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Abstract
Background: Deformable image registration is increasingly used in radio-
therapy to adapt the treatment plan and accumulate the delivered dose.
Consequently, clinical workflows using deformable image registration require
quick and reliable quality assurance to accept registrations. Additionally, for
online adaptive radiotherapy, quality assurance without the need for an oper-
ator to delineate contours while the patient is on the treatment table is needed.
Established quality assurance criteria such as the Dice similarity coefficient or
Hausdorff distance lack these qualities and also display a limited sensitivity to
registration errors beyond soft tissue boundaries.
Purpose: The purpose of this study is to investigate the existing intensity-
based quality assurance criteria structural similarity and normalized mutual
information for their ability to quickly and reliably identify registration errors
for (online) adaptive radiotherapy and compare them to contour-based quality
assurance criteria.
Methods: All criteria were tested using synthetic and simulated biomechanical
deformations of 3D MR images as well as manually annotated 4D CT data.The
quality assurance criteria were scored for classification performance, for their
ability to predict the registration error, and for their spatial information.
Results: We found that besides being fast and operator-independent, the
intensity-based criteria have the highest area under the receiver operating char-
acteristic curve and provide the best input for models to predict the registration
error on all data sets. Structural similarity furthermore provides spatial infor-
mation with a higher gamma pass rate of the predicted registration error than
commonly used spatial quality assurance criteria.
Conclusions: Intensity-based quality assurance criteria can provide the
required confidence in decisions about using mono-modal registrations in clini-
cal workflows.They thereby enable automated quality assurance for deformable
image registration in adaptive radiotherapy treatments.
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1 INTRODUCTION

Radiotherapy is increasingly moving towards image-
guided adaptive therapy workflows, which aim to
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compensate for the effect of motion both in between as
well as during therapy sessions.To this end, the patient’s
internal anatomy can be imaged using cone-beam CT1

or MRI2,3 before and during treatment, which enables
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deformable image registration algorithms to extract
anatomical motion information from these images. This
information can subsequently be used to mitigate the
effect of motion. To use motion information in clinical
workflows, the motion estimations need to be reliable,
accurate, and precise. Incorrect estimations can accu-
mulate over time and decrease treatment quality and
compromise patient safety. Additionally, quality assur-
ance needs to be fast, as the patient’s anatomy can
continue to change during the assessment. Better tools
for quality assurance of registration results has been
identified as the main factor that may allow centers to
use DIR more in clinical practice.4

Commonly used quality assurance criteria that are
advised for deformable image registration by the AAPM
TG 132 Report5 like the Dice similarity coefficient and
Hausdorff distance score registrations by indicating
some form of contour correspondence with a single
number. While for applications like contour propagation
and MLC-tracking this has been found to be sufficient,
there are severe disadvantages to scoring deformable
image registrations for dose accumulation and/or plan
adaptation in this way. First, these criteria lack speed
as they need two (sets of) delineated contours. This
is labor-intensive and time-consuming, in particular for
multi-slice or 3D data. Therefore, these criteria are not
suited for online and/or real-time applications with the
patient on the treatment table. Second, as these crite-
ria only score the delineations, they lack reliability by
being insensitive to registration errors in the soft tissue
beyond the contoured organ boundaries. Furthermore,
as they output a single number, these criteria do not pro-
vide any spatial information on the registration errors.
Also the advised target registration error of anatomi-
cal landmarks annotated by experts suffers from similar
shortcomings. Selecting the appropriate landmarks is
a laborious and time-consuming process and a lot of
landmarks covering the region of interest are required
as they provide an inherently local description of the
registration performance.

The need for reliable quality assurance is further rein-
forced by the recent success of deep neural networks
(DNNs) in medical image processing. In the recent past,
DNN solutions have been employed for deformable
image registration6–8 as well as for quality assurance
of image registration.9–11 A limitation is that DNNs fre-
quently lack several desirable properties of probabilistic
models, such as uncertainty quantification and priors as
well as a lack of transparency and that generalization
of the trained models can be difficult. To facilitate the
clinical translation of DNNs, these disadvantages can
be largely alleviated if an independent quality assur-
ance based on deterministic methods as an additional
safeguard layer is performed.

