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Epigenetic regulator genes direct lineage switching
in MLL/AF4 leukemia
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•Myeloid relapse can
originate from various
differentiation stages
of MLL/AF4+ ALL.

•Dysregulation of
epigenetic regulators
underpins fundamental
lineage reprogramming.
ept
The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leu-
kemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute
myeloid leukemia, resulting in poor clinical outcomes caused by resistance to chemo-
therapies and immunotherapies. In this study, the myeloid relapses shared oncogene
fusion breakpoints with their matched lymphoid presentations and originated from
various differentiation stages from immature progenitors through to committed B-cell
precursors. Lineage switching is linked to substantial changes in chromatin accessibility
and rewiring of transcriptional programs, including alternative splicing. These findings
indicate that the execution and maintenance of lymphoid lineage differentiation is
impaired. The relapsed myeloid phenotype is recurrently associated with the altered
em
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expression, splicing, or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the
nucleosome remodelling and deacetylation complex. Perturbation of CHD4 alone or in combination with other
mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4+ cell models, indicating that lineage
switching in MLL/AF4 leukemia is driven and maintained by disrupted epigenetic regulation.
Introduction
Translocation of mixed lineage leukemia (MLL) with 1 of >130
alternative partner genes is a recurrent cytogenetic finding in both
acute myeloid leukemia (AML) and acute lymphoblastic leukemia
(ALL) and is generally associated with a poor prognosis.1,2

Among the most common translocations is t(4;11)(q21;q23),
forming the MLL/AF4 (also known as KMT2A/AFF1) fusion gene.
Unique among MLL rearrangements (MLLr), MLL/AF4 is almost
exclusively associated with pro-B cell ALL and is prototypical of
infant ALL, where it carries a very poor prognosis.1 However,
despite this general lymphoid presentation, MLL/AF4 leukemias
have an intriguing characteristic, that of lineage-switched relapses.
Lineage-switched acute leukemias lose their lymphoid-specific
features and gain a myeloid phenotype upon relapse.3-5 Alterna-
tively, MLL/AF4 leukemias may harbor distinct lymphoid and
myeloid populations at the same time and thus are classified as
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mixed-phenotype acute leukemias (MPALs) of the bilineage
subtype.6

Lineage plasticity has been associated with the loss of orig-
inal therapeutic targets.7,8 To understand the molecular basis
of lineage promiscuity and switching, we examined a unique
cohort of MLL/AF4+ lineage-switched acute leukemia pre-
sentation/relapse pairs and MPALs. We demonstrate that
disruption of the epigenetic machinery, including the nucle-
osome remodelling and deacetylation (NuRD) complex, is
associated with the loss of lymphoid restriction. Lineage
switching is then enacted through redistribution of tran-
scription factor binding and chromatin reorganization. These
findings provide novel insight into factors that may prove
critical to the effective implementation of lineage-specific,
epitope-directed therapies, such as chimeric antigen recep-
tor T-cell (CAR T-cell) or bispecific T-cell–engaging antibody
approaches.
ttp://ashpublications.org/blood/article-pdf/140/17/1875/2052142/blood_bld-2021-015036-m
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Methods
Patient samples and data
Patients were diagnosed by local hematology specialists
according to contemporary clinical diagnostic criteria based on
morphology and immunophenotypic analysis. All patient sam-
ples were collected at the point of diagnosis, remission after
treatment, or relapse and were stored with written informed
consent for research in 1 of 6 centers (Newcastle Haematology
Biobank, Newcastle, United Kingdom; University Hospital
Schleswig-Holstein, Kiel, Germany; Dmitry Rogachev National
Medical Research Center of Pediatric Hematology, Oncology
and Immunology, Moscow, Russia; Haematological Malignancy
Diagnostic Service, Leeds, United Kingdom; Princess Maxima
Center for Pediatric Oncology, Utrecht, The Netherlands; and
Cincinnati Children’s Hospital Medical Center, Cincinnati, OH).
Mononuclear cells were isolated from bone marrow or periph-
eral blood by density centrifugation followed by immediate
extraction of DNA or RNA, or cryopreservation in the presence
of 10% v/v dimethyl sulfoxide.

Samples were requested and used in accordance with the
ethics approvals granted to each of the local/institutional ethics
review boards (NRES [National Research Ethics Service] Com-
mittee North East, Newcastle & North Tyneside 1, United
Kingdom, reference 07/H0906/109 + 5; Medical Faculty
Christian-Albrechts University, Kiel, reference A 103/08; Dmitry
Rogachev National Medical Research Center, Moscow, Russia,
references MB2008: 22.01.2008, MB2015: 22.01.2015, and
ALL-REZ-2014: 28.01.2014; Haematological Malignancy
Research Network, Yorkshire, United Kingdom, reference 04/
Q1205/69; Haematological Malignancy Diagnostic Service,
Leeds, United Kingdom, reference 14/WS/0098; Erasmus MC
METC (Medisch Ethische Toetsings Commissie), The
Netherlands, reference MEC-2016-739; and Institutional Review
Board (IRB) of Cincinnati Children’s Hospital, Cincinnati, OH,
reference 2010-0658), and in accordance with the Declaration
of Helsinki. Each patient and sample was allocated an anony-
mized reference, and no identifiable information was shared.

