis>*2.

Whole-slide staining and scanning. 'The standardized (immuno)histochemical analysis protocols used in the
AE biobank have been described previously>*. In short, 4-micron cross-sections of the paraffin-embedded seg-
ments were cut using a microtome, and 8 different stains were applied for endothelial cells (CD34), macrophages
(CD68), elastic Van Gieson (EvG), fibrin, red blood cells (glycophorin C, GLYCC), hematoxylin and eosin (HE)
for nuclei, collagen (picrosirius red, SR), and smooth muscle cells (SMCs, a-actin) on consecutive slides. We set
up ExpressScan to obtain whole-slide images (WSIs) by scanning stained slides at 40x using a Roche Ventana
iScan HT (https://diagnostics.roche.com/global/en/products/instruments/ventana-iscan-ht.html) or Hama-
matsu C12000-22 Digital slide scanner (https://www.hamamatsu.com/eu/en/product/life-science-and-medical-
systems/digital-slide-scanner/index.html). WSIs were stored digitally as z-stacked .TIF (Roche) at 0.25 micron/
pixel or .ndpi (Hamamatsu) at 0.23 micron/pixel brightfield microscopy images'. The slides numbers used for
this project are listed in Supplemental Table 1.

Manual tissue annotation and masking. The ground truth tissue areas for each WSI were annotated manually
at 40 x magnification using QuPath®. If the tissue had disintegrated into several disjointed fragments during
preparation or staining the annotators marked them with a single enclosing polygon. Binary masks of these tis-
sue annotations were then generated using groovy scripts in QuPath.

Statistical analyses. We assessed the algorithms using several metrics: The Jaccard index, sensitivity, False
positive Rate (FPR) and pixel accuracy, comparing the algorithms’ output to the ground truth binary reference
masks of the 97 images in the test set.

Jaccard index was applied to assess the performance of our masking algorithms, by measuring the overlap
area of target masks with the ground truth masks annotated by experts and masks of the algorithm outputs
divided by the area of the union of both masks. Mathematically, sensitivity, false positive rate and pixel accuracy
can be expressed as:

o TP
Sensitivity = ————,
TP + FN
. FP
Falsepositiverate = ————,
FP + TN
, TP + TN
Pixelaccuracy =

TP+ FP+FN + TN’

Evaluation and results. We developed EntropyMasker, a novel masking method using entropy-filter-
ing (Fig. 1). First, we compared our method against three conventional thresholding methods: Otsu’s, adaptive
thresholding using the mean of neighborhood area as the threshold, and adaptive thresholding using the Gauss-
ian weighted sum of neighborhood values as the threshold. We also evaluated these methods against the previ-
ously developed slideMask tissue masking method in the slideToolKit*.

Application of quantitative WSI analysis pipelines requires access to uniformly processed and well-char-
acterized tissue biobanks. The Athero-Express study” is a large-scale vascular tissue biobank comprising over
3600 carotid and femoral endarterectomy surgical specimens, which include detailed clinical outcomes and
follow-up. This has led to several prospective studies to correlate local atherosclerotic plaque composition with
future local and systemic vascular outcomes, using histology’°, RNA*4**, genetics*®, and protein*’*® data. In
the histology-based analyses, local plaque indices such as plaque hemorrhage and neovascularity were shown
to correlate with more adverse vascular outcomes”’. We evaluated each method using 97 randomly selected
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WSIs from Athero-Express (Supplemental Table 1 for a minimalistic baseline table and Supplemental Table 2
for details on usage) at 40X magnification on layer 6 (pixel spacing at layer 6 is around 8.36 pm) consisting of
8 different stains: HE, picrosirius red, Fibrin, EVG, a-SMA, CD34, CD68, and GLYCC. We did not apply our
method to layer 1 due to memory constraints.