In this paper, we evaluate therefore four determinis-
tic contour-based criteria and two deterministic and fast
operator-independent intensity-based quality assurance
criteria on their ability to serve as the basis of a binary

classifier to accept registrations for further clinical use
and to serve as the input for a model to predict the reg-
istration error. We also assess their potential to provide
spatial information.

2 METHODS

We compared four contour-based criteria and two
intensity-based criteria. The contour-based criteria are:
the Dice similarity coefficient,12 the Jaccard similarity
index,13 the Hausdorff distance,14 and the mean Haus-
dorff distance.15 The operator-independent intensity-
based criteria are normalized mutual information 16 and
structural similarity.17 The contour-based criteria and
normalized mutual information output a single scalar.
Structural similarity provides a value for each voxel and
can therefore also give the distribution of errors on a
region of interest or a map of the registration error, indi-
cating where a registration fails. As the benchmark for
quality assurance we used the endpoint error18 or – if
no benchmark deformation vector field was available –
the target registration error. To compare the criteria, we
average the endpoint error, target registration error, and
structural similarity over a contour area and consider
the normalized mutual information for voxel intensities
in this area only.

All criteria are tested on three different data sets.
First, on a set of synthetically deformed 3D MR images
of prostate anatomies for ten patients. This allows
us to use the endpoint error as a benchmark and
provides a high number of deformations. Acquisition
details can be found in the supplementary material.
The synthetic deformations are introduced by randomly
displacing every 30th voxel in all three dimensions,draw-
ing voxel displacements from a normal distribution with
a standard deviation of 2 mm. B-spline interpolation
is used to determine the deformations of intermedi-
ate voxels, ensuring spatial continuity. We generate 500
deformations for each of the 10 patients. To test the
influence of the signal-to-noise ratio (SNR), we syn-
thetically added noise patterns of Rician shape to the
images,lowering their SNR from 12 to 9,6,and 4,respec-
tively. For low SNR this approximates the noise in MR
images.19,20

Secondly, the criteria are tested on 3D MR datasets
subjected to simulated biomechanical deformations.
These simulations take into account the tissue-specific
physical properties and represent an approximation
of typical physiological deformations. This provides an
anatomically correct benchmark. For a prostate patient,
we simulated four motion patterns that are typically
observed during treatments of 6 to 10 min using the
finite element modeling software FEBio.21 The motion
patterns represent a rectal filling (maximum average
displacement of the prostate of 4.3 mm), a bladder
filling (3.2 mm), the average observed motion of a
prostate during treatment (1.5 mm),and residual motion
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INTENSITY-BASED QUALITY ASSURANCE 5717

only (0.6 mm). These simulations were then used to
create a 4D cine MR image series consisting of 11
images by deforming a 3D MR scan of a prostate
cancer patient treated on the MR-Linac Unity system
(Elekta AB, Stockholm, Sweden) installed at the UMC
Utrecht. For more details of the motion patterns and
finite element modeling, see.22 Subsequently, the cine
MR images are registered using five different varia-
tional DIR algorithms previously proposed in the context
of MR-guided radiotherapy.23–27 To increase the size
of the dataset, registrations were also performed after
2-, 3-, and 4-fold downsampling the image resolution
and after adding four levels of Rician noise. In total,
1600 registration results have been investigated for this
biomechanical simulations experiment. For these first
two datasets, the clinically delineated and the deformed
prostate contours are used to compute the contour-
based criteria and to average the endpoint error and
intensity-based criteria over.

Finally, the quality assurance criteria are tested on
ten thoracic 4D CT datasets from the DIR-lab database.
1 This publicly available dataset provides a spatially
sparse anatomically plausible benchmark. For images
of full inhale and full exhale, 300 manually annotated
anatomical landmarks are available to quantify the
displacement.28,29 As for the biomechanical dataset, we
increase the size of this dataset eightfold by down-
sampling and adding noise. In addition, we use the
five registration algorithms twice with different param-
eters. In total, 800 registrations have been investigated
for this data set. Expert-delineated lungs in full inhale
and full exhale state are used to compute the contour-
based criteria and to average the endpoint error and
intensity-based criteria over.