Additional methods are described in the supplemental
Methods, available on the Blood Web site.
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Results
Characterization of MLL/AF4 acute leukemias with
lineage switching
We focused on lineage switches that originally presented as
ALL and relapsed as AML and MPALs presenting with distinct
lymphoid and myeloid populations. Lymphoid and myeloid
phenotypes were defined by morphology and by expression of
either B lymphoid (CD19, CD22, and CD79A) or myeloid
(CD33, CD117/KIT, and CD64/FCGR1A) antigens (Figure 1A;
supplemental Table 1). To exclude de novo and therapy-
associated AMLs, which are unrelated to the original ALL and
do not share the initiating event, the lymphoid and myeloid
presentations and relapses had to display identical MLL/AF4
breakpoints as proof of genetic relationship (Figure 1B; sup-
plemental Figure 1, supplemental Table 1). Using these defi-
nitions, we collected a cohort of 12 cases of MLL/AF4 ALL
comprising 6 infant, 2 pediatric, and 2 adult patients who
relapsed with AML, including 1 infant (LS10) who relapsed after
B-lineage–directed blinatumomab treatment and 2 infant MLL/
AF4 MPALs (supplemental Table 1).
Lineage-switched leukemia is associated with
transcriptional reprogramming
We hypothesized that lineage switching would be linked with
changes in gene expression. Because the changes in tran-
scriptome composition may include altered regulation of both
transcription and mRNA maturation,9 we compared gene
expression and splicing between lymphoid and myeloid pop-
ulations from lineage switching and patients with MPAL. Cluster
analysis of differential gene expression robustly separated both
population types (Figure 2A). We identified 1374 upregulated
(adjusted P < .01; log fold change >2) and 1323 downregulated
genes in the AML lineage switches and the myeloid populations
of patients with MPAL linked to reduced lymphoid and
increased myeloid gene expression (Figure 2B, supplemental
Table 2). Changed gene expression included the loss of
lymphoid genes, such as PAX5, EBF1, CD19, CD20 (MS4A1)
and CD22, diminished gene expression of immunoglobulin
genes, genes involved in the VDJ recombination (RAG1, RAG2,
and DNTT), and gain-of-myeloid genes, including CLEC12A,
PRAM1, and CSF3R and members of the CEBP transcription
factor family (Figure 2C-D; supplemental Figure 2A-B).10-12

Moreover, almost 30% of direct bona fide target genes of
MLL/AF4 including PROM1, encoding the stem cell markers
CD133, IKZF2, and HOXA7 showed lower expression in
myeloid cells despite sharing the same MLL/AF4 isotype (sup-
plemental Figure 3A-D, supplemental Table 2).13-15 These data
show that lineage switching also involves differential MLL/AF4-
driven gene expression.

The analysis of RNA isoform compositions showed that lineage
switching is associated with altered splicing, comprising
changes in intron retention and differential usage of exons and
exon-exon linkages (Figure 3A; supplemental Tables 3 and 4).
Interestingly, 85% of all differentially used exon-exon linkages
were noncanonical and mainly consisted of exon skipping and
complex splicing events (Figure 3A-B; supplemental Table 4).
Pathway analysis revealed an enrichment of alternatively spliced
genes in immune pathways, including antigen processing and
membrane trafficking, suggesting that alternative splicing is
TIRTAKUSUMA et al
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Figure 1. Characterization of MLL/AF4 lineage-switched cases. (A) Morphological change from lymphoblastic leukemia (left) to acute monoblastic/monocytic leukemia
(right) in patient LS01. Bar represents 20 μm. (B) Sanger sequencing of MLL/AF4 and reciprocal AF4/MLL fusions in LS01 presentation ALL (top) and relapsed AML (bottom)
identifies a common breakpoint with identical filler sequences in the ALL and AML samples.
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Figure 2. Transcriptional reprogramming in lineage-switched and MPAL cases. (A) Heat map showing the top 100 differentially expressed genes between ALL and AML
from 6 lineage-switched (LS01, LS03, LS04, LS05, LS06, and LS10) and 2 MPAL cases, ranked by Wald statistics. (B) Enrichment of myeloid growth and differentiation signature
in relapse samples (left) identified by gene set enrichment analyses (GSEA), also pointing to downregulation of genes highly correlating with acute lymphoblastic leukemia
(middle and right). GSEAs were performed based on data derived from 6 lineage-switched samples. FDR, false-discovery rate; NES, normalized enrichment score. Differential
expression of lineage-specific (C) and immunoglobulin recombination machinery genes (D) in lineage-switched and MPAL cases. Error bars show standard error of the mean
for lineage-switched cases and ranges for 2 MPAL cases.
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linked to the change from a lymphoid to a myeloid differenti-
ation state (Figure 3C).

