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Abstract: Correct Descemet Membrane Endothelial Keratoplasty (DMEK) graft orientation
is imperative for success of DMEK surgery, but intraoperative evaluation can be challenging.
We present a method for automatic evaluation of the graft orientation in intraoperative optical
coherence tomography (iOCT), exploiting the natural rolling behavior of the graft. The method
encompasses a deep learning model for graft segmentation, post-processing to obtain a smooth
line representation, and curvature calculations to determine graft orientation. For an independent
test set of 100 iOCT-frames, the automatic method correctly identified graft orientation in 78
frames and obtained an area under the receiver operating characteristic curve (AUC) of 0.84.
When we replaced the automatic segmentation with the manual masks, the AUC increased to
0.92, corresponding to an accuracy of 86%. In comparison, two corneal specialists correctly
identified graft orientation in 90% and 91% of the iOCT-frames.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Descemet membrane endothelial keratoplasty (DMEK) is the preferred posterior lamellar
keratoplasty procedure for treating cases of symptomatic irreversible corneal endothelial cell
dysfunction [1,2]. Posterior lamellar surgeries constitute the majority of grafting procedures
in the developed world [3]. The thin (∼30µm) and vulnerable DMEK graft – consisting of
the Descemet’s membrane and endothelium – is inserted as a roll and unfolded in the anterior
chamber of the eye before fixation on the posterior surface of the recipient cornea [4]. A correct
orientation of the graft – with the endothelium facing away from the cornea – is imperative. An
inadvertently incorrectly positioned graft (i.e., upside-down) will result in severe corneal edema,
damage to the graft’s endothelial cell layer, and the subsequent need for repeated surgery [5,6].

The assessment of the graft’s orientation can be challenging and several methods have been
described to aid the surgeon in determining the orientation. Currently, the Moutsouris sign,
ink-stamps, and circular cuts are used to determine intraocular graft orientation [4,7–9]. However,
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poor visualization of the anterior chamber and graft hinders a proper assessment [10–12]. In
addition, the presence of the Moutsouris sign is not always self-evident and both stamps and
cuts damage the graft resulting in endothelial cell loss. More recently, intraoperative optical
coherence tomography (iOCT) has been used to determine graft orientation, as the iOCT signal
is not perturbed by corneal edema [10–14]. Residual stromal fibers in the Descemet’s membrane
of the DMEK graft result in a distinctive inward curve of the graft’s ends indicative of a correct
orientation, which can be visualized and assessed using iOCT (Fig. 1.) [13–15]. This natural
curling behavior of DMEK grafts can be well appreciated on the iOCT image, thereby preventing
the need to use manipulation, cutting, or marking to determine the graft orientation, thus
preventing endothelial cell loss.

Fig. 1. Two cross-sectional intraoperative OCT scans of the cornea. The natural rolling
motion of the graft in Descemet membrane endothelial keratoplasty (DMEK) can be used to
determine the graft’s orientation. The top image depicts a correctly oriented DMEK graft,
indicated by the distinctive upward curve towards the recipient’s cornea. The bottom image
depicts an incorrectly oriented graft (i.e., upside-down), indicated by the curling motion
away from the recipient’s cornea.

Several studies have reported on the use of iOCT during DMEK surgery for determining the
orientation of the graft. In all studies the graft orientation could be correctly determined based
on the inward rolling of the graft edges visible on the cross-sectional iOCT image [10,12,14,16].
Importantly, the surgeon was able to assess the graft orientation in cases where assessment of
the Moutsouris sign or S-stamp was challenging or not possible [10–12]. However, manual
assessment of graft orientation on iOCT images can be time consuming and prone to interpretation
errors. In particular, when OCT image quality is suboptimal or the graft edges display little
inward rolling. We believe an automated tool will aid the surgeon in fast and accurate evaluation
of the orientation, thereby improving surgical workflow and reducing the risk of errors.

Several studies have reported on applications of (automated) image analysis of iOCT images
showing promising potential for improving clinical decision making and clinical outcomes
[17–23]. These studies used different methodologies for segmenting the area of interest from the
iOCT image. For example, Weiss et al. used geometric modeling of iOCT images to track the
orientation and location of a surgical needle [20]. Using a similar method, Xu et al. developed
an automated algorithm to segment the fluid interface gap in Descemet stripping endothelial
keratoplasty achieving a high segmentation accuracy [18,19]. In contrast, Roodaki et al. used
deep learning to segment different anatomical structures in the anterior segment of the eye in
iOCT images, to automatically position the OCT scan area on an anatomy of interest using
voice control [21,22]. Furthermore, Keller et al. demonstrated the use of iOCT-guided robotic
ophthalmic surgery using volumetric OCT scans and reinforcement learning [23]. To the best of
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our knowledge no automatic image analysis tool has been developed for analysis of DMEK graft
orientation.