We first evaluated the quality assurance criteria as
the basis of a binary classifier for accepting deformable
image registrations for clinical use. To this end, the
mean endpoint error is used to divide the data into
acceptable and unacceptable cases. We then trained a
logistic regression model on the different quality assur-
ance criteria. For the synthetic prostate data, 10-fold
cross-validation is used with one unseen patient in each
test set. For the biomechanically simulated data 10-fold
cross-validation with a random proportion of the data
in the test set is used. And for the manually annotated
data, 5-fold cross-validation is used with two previously
unseen patients in each test, averaging over all possible
combinations. The models are then tested and the area
under the receiver operating characteristic (AUROC)
curve is determined. The AUROC is the probability that
for a randomly chosen acceptable and unacceptable
case the classifier ranks the acceptable case higher
than the unacceptable case.

1 See https://med.emory.edu/departments/radiation-oncology/research-
laboratories/deformable-image-registration/index.html

Secondly, we compare the prediction performance
for the investigated criteria. For this, we train a linear
regression model to predict a registration error in mil-
limeters based on the output of the different criteria.
Then we evaluate the Pearson correlation between the
predicted registration error and true registration error,
and the absolute difference between the two (which we
call prediction error). The same training and test sets
as listed above are used for the synthetic and simu-
lated data. For the manually annotated data we used
10-fold cross-validation with one unseen patient in the
test set.

Finally, we compared the spatial information in the
applicable quality assurance criteria. To this end, we
predict the endpoint error using a fixed effect linear
regression model fit on the spatial quality assurance
metric. These predictors are the voxel-by-voxel output
from structural similarity and other commonly used spa-
tial quality assurance criteria: inverse consistency, the
absolute deviation of the Jacobian determinant from
unity |1− J(u+ 1)|,and the curl magnitude ‖∇× u‖2.The
benchmark for this model is the known voxel-by-voxel
endpoint error. We evaluate the models by computing
the gamma criterion with the known endpoint error as
the distribution30,31 using 10-fold cross-validation. We
test the criteria on the biomechanical simulation of the
prostate anatomy as it has known and realistic defor-
mations and the prostate is modeled to have a Jacobian
close to unity and close to vanishing curl magnitude.We
use all voxels from a cube of 75 x 75 x 75 mm sur-
rounding the prostate (1.6⋅ 105 voxels) for all data points
where the average endpoint error on the prostate is in
the top 10%, for memory purposes. For a set of gamma
tolerances, we score the average gamma criterion over
the cube as well as the percentage of voxels passing the
gamma criterion (γ ⩽ 1).

3 RESULTS

Table 1 shows the results for the synthetic defor-
mations. The intensity-based criteria have the highest
areas under the receiver operating characteristic curve
(AUROC), and their prediction models show the highest
correlation with the endpoint error and the lowest pre-
diction error. This deviation from the true endpoint error
is at least 1.5 times lower for both intensity-based crite-
ria than for any contour-based criterion. For all criteria,
the mean slope of their linear regression is lower than
1. For normalized mutual information (0.75) and struc-
tural similarity (0.76) the slope is much closer to one
than for any contour-based criterion (0.32 at most). This
indicates a better sensitivity and a smaller underestima-
tion of the registration error. The full receiver operating
characteristic curve can be found in Figure S1 in the
Supporting Information. Figure 1 shows a linear regres-
sion analysis for the prediction performance on a single
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5718 INTENSITY-BASED QUALITY ASSURANCE

TABLE 1 Classification and prediction results for the quality assurance criteria evaluated on the prostate for synthetic deformations. We
show the mean (standard deviation) over the ten test patients and their data points. Shown are the area under the receiver operating
characteristic curve (AUROC), the Pearson correlation between the predicted and true endpoint errors, and their absolute difference as the
prediction error.