Interestingly, lineage switching also affected total expression
and the composition of alternatively spliced fusion transcript
isoforms for both MLL/AF4 and AF4/MLL. For instance, we
detected in relapse tissue from patient LS01 a fusion variant
1878 27 OCTOBER 2022 | VOLUME 140, NUMBER 17
skipping MLL exon 9 (supplemental Figure 3E). In addition, we
observed changes in transcription and splicing for genes regu-
lating the chromatin landscape. Several epigenetic regulators,
including the polycomb PRC1-like complex component AUTS2
and the SWI/SNF complex component BCL7A were down-
regulated in myeloid compared with lymphoid cells (Figure 2A).
Several other spliceosome and SWI/SNF members were either
TIRTAKUSUMA et al
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Figure 3 (continued) Alternative splicing in lineage-switched and MPAL cases. (A) Pie charts showing the classification of nondifferential (non-DEEj) and differential (DEEj)
exon-exon junctions. Shown are the percentages of splicing events assigned to a particular mode of splicing. A complex splicing event corresponds to several (2 or more)
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AML/myeloid vs ALL/lymphoid cells of cases of lineage switching (LS01, LS03, and LS04) or MPAL. The vertical dashed lines represent twofold differences between the AML
and ALL cells, and the horizontal dashed line shows the FDR-adjusted q-value threshold of .05 (left). Venn diagrams (right) showing distribution of splice variants identified as
significantly changed in AML (or myeloid fraction of patients with MPAL), including DEEjs, differential exon usage (DEU), and retained introns (RI). (C) Enrichment analysis of
affected signaling pathways by the DEEjs and DEU in the lineage-switched acute leukemia (LSAL) AML relapse and myeloid compartment of patients with MPAL. Pathway
enrichment analysis was performed with g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) at the highest significance threshold, with multiple-testing correction (g:SCS algorithm).
(D) Fold log2 change of total transcript levels among genes affected by alternative splicing (left) and of differentially spliced variants in lineage-switched and myeloid
compartments of patients with MPAL (right). (E) Representation of impact of alternative splicing on mRNA composition and open reading frames (ORFs) of select genes.
Column graphs on the right indicate corresponding fold changes of variant expression between AML (or myeloid) and ALL (or lymphoid) populations in 2 tested lineage-
switched cases (LS03 and LS04) and 1 case of MPAL.
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differentially expressed or spliced. Among all NuRD complex
members, only CHD4 demonstrated differential expression,
whereas CHD4, CHD3, and HDAC2 were differentially spliced in
AML relapse cells or the myeloid subpopulations of MPALs
(Figure 3D-E; supplemental Table 4). For instance, CHD4 encod-
ing the ATPase/helicase subunit of the histone-modifying NuRD
complex showed a significantly lower expression in AML relapses
of patients with lineage switching, but was differentially spliced in
patients with MPAL, resulting in premature stops or intron reten-
tion, most likely leading to loss of function isoforms.

Reorganization of chromatin accessibility and
transcription factor binding site occupancy upon
lineage switching
The substantial gene expression changes, including those
affecting epigenetic regulators and lineage-determining tran-
scription factors, prompted us to link transcriptional changes to
altered genome-wide chromatin accessibility. High-resolution
DNase I-hypersensitive site mapping, combined with digital
footprinting analysis using the Wellington algorithm,16 uncov-
ered multiple differentially accessible genes, including the
hematopoietic surface marker genes CD33 and CD19 and
transcription factors (Figure 4A-C; supplemental Figure 4A-B).
These alterations occurred both at locations distal and proximal
to transcription start sites indicating the involvement of
enhancers and promoters (Figure 4D; supplemental Figure 4C).
Digital footprinting is now generally accepted to highlight fac-
tors that are essential for regulating specific cell fates.17-19

These analyses showed that changes in chromatin accessibility
after lineage switching were linked to an altered pattern of
occupancy of transcription factor binding sites (Figure 4E;
supplemental Figure 4D), with a loss of occupancy of consensus
binding sites for lymphoid transcription factors, including EBF
and PAX5, and a corresponding increased occupancy of bind-
ing motifs for myeloid factors including C/EBP family members
(Figure 4E-F). We also observed a redistribution of footprinted
sites for transcription factors controlling both lymphoid and
myeloid maturation, such as RUNX, AP-1, and ETS family
members, to alternative cognate motifs (Figure 4E; supple-
mental Figure 4D).20,21 This finding is exemplified by decreased
accessibility of a region located 1 kb upstream of the CD19
transcription start site with concomitant loss of EBF binding site
occupancy at this element (Figure 4C). In summary, the transi-
tion from lymphoid to myeloid immunophenotype is associated
with genome-wide alterations in chromatin accessibility and
occupancy of transcription factor binding sites.