The average Jaccard index, also referred to as the Intersection over Union (IoU) metric, of the adaptive
thresholding method where its threshold value is the weighted sum of neighborhood values where weights are a
gaussian window was 0.7702 and the average sensitivity was 0.8597 (Table 1, Supplemental Table 3 includes results
for all stains and methods). This masking method produced the highest pixel accuracy among all the traditional
methods which was 0.9485. Otsu’s method had a much lower false positive rate than any of the approaches
examined at the cost of much lower average Dice scores and sensitivity levels. The quality of the outcome of the
slideMask algorithm was unevenly distributed resulting in a relatively low Jaccard index (IoU) across all the
tested methods (Fig. 2). The average false positive rate was 0.0153, which is the lowest of all masking methods
in comparison, and its average pixel accuracy was 0.9133. Our automatic local entropy-based masking method,
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Figure 1. Schematic overview of the EntropyMasker method for masking whole-slide images. Atherosclerotic
plaque tissue samples were collected from arterial endarterectomy surgeries, sectioned and mounted on tissue
slides as part of the Athero-Express Biobank Study. The slides were subjected to histological staining for overall
morphology (hematoxylin & eosin; HE), collagen deposition (Picrosirius red; SR), fibrin deposition (Fibrin),
elastin fibers (Elastica Van Gieson; EVG) or immunohistochemical staining for cell-type specific markers: alpha-
smooth muscle actin (a-SMA), macrophages (CD68), endothelial cells (CD34), or erythrocytes (glycophorin
C). Whole-slide images of each slide were generated using high-resolution scanners and images were stored

in a database (~25,000 images). Red, Green, Blue (RGB) color images were converted to grayscale images and
grayscale pixels were used to calculate entropy threshold map for histogram analysis, and tissue segmentation
was performed to create tissue mask of WSIs for subsequent data analysis and benchmarking. Schematic was
created with BioRender.com.

Method Jaccard index | sensitivity False positive rate | Pixel accuracy
SlideMask 0.5273+0.29 0.5451+0.30 | 0.0153+0.06 0.9133+0.08
Otsu’s 0.5499+0.25 0.5608+0.25 | 0.021£0.09 0.8994+0.10
Adaptive_mean 0.7322+0.21 0.7691+£0.24 | 0.0278£0.06 0.9452+0.06
Adaptive_ gaussian 0.7702+0.20 0..8597+0.18 | 0.0393+0.09 0.9485+0.07
EntropyMasker 0.8837+0.08 | 0.9685+0.06 | 0.0176+0.02 0.9111+0.07

Table 1. Comparison of different masking methods. The method with the highest evaluation metric is shown
in bold. Metric values represent mean + SD.
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Figure 2. Evaluation metrics for different masking methods. Comparison of EntropyMasker with other
masking methods: Otsu, slideMask, and adaptive thresholding methods, using manually annotated tissue
sections as ground truth. 97 images from 59 individual patient samples were randomly selected and used to
evaluate each method by calculating the (A) Jaccard index (intersection over union metric), (B) sensitivity, (C)
false positive rate, and (D) pixel accuracy.

EntropyMasker, had the best average Jaccard index (IoU) 0.8837 and the highest sensitivity 0.9685, outperform-
ing Otsu’s method, two adaptive methods and slideMask masking method in both metrics. The average false
positive rate was 0.0176 which is much lower than Otsu’s method, and two adaptive methods.

The results of comparing the 5 masking methods for an H&E-stained whole-slide image are shown in Fig. 3
where generated tissue masks are overlaid by pseudocolor (green). To show the generalizability of our automatic
entropy method, we tested on whole-slide images with 8 different types of staining. Examples of masking results
of our proposed method are shown on Fig. 4 where generated tissue masks are overlaid by pseudocolor (green).

Since we used two different scanners, we also evaluated the EntropyMasker performance using different
image formats (.ndpi or .TIF), which did not influence the Jaccard index (Supplemental Fig. 1). Also, to mitigate
the influence of the porosity of the tissue, we evaluated these methods on both high (20X) and low (5x) resolution
WSIs, however the performance was unaffected (Supplemental Table 4).

The computation speed for Otsu’s method, adaptive methods, slideMask and proposed EntropyMasker
method on a 3.6 GHz Quad-Core Intel Core i7 processor, 32 GB 2400 MHz DDR4 memory iMac are 0.08, 0.11,
0.25 and 0.34 s per one million pixels, respectively.