QA criterion AUROC Correlation Prediction error (mm)

Dice similarity coefficient 0.86 (0.04) 0.75 (0.20) 0.37 (0.09)

Jaccard index 0.86 (0.04) 0.75 (0.11) 0.37 (0.09)

Hausdorff distance 0.72 (0.05) 0.49 (0.18) 0.38 (0.09)

Mean Hausdorff distance 0.80 (0.04) 0.62 (0.24) 0.36 (0.07)

Mutual information 0.95 (0.01) 0.91 (0.19) 0.24 (0.09)

Structural similarity 0.95 (0.01) 0.91 (0.19) 0.22 (0.10)

F IGURE 1 Prediction performance for a single test patient of the synthetic deformations for the Dice similarity coefficient (DSC), mean
Hausdorff distance (MHD), normalized mutual information (NMI), and structural similarity (SSIM). Plotted are the predicted endpoint errors and
the true endpoint errors. A linear regression analysis is shown, and the Pearson correlation coefficient r is indicated. We can see the higher
correlation that is also more aligned with the line with slope 1 for the intensity-based criteria. They also show a smaller spread around this line.

unseen test patient. The patient with results closest to
the mean of all ten patients as reported in Table 1
is shown. We can observe higher correlations, smaller
errors, and better slope alignments for the intensity-
based criteria. The interpatient performances for Dice
and Jaccard shown here are considerably worse than
their intrapatient performances (not shown). For the
intensity-based criteria this difference is relatively small.
For all criteria, the AUROC decreases with decreasing
signal-to-noise-ratio (SNR), see Table S1 in the Sup-
porting Information. However, even on images with an

SNR of 4,the intensity-based criteria perform better than
all contour-based criteria do on the original images with
an SNR of 12. The results are qualitatively the same
for different choices of the cutoff to separate accept-
able and unacceptable registrations,see Table S2 in the
Supporting Information.

For the biomechanically simulated deformations of
the prostate (Table S3 in the Supporting Information),
we find qualitatively similar results. The intensity-based
criteria outperform all contour-based criteria on all eval-
uations. The mean prediction errors for normalized
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INTENSITY-BASED QUALITY ASSURANCE 5719

TABLE 2 Gamma criterion pass rate percentage evaluated on a box surrounding the prostate for different tolerances for the criteria holding
spatial information.

QA criterion 5%/1mm 2%/2mm 10%/1mm 10%/2mm 10%/2mm 20%/2mm

Structural similarity 76 (17) 82 (14) 92 (6) 95 (4) 97 (3) 99 (2)

Inverse consistency 50 (19) 56 (18) 82 (14) 85 (12) 88 (11) 96 (2)

Jacobian determinant 57 (16) 63 (14) 84 (12) 87 (10) 90 (8) 97 (2)

Curl magnitude 58 (18) 64 (17) 84 (13) 87 (11) 90 (9) 96 (2)

mutual information (0.04 mm) and structural similarity
(0.07 mm) are at least half as low as those for the
contour-based criteria.

The gamma pass rate evaluation for the spatial cor-
respondence is shown in Table 2 and the average
criterion results are shown in Table S4 in the Support-
ing Information. For any choice of tolerances, structural
similarity has a mean gamma value at least a factor
1.4 lower than any other criterion. On average, the per-
centage of voxels passing the criterion is at least a
factor of 1.2 higher than for any other criterion. For a
10%/2mm tolerance, (where 10% represents an error of
0.24 mm on average),the gamma pass rate for structural
similarity is 95%. In Figure 2, a representative exam-
ple of a transversal slice of the true and predicted
endpoint errors from structural similarity, the inverse
consistency error, Jacobian determinant, and curl mag-
nitude is shown.We can observe the ability of the model
based on structural similarity to localize the largest
registration error, resulting in a higher gamma pass
rate.

For the manually annotated 4D CT thoracic data sets
(Table S5 in the Supporting Information) the results are
qualitatively similar to those above. The intensity-based
criteria score best and at least as well as the contour-
based on all evaluations. The mean prediction error for
normalized mutual information is at least 1.3 times lower
than those for the contour-based criteria.