The mutational landscape of lineage switching
Next, we examined the mutational landscape of lineage-
switched MLL/AF4 leukemias by performing exome sequencing
on the entire cohort. In agreement with previously reported
mutation rates in MLL-rearranged leukemias, presentation ALLs
displayed a relatively quiet mutational landscape, with a median
Figure 4. Chromatin reorganization and differential transcription factor binding un
13 619 sites with a log2-fold reduction and 12 203 sites with a log2-fold increase after linea
those of the ALL sample. (B) A University of California, Santa Cruz (UCSC) Genome Brow
accompanied by altered DNase I hypersensitivity (black tracks) proximal to the transcriptio
in on an ALL-associated DHS with EBF occupation as indicated by high-resolution DHS-s
specific for AML relapse on a genomic scale. Red and green indicate excess of positive a
top to bottom in order of decreasing footprint occupancy score. (E) De novo motif discov
panel D. (F) EBF1 and C/EBP binding motifs demonstrate differential motif density in pr
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of 25 nonsynonymous somatic single nucleotide variants (SNVs)
or insertions/deletions (indels) (supplemental Figure 5A-B; sup-
plemental Table 5).10,22 Most of them were subclonal with <30%
of the reads. The group of AML relapses showed a mean of 92
SNVs and indels. However, this increase was related to the more
heterogeneous composition of the relapse group: 2 cases
(LS07AML and LS08AML) carried mutated DNA polymerase
genes resulting in increased mutational burden. We observed
this phenotype in only 2 of 10 relapses, arguing against this
phenomenon being a general requirement for the lineage
switch.

In general, we found only a limited overlap between muta-
tions in ALL presentation and AML relapses (Figure 5A-B;
supplemental Table 5). Although ALL mutations were not
associated with genes belonging to specific functional path-
ways, AML-specific mutations were associated with the
regulation of transcription and chromatin binding and modi-
fication, further emphasizing the notion of transcriptional
reprogramming during lineage switching. Most of the sub-
clonal mutations identified in presentation samples were
subsequently lost at relapse, indicating alternative subclones
as the origin of relapse. This included KRAS and NRAS
mutations, which have been shown to confer a worse clinical
outcome to infants with MLL-rearranged ALL (Figure 5C).23

Also the MPALs harbored many mutations that were exclu-
sively found in either the lymphoid or myeloid subpopulation
indicating the presence of subclones with a lymphoid and
myeloid bias (Figure 5A-B). These combined data show that
lymphoid and myeloid leukemia phenotypes are associated
with distinctive mutation signatures both in lineage switches
and in MPALs.
Perturbation of CHD4 and PHF3 disrupts lymphoid
development in MLL/AF4-expressing cells
To identify factors contributing to the lineage plasticity in MLL/
AF4+ leukemic cells, we compared all genes demonstrating dif-
ferential expression, alternative splicing or mutation in the AML
relapse (Figure 6A). This comparison highlighted 8 genes com-
mon to all patients with lineage-switched relapse. One common
gene was CHD4, which codes for the ATPase/helicase subunit of
the NuRD, a multiprotein transcriptional corepressor complex
with both histone deacetylase and adenosine triphosphate
(ATP)–dependent chromatin remodelling activity. NuRD is critical
for determination of lymphoid lineage by interacting with the
transcription factor IKZF1.24-26 CHD4 shows significantly lower
expression in lineage-switched AML when compared with ALL
presentation and is differentially spliced in the MPAL cases
(Figures 3E and 6B). Finally, although CHD4 mutations have
been reported in <1.5% MLL-germline childhood cases of
ALL,27 as with the R1068H mutation found in the relapse of
patient LS01, these variants commonly affect highly conserved
derpins lineage switching. (A) DNase I hypersensitive site sequencing identified
ge switching to AML. Relative peak heights in the AML sample were plotted against
ser screenshot displaying differential expression at lineage-specific loci (red tracks)
nal start site (TSS) of CD33. (C) UCSC Genome Browser screenshot for CD19 zoomed
eq and Wellington analysis. FP, footprint. (D) Heat maps showing distal DHS regions
nd negative strand cuts, respectively, per nucleotide position. Sites are sorted from
ery in distal DHSs unique to AML relapse as compared with ALL relapse, as shown in
esentation ALL and relapsed AML. DHS, DNase-hypersensitive site.
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residues in the helicase/ATPase domains and are thought to
disrupt its activity (Figure 6C; supplemental Figure 5C).28-30 In
contrast, recurrent mutations in other NuRD complex members
have not been described in ALL, and no other NuRD complex
member was clonally mutated in our cohort (supplemental
Table 5).