Conclusions and discussion

Overall, our automatic entropy masking method, EntropyMasker, performed well on atherosclerotic plaque
cross-sectional WSIs derived from 8 different types of stains. With a relatively high average Jaccard index our
method was able to separate out the foreground and background accurately and consistently from these complex
images (Fig. 2 and 4).

In comparison, we observed the popular masking method, Otsu’s, and our previous method, slideMask,
both tended to miss some tissue areas along the tissue boundary. This likely results from the relatively lower
intensity of these areas, where Otsu’s method sets a threshold in the middle of two peaks, thus partially omitting
the higher intensity pixels compared to the threshold (Fig. 2). The slideMask method computes the root mean
squared difference between two colors, however this becomes problematic when the intensity of tissue area
pixels is relatively large (Fig. 2).
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Figure 3. Comparison of results of 5 masking methods for a randomly selected H&E-stained whole-slide
image. (A) Expert generated annotation (ground truth) using Qupath Software (Version 0.3.2)*. (B) Our
EntropyMasker method. (C) Otsu’s method. (D) Adaptive method where the threshold value is the mean of
neighborhood area. (E) Adaptive method where the threshold value is the weighted sum of neighborhood values
where weights are a gaussian window. (F) slideMask method. All the generated tissue masks are overlaid by
pseudocolor (green).

We also found that the adaptive methods tend to produce ‘porosity’ during the masking, since these methods
miss small regions of the image which are supposed to be regarded as tissue (Fig. 2). This large scale missing
tissue makes Otsu’s, slideMask and adaptive thresholding methods impractical for use in many image process-
ing workflows'®?, especially when applied to atherosclerotic plaque images. Given the limited availability and
heterogeneous nature of these plaques, an ideal masking method will retain all the plaque components, which can
be used for automatic cellular segmentation tasks to discover tissue or compartment-specific markers for disease
progression and phenotyping. This is also a valuable feature of EntropyMasker, which can be implemented at
the preprocessing stage of various machine learning pipelines for other diseases and research areas which require
a complete WSI masking step*->..

Despite the accurate and consistent performance of EntropyMasker, it is worth pointing out some known
limitations. In comparison to the other methods that we evaluated, our method has the highest sensitivity, and
thus tends to over-include a few pixels outside the edges of tissue (Fig. 3). While these regions represent a small
fraction of the total tissue areas that we tested, this should be more carefully considered when evaluating smaller
tissue sections'!. Also, our method had slightly lower pixel accuracy than the adaptive methods, which may be
important for tasks involving more subtle intensity differences in defining target regions of the tissue®?. Com-
pared to the other methods discussed, ours is slightly slower (0.34 s per one million pixels compared to 0.11 s
for Otsu’s) which may pose an issue when examining thousands of images, although this should be negligible
since our method is scalable on any high-performance compute cluster.

In conclusion, we demonstrated the effectiveness of our proposed method for tissue masking on human ath-
erosclerotic plaque WSIs of different types of stains including HE, CD34, CD68, EVG, smooth muscle cell a-actin,
picrosirius red, fibrin and Glycophorin C. By evaluating our method against other popular masking methods
and those recently developed, we also demonstrated that our entropy-based masking method is scalable and had
optimal performance across these WSIs. Given its scalability in WSI processing, we envision EntropyMasker
to be readily adopted across various disease contexts and implemented in existing pipelines as an input to both
deep learning and cell counting tasks.
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Figure 4. Generalizability across the different antibody-specific or histology stains. Images of the upper part are
the original whole-slide images at layer 6 with 8 different types of staining methods respectively and images of
the lower part are the examples of masking results of our EntropyMasker method where generated tissue masks
are overlaid with pseudocolor (green). (A) H&E; (B) Glycophorin C; (C) Sirius red; (D) Fibrin; (E) CD68; (F)
CD34; (G) Smooth muscle alpha-actin; (H) EVG.

Data availability

The full histological data used in this study are available here https://doi.org/10.34894/GN4YOS including the
high- and low-resolution whole-slide images.

All documented code and the tutorial to run EntropyMasker can be found here https://github.com/Circulator
yHealth/EntropyMasker.
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