4 DISCUSSION

In this work, we evaluated multiple existing criteria on
their capabilities for quality assurance of mono-modal
image registration for MRI and CT. We have compared
the operator-independent intensity-based normalized
mutual information and structural similarity to the more
established contour-based Dice similarity coefficient,
Jaccard index, Hausdorff distance, and mean Haus-
dorff distance, and to the DVF-based spatial criteria
inverse consistency error, Jacobian determinant, and
curl magnitude. Both intensity-based criteria outperform
all contour-based criteria on almost all datasets and
evaluations. Across the three datasets, the prediction
error is at least a factor of 1.6, 2.7, and 1.1 lower
for the intensity-based criteria compared to the best-
performing contour-based criterion. This confirms the

hypothesis that using the additional information in image
intensities has benefits for quality assurance. The rel-
ative improvement is lower for the data set evaluated
on the lungs as there are limited contrast details in the
lungs as well as large dark signal voids. The benefits
of intensity-based criteria are most pronounced for data
sets and anatomical regions with sufficient image con-
trast. Importantly, the comparatively high performance is
maintained even for low SNR. Since the noise on the
images was simulated, we only evaluate the contour-
based criteria on the clinical contours delineated on
the original images in this analysis. It is expected that
the reliability of contour-based criteria decreases for
lower SNR as it will be harder to accurately delineate
structures.

Additionally, structural similarity provides a spatial
map of registration errors. This allows to observe distri-
butions of structural similarity over a volume or identify
local failures of image registration. We found its spatial
correspondence to the benchmark to be considerably
higher than conventional DVF-based spatial criteria.
The second-best is the Jacobian determinant, but it
misses registration errors not arising from the estimation
of physiologically implausible deformations. Structural
similarity does require image contrast to identify local
misregistrations. This spatial map gives rise to possibil-
ities such as only flagging registration errors in regions
where the planned dose (gradient) is above a partic-
ular threshold, finding a map of the registration error
multiplied by the planned dose (gradient), or spatially
varying the cutoff value for structural similarity when
using it to classify registrations. Additionally, when a
registration is correct in the majority of the evaluated
volume but fails locally, an aggregated single num-
ber lacks sensitivity. An error map or distribution might
be able to reveal local misregistrations in this case.
The spatial distribution thereby enables semi-automatic
quality assurance by indicating problematic regions for
an operator to investigate.

The advantage of using synthetic and simulated
deformations is that the endpoint error can be used
as the benchmark quality assurance criterion. The
disadvantage is that for these deformed images the
noise in the original image is deformed in the same
way as the signal and (transient) image artifacts will
appear in both images. Therefore, these images are
expected to be more similar than separately acquired
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5720 INTENSITY-BASED QUALITY ASSURANCE

F IGURE 2 Transversal slice of the cube used for evaluation of the spatial correspondence. Shown are the reference image, the true
endpoint error, and the predicted endpoint errors using structural similarity, inverse consistency error, Jacobian determinant, and curl magnitude.
The prostate contour is shown in white. The gamma pass rate percentage for 10%/2mm over the cube is indicated in the title. The data point
with the results closest to the mean over the cross-validation is shown.

independent images. For this reason, and to test against
a lower soft-tissue contrast, we also included 4D CT
images with manually annotated landmarks. Their
disadvantage is that the target registration error is only
locally defined and prone to inter-observer differences.
The intensity-based criteria showed consistently high
performances also for this different contrast with sepa-
rately acquired images. We should note that the results

for the intensity similarity measures may depend on
the presence of artifacts and other inconsistencies. All
experiments in this paper were done on mono-modal
images. Mono-modal image registration is an impor-
tant aspect of real-time/online adaptive radiotherapy
where fast and (semi-)automated quality assurance
is required. Intensity-based quality assurance cri-
teria are not suitable to validate cross-contrast image
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INTENSITY-BASED QUALITY ASSURANCE 5721

registrations. In these cases,criteria based on the exper-
tise of the operator or potentially on neural networks
may provide better options.

5 CONCLUSION

The presented study analyzed different contour-based
and intensity-based quality assurance criteria for
deformable image registration on a range of mono-
modal data sets. Intensity-based criteria outperform
contour-based criteria on almost all evaluations in terms
of classification of unacceptable registrations and pre-
diction of registration errors on both MRI and CT
data. Both normalized mutual information and struc-
tural similarity are operator-independent, fast, robust,
and show the highest specificity and sensitivity to
detect misregistrations.

Between the two, structural similarity has the advan-
tage of providing spatial information or a distribution of
registration errors. Overall, structural similarity presents
itself as a sound choice for fast (semi-)automated
quality assurance to decide on accepting mono-modal
registrations in clinical workflows. It is especially suitable
for workflows under time pressure or aiming to reduce
operator burden.
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