We therefore hypothesized that CHD4 was vital in maintaining
lineage fidelity in MLL/AF4-positive ALL. To test this idea, we
performed knockdown experiments in the MLL/AF4-expressing
and CD33− ALL cell line SEM, where we included ACAP1,
DHX36, NCOA2, PHF3, and PPP1R7 as 5 additional genes with
potentially deleterious mutations in patient LS01 (supplemental
Figure 6A). Reverse engineering of a mutual gene network from
216 ALL and AML gene expression data sets identified CHD4
and PHF3, a cofactor in RNA Pol II–mediated transcription,31 as
the most relevant network components of the mutated genes
investigated (PHF3: 21 edges, P = .010; CHD4: 12 edges, P =
.0005; supplemental Figure 6B, supplemental Table 6).32,33

Only knockdown of CHD4 and of PHF3 induced robust expres-
sion of the myeloid surface marker CD33 with a combined
knockdown resulting in an even stronger CD33 expression
(supplemental Figures 6A,C). Moreover, knockdown of either
CHD4 or PHF3 also increased CD33 levels in RS4;11, another
MLL/AF4 ALL cell line, but not in the 2 MLL-germline ALL cell
lines 697 and REH (supplemental Figure 6D), indicating that loss
of CHD4 or PHF3 may only affect CD33 in the context of MLL/
AF4. Finally, the combined knockdown of CHD4 and PHF3 in
PDX from diagnostic ALL cells significantly increased the fraction
of CD33+ cells from 8% to more than 25% (supplemental
Figure 6E). These combined data suggest that CHD4 and PHF3
restrict MLL/AF4+ leukemic cells to a lymphoid phenotype.

To examine the role of additional mutations of chromatin
modifiers found in our cohort, we investigated the impact of the
PRC1 members PCGF6 and AUTS2, genes with known roles in
B-lymphoid malignancy34 and mutated in LS07RAML and
LS08RAML (Figure 5A). Although knockdown of AUTS2 did not
change the CD33 levels, depletion of PCGF6 increased CD33
surface expression in SEM cells, further supporting the notion of
epigenetic factors in regulating lineage determination in ALL
(supplemental Figure 6F).

To establish a direct link between CHD4/PHF3 binding to the
upregulation of myeloid genes, we investigated the impact of
CHD4 or PHF3 perturbation on gene expression and chromatin
organization by performing RNA-sequencing (RNA-seq), ATAC-
seq, and chromatin immunoprecipitation–seq for CHD4 in SEM
cells and the MLL germline cell line 697 (Figure 6D; supple-
mental Figure 7A-B). In this analysis, we ranked the ATAC-seq
and chromatin immunoprecipitation-seq signals according to
their fold changes alongside the control patterns, which
Figure 5. Molecular characterization of lineage-switchedMLL/AF4 leukemias. (A) Wh
cohort and genes clonally mutated in relapsed cases belonging to the same function pr
regulators). Data are presented according to the disease time point/cell lineage and age o
minor SNVs/indels present in <30% reads. (B) Comparison of total mutation load (SNVs an
or lymphoid and myeloid fraction in MPALs. Listed are common SNVs predicted (by C
carrying cells during the lineage-switching process. Clonal vs subclonal mutations were
of 30%.
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demonstrated that ATAC-seq analysis of control-treated SEM
cells show a very similar pattern to CHD4 binding (Figure 6D),
confirming that this factor is a global regulator of chromatin
accessibility. Knockdown of both factors caused a shift in the
overall chromatin accessibility pattern, as shown by clustering
analysis (supplemental Figure 7A-B, bottom) suggesting that
the postknockdown cells shifted their cistrome and thus their
identity, whereby CHD4 knockdown resulted in a gain of open
chromatin sites (Figure 6D, top). The knockdown of PHF3
caused both a loss and a gain of open chromatin sites
(Figure 6D, bottom). Gene set enrichment analysis demon-
strated a strong correlation of these gene expression changes in
SEM cells after knockdown of CHD4 and PHF3 and lineage-
switching cases (supplemental Figure 7C-D). However, these
changes were particular to MLL/AF4 cells, because in MLL
germline 697 cells, CHD4 knockdown-induced changes in
chromatin accessibility were not linked to altered gene
expression, and knockdown of PHF3 did not affect chromatin
accessibility (Figure 6D, right).

Knockdown of CHD4 or PHF3 in SEM cells changed chromatin
structure and reduced expression of CD79B, RAG2, VPREB1,
and CD22, whereas concomitantly increasing transcription of
CEBPA, LYZ, SIRPA, and CD33 (Figure 6E; supplemental
Figure 8A-B). However, 697 cells showed neither a change in
immunophenotype nor altered expression of these genes,
suggesting that CHD4- and PHF3-mediated changes in gene
expression correlate with the presence of an MLL fusion gene.

Given that the relapse-initiating cell may arise within an
uncommitted, MLL/AF4-translocated HSPC population, we
assessed the impact of loss of CHD4 and PHF3 in a human cord
blood model that harbors a chimeric MLL/Af4 fusion.35 Knock-
down of either CHD4 or PHF3 under lymphoid culture conditions
significantly impaired lymphoid differentiation potential, whereas
knockdown of both CHD4 and PHF3 disrupted differentiation
entirely (Figure 6F-G; supplemental Table 7). Transcriptomic
analysis of the sorted populations revealed that CD33+ cells
exhibited a metagene expression pattern similar to MLLr AML,
whereas the pattern describing CD19+ cells was most similar to
MLLr ALL, confirming that changes in surface marker expression
were associated with the corresponding changes in the tran-
scriptomic profiles (supplemental Figure 6G).

Taken together, our data show the important role of CHD4 and
PHF3 in the epigenetic control of lymphoid lineage mainte-
nance in MLL/AF4+ leukemia. In particular, dysregulation of
CHD4/NuRD was mediated by mutation, downregulation of
expression, and differential splicing across the entire cohort.
These data support a role for these factors in the lineage-
determining capacity of MLL/AF4, whereas their loss
undermines execution and maintenance of the lymphoid line-
age fate.
ole-exome–sequencing data showing genes recurrently mutated within the analyzed
otein complexes (eg, DNA polymerases, epigenetic complexes, and transcriptional
f the patient. Depicted are major SNVs/indels that were found in >30% of reads and
d indels) identified in patients at presentation (ALL) and relapse (AML) disease stage
ondel scoring) to have deleterious effects. (C) Evolution of KRAS/NRAS mutation–
defined based on variant allele frequencies (VAFs) of identified hits at setup cutoff
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Clonal evolution of AML relapse
The observed cooperation of CHD4 and PHF3 in the control of
lineage determination predicted that both mutations co-occur in
the same cell. Furthermore, because both mutations may be
necessary for the lineage switch in patient LS01, we hypothesized
that they should bedetectable in themost immature populations of
this AML sample for which we had viable cellular material. We
therefore investigated the order of acquisition of these secondary
mutations within the structure of the normal hematopoietic hierar-
chy. Dissecting the relapsed AML sample using cell sorting, we
isolated HSC-, MPP-, LMPP- and GMP-like, as well as more differ-
entiated populations, followed by targeted deep sequencing
that examined MLL/AF4 and 12 SNVs, including mutated CHD4
and PHF3, that were unique to the relapse sample. The
fusion oncogene was found in the multipotential progenitor
population (MPP, CD34+CD38−CD45RA−CD90−) and in the
lymphoid-primed multipotent progenitorlike population (LMPP;
CD34+CD38−CD45RA+), with lymphoid, myeloid, but not
megakaryocyte-erythroid potential. (supplemental Figure 9A-B;
supplemental Table 8).When examining the presence of the 12
SNVs across the different populations, only PHF3 and CHD4
mutations were present within the purified MPP-like fraction
with variant allelic frequency ≥0.3 (Figure 7A, supplemental
Table 8). In contrast, LMPP- and GMP-like populations con-
tained all 12 SNVs at high variant allelic frequency. These
findings place the CHD4 and PHF3 mutations among the
earliest genetic events in this patient during the evolution of
lineage-switched relapse. Moreover, they suggest, at least for
this patient, an MPP-like or even more immature cell popu-
lation as the origin of relapse.

Cellular origin of lineage-switched relapse
To examine whether lineage-switched relapse regularly arises
from lymphoid primed or even earlier leukemic populations, we
examined whether relapsed AML cells contained and even
shared B-cell receptor (BCR) rearrangements with the preceding
ALL. To interrogate the developmental stage at which the
myeloid relapse arose, we analyzed BCR rearrangements with
RNA-seq and whole-exome-seq–derived data.36 All cases of ALL
showed classic oligoclonal rearrangements of BCR loci, sup-
porting the lymphoid lineage decision (supplemental Figure 9C,
supplemental Table 9). We observed 3 distinct patterns for AML
relapses (Figure 7B). Pattern 1 comprises AML cells with no BCR
rearrangements, implying the presence of a relapse-initiating
cell residing in a primitive precursor population before early
Figure 6. Epigenetic modulatory genes influence lineage-specific expression profiles
[VAF] >30%), differentially expressed genes and alternatively spliced, differentially used ex
of MPALs, present in the analyzed cohort. (B) Fold change in expression of NuRD comp
relapse (left) and in MPAL cases (right). (C) CHD4 structure; the R1068H mutation (red)
*Number of positions that have a single, fully conserved residue; colon, conservation betw
period, conservation between groups of weakly similar properties, scoring ≤0.5 in the G
sibility before and after knockdown of CHD4 and PHF3 depicted in red in MLLr SEM ce
height was calculated relative to the control (shNTC) and ATAC peaks from knockdown
density plots from SEM cells (depicted in blue) were plotted along with the correspondin
changing ATAC peaks (log2FC analyzed vs shNTC) identified in each cellular variant are
cells). (E) UCSC genome browser screenshots representing differential chromatin accessib
lymphoid RAG2 loci after CHD4 and PHF3 knockdown in MLLr SEM cells and non-MLLr
(REH cells),MLLr B-ALL (SEM cells) andMLLr AML cells (MV-4;11) are shown as a reference
gene. (F) Expression of the lineage-specific cell surface markers CD19 (lymphoid) and C
cells in lymphoid-permissive conditions. Knockdown of PHF3, CHD4, or a combination dis
(G) PHF3 knockdown is capable of influencing the surface marker expression after a lon
longer in vitro culture (data not shown). ChIP, chromatin immunoprecipitation.
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DJ recombination. This pattern was seen with patient LS01 and,
together with the presence of CHD4 and PHF3 mutations,
strongly supports an MPP-like population as a putative origin of
relapse (Figure 7A). As a second pattern, we found unrelated
BCR rearrangements, which may indicate either aberrant rear-
rangement in a myeloid cell or relapse initiating from B-
lymphoid cells committed to undergo rearrangement, or a
transdifferentiated minor ALL clone with an alternative rear-
rangement (Figure 7C; cases LS03, LS06, LS07, LS08, MPAL1,
andMPAL2). Interestingly, this pattern is found in a relapse after
blinatumomab treatment (LS10) suggesting that immune
escape may occur by direct transdifferentiation (Figure 7C).
Pattern 3 shows shared BCR rearrangements between diag-
nostic and relapse material, which suggests a trans-
differentiated myeloid relapse from the major ALL clone (cases
LS05 and LS09). These data demonstrate that AML relapses can
originate from different stages of lymphoid leukemogenesis.
Discussion
This study describes impaired epigenetic control as being
central to the phenomenon of lymphoid-myeloid lineage
switching in MLL/AF4 leukemia and demonstrates a heteroge-
neous cellular origin of relapse. The comparison of BCR rear-
rangements between matched ALL presentation and AML
relapse cases demonstrates that whereas relapse can evolve
directly from pro-B–like ALL blast populations, in keeping with
the general self-renewal capacity of ALL cells,37 it can alterna-
tively originate within the hematopoietic stem and progenitor
cell (HSPC) compartment. Indeed, the identification of MLL/
AF4-expressing MPP-like cells shows that lineage-switched
relapse can originate from very immature hematopoietic pro-
genitor populations. This finding agrees with recently published
data pointing at MPP cells as the origin of MLL/AF4 leukemia38

and is in line with transcriptomic similarities between t(4;11) ALL
and Lin-CD34+CD38−CD19− fetal liver cells, again suggesting
HSPCs as the cells of origin.23 Furthermore, the identification of
MLL/AF4 within HSPC populations is consistent with the recent
identification of an early lymphoid progenitor, ELP-like signa-
ture specifically in MLL-rearranged ALL.39 Nevertheless, and in
agreement with previously published findings for MPALs,6 the
data derived from the present cohort strongly support a non-
lineage committed progenitor compartment as a source for
lineage-switched relapse. However, we cannot exclude addi-
tional cells of origin of MLL/AF4 ALL.
. (A) Intersection between identified hits of clonal mutations (variant allelic frequency
on-exon junctions (adj. P < .01) in lineage-switched myeloid relapse/myeloid fraction
lex members (CHD4, MTA1, RBBP4, and MBD3) and PHF3, after lineage-switched
is located in the critical helicase domain of CHD4 at a highly conserved residue.
een groups of strongly similar properties, scoring >.5 in the Gonnet PAM 250 matrix;
onnet PAM 250 matrix. (D) Identification of regions of differential chromatin acces-
lls (left) and non-MLLr 697 cells (right). For all reads, the fold change in ATAC-peak
cells were plotted according to their fold change vs the control signals. CHD4 ChIP
g DNA regions of the shNTC control. Differentially expressed genes associated with
represented by heat maps included at the right side of each gene (for SEM and 697
ility (ATAC-seq) and gene expression level (RNA-seq) in the myeloid CEBPA and the
697 cells. ChIP-seq traces representing normal CHD4 occupancy in non-MLLr B-ALL
at the bottom of each screenshot. TSS, transcriptional start site is depicted for each

D33 (myeloid) after culture of MLL/Af4-transformed hCD34+ cord blood progenitor
rupts the dominant lymphoid differentiation pattern in nontargeting control (shNTC).
ger incubation period (33 days). CHD4 knockdown impaired cellular survival upon
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Figure 7. Hematopoietic stem/progenitor populations carry MLL/AF4. (A) Summary of MLL/AF4 positivity and 12 SNVs exclusive for the AML relapse, within different
populations analyzed in patient LS01RAML. Circles with solid colors indicate VAF >30%, light dashed circle indicates VAF 5% to 30%. Remaining genes (open circle) represent
the 10 other SNVs (of 12 SNVs) which showed the same pattern in the frequency of mutation acquisition (described in supplemental Table 8). (B) Summary of the proposed
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Irrespective of the cellular origin of the relapse, lineage switching
is associated with a major rewiring of gene regulatory networks.
At the level of transcriptional control, the decision for lymphoid
development relies, not only on the activation of a lymphoid
transcriptional program, but also on the silencing of a default
myeloid program.40 That decision is enacted by lymphoid
master regulators including EBF1, PAX5, and IKAROS,
LINEAGE SWITCHING IN MLL/AF4 LEUKEMIAS
which represent genes commonly mutated in precursor B-ALL
and do not just upregulate B-cell specific genes, but also repress
the myeloid program.40-44 Pax5−/− pro-B cells, which lack
lymphoid potential, although capable of erythromyeloid differ-
entiation in vitro, maintain expression of early B-cell transcription
factors EBF1 and E2A (TCF3).40 In contrast, we showed that
lineage switched MLL/AF4 pro-B leukemic relapse is associated
27 OCTOBER 2022 | VOLUME 140, NUMBER 17 1887
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with a significant reduction in expression of these earliest B
lymphoid transcription factors, which links to changes in theMLL/
AF4 transcriptional program, ultimately establishing a myeloid
differentiation fate. Unfortunately, we were not able to directly
prove changes in transcription factor binding and associated
changes in histone modifications because of the lack of available
primary patient samples. However, high-resolution DNase-
hypersensitive site–seq clearly demonstrated changes in chro-
matin accessibility and loss of occupation of the corresponding
transcription factor binding sites.

The opposite scenario is observed when myeloid transcription
factors are expressed in B-lymphoid cells.45 Overexpression of C/
EBPα efficiently reprograms such cells into macrophages by
suppressing lymphoid genes. CEBPA is strongly upregulated
after CHD4 knockdown (Figure 6E) and is likely to be a driving
force behind lineage switching. Taken together, these published
and newly presented data confirm that (1) the balance between
lymphoid and myeloid transcription factors is instructive for
lineage choice, and (2) the downregulation of the myeloid pro-
gram is essential for the maintenance of lymphoid fate.

How can the mutation of global chromatin regulators cause a
switch in cell fate? Similar to the Pax5 knockout, loss of IKAROS
DNA-binding activity prevents lymphoid differentiation.26

NuRD cooperates directly with IKAROS to repress hematopoi-
etic stem cell self-renewal and myeloid differentiation, permit-
ting early lymphoid development.26,46,47 Lineage switching was
associated with heterozygous mutation; reduced expression; or,
in the case of 2 MPALs, alternative splicing of CHD4 and other
NuRD components. These gene dosage effects are consistent
with reports showing that complete loss of CHD4 impairs
normal and leukemic proliferation48,49 and myeloid and
lymphoid differentiation of HSPCs and causes exhaustion of
HSC pools,46 indicating that basal CHD4 expression is essential
for maintaining AML. Moreover, a partial inhibition of CHD4
supported induction of pluripotency in iPSCs, whereas a com-
plete deletion eliminated cell proliferation, demonstrating that
lowering CHD4 expression may facilitate lineage promiscuitiy.50

Recent studies have identified core NuRD and PRC1 complex
members as being direct targets of MLL/AF4 binding.51,52

Moreover, NuRD components including CHD4 were shown to
be part of anMLL supercomplex.53We therefore hypothesize that
epigenetic regulator genes are recruited by lineage-specific fac-
tors during MLL/AF4 leukemogenesis and mediate fundamental
lineage-specific decision-making processes, in this case, the
repression of the myeloid lineage program. Multiple routes to
their dysregulation may result in escape from this lineage restric-
tion and may be enacted at different stages of hematopoiesis.
However, importantly and in keepingwith a previousmurine study
of lineage conversion after CAR T-cell therapy, we did not identify
evidence of relapse from a pre-existent myeloid clone.54

Of substantial clinical importance, lineage switching results in the
loss of B-cell surface markers (eg, CD19), providing an alternative
mechanism for relapse after CAR T-cell or blinatumomab ther-
apy,55,56 in addition to mutations, alternative splicing, and T-cell
trogocytosis.57-59 Whereas these therapies target lineage-
specific surface markers, lineage-switched (pre) leukemic pro-
genitor populations escape epitope recognition and provide a
potential clonal source for the relapse.60 As recognition of
1888 27 OCTOBER 2022 | VOLUME 140, NUMBER 17
lineage switching after CD19 CAR T-cell therapy grows, 2 recent
studies have highlighted the particular vulnerability of patients
with MLLr ALL.54,61,62 Given the increasing use of advanced
immunological therapies, a detailed understanding of the
molecular processes underlying lineage determination and
switching will be critical for developing new strategies to avoid
this route to clinical relapse. In this report, we highlight an
important role of epigenetic regulatory complexes in the context
of MLL/AF4 leukemia.
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