Here, we present an automated image analysis method for evaluation of the DMEK graft
orientation using iOCT. The method includes a deep learning-based segmentation model to
extract the DMEK graft from the iOCT scan. Then the degree of inward rolling by the graft is
assessed and related to graft orientation. Our contributions include the development of a method
for in-vivo DMEK graft segmentation, a pipeline of post-processing steps to obtain the graft’s
curvature, and a method to relate graft curvature to graft orientation.

2. Methods

2.1. Data & preprocessing

All OCT-scans in this study were acquired during DMEK surgery at the ophthalmology department
of the University Medical Centre Utrecht between May 2016 and October 2020 using the “No-
Touch” technique for DMEK as described by Dapena et al. [4] DMEK grafts were cultured
and provided pre-cut by the Euro Cornea Bank (Beverwijk, the Netherlands) and Amnitrans
(Rotterdam, the Netherlands). During surgery, iOCT-scans of the anterior segment were made
with a commercially available spectral domain microscope integrated OCT system (Zeiss Lumera
700 RESCAN, Carl Zeiss Meditec, Jena, Germany), using the two-line cross-sectional setting.
The iOCT system has a wavelength of 850 nm and an axial resolution of 5.5 µm. The system
acquires 25 two-line cross-sectional scans per second. This study was performed in accordance
with the Declaration of Helsinki and Dutch law regarding research involving human subjects.
Ethical approval for this study was waived by the Ethics Review Board of University Medical
Center Utrecht (METC no. 18-370) iOCT-scans of the DMEK procedures are embedded in the
surgical video feed. The video feed was qualitatively reviewed for scan quality and visibility of
the graft during determination of graft orientation (i.e., before adhering the graft). Scans were
excluded if the graft was not visible at all or not unfolded. Included iOCT-scans were manually
extracted from the video feed using the FFmpeg tool (version 3, 2016, FFmpeg Developers).
Each cropped frame contained a single cross-sectional iOCT-scan (iOCT-frame). The ground
truth of the graft orientation, either correctly oriented or upside-down, in each iOCT-frame was
set by an experienced grader (M.B.M.) who had access to the preceding and follow-up frames and
postoperative clinical information. The orientation of each graft was subsequently graded by two
corneal surgeons (experts’ opinion; R.W. and A.O.) based on a single iOCT-frame and blinded
for the outcome (i.e., without access to the preceding and follow-up frames or postoperative
clinical information).

A total of 335 iOCT-frames from 89 DMEK surgeries were obtained; 127 iOCT-frames
measuring 550× 275 (width× height) pixels acquired before 1-1-2019 and 208 iOCT-frames
measuring 610× 275 pixels acquired from 1-1-2019 onwards. The more recently acquired scans
were of better image quality due to an improved scan protocol and we selected 100 recent iOCT-
frames from 21 patients as a test set for final evaluation of our models. All other iOCT-frames
(n= 235) were used for development and optimization of the image analysis methods and will be
referred to as the development set. This development set was again divided into a training set
(n= 202) and a validation set (n= 33) to determine the optimal model. The data split was done
on a patient level to ensure no overlap exists between the train, validation, and test sets. The graft
locations were manually annotated in the iOCT frames with marking points (image coordinates)
along the graft and converting the resulting contour to a binary mask of an area containing the
graft. Zero-padding was used to ensure all iOCT-frames were of width 610 for training the AI
segmentation model. As a final preprocessing step, all frames were resized to 576× 256 pixels
for compatibility with the U-Net architecture.

Our image analysis tool consists of three steps (Fig. 2.). First, the area containing the DMEK
graft was segmented from the iOCT-frame using a deep learning-based segmentation model. In
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the subsequent post-processing step, the resulting mask was converted into a one-pixel thick line
representation of the graft. Artifacts and gaps in the line were removed and the graft’s endings
located. Finally, we build upon the work by Steven et al. to assess the curling behavior of the
graft [13] and we relate curvature of the line segment to graft orientation. The predicted graft
orientation was then compared to the ground truth and classification by the corneal surgeons.

Fig. 2. A schematic representation of the pipeline of the intraoperative OCT DMEK graft
orientation model. Shown in section A are the image acquisition process and the automatic
segmentation model. The predicted segmentation is the mean of an ensemble of 12 deep
learning models. Section B shows the key post-processing steps to obtain a one-pixel line
representing the graft. In section C the left top image is a schematic representation of the
signed curvature. The top right image shows the polygons fitted to the line representing
the graft and the defined curvature parameters. The bottom images of section C show the
decision tree for selecting the curvature parameter and determining the orientation.

2.2. Segmentation

For segmentation of the DMEK graft from the iOCT frame, we used a deep learning approach
[24]. Our model consists of an ensemble of 2D U-Nets [25]. The U-Net architecture incorporates
a large contextual region and has resulted in state-of-the-art performance for many biomedical
image segmentation tasks [24,25]. Training was done using iOCT-frames and the corresponding
manually annotated masks of the trainset (n= 202). Data-augmentation was used to expand
the variability in appearance of the training data set. Augmentations included random affine
transformations that were applied to the iOCT frames and corresponding mask annotations:
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translation (< 10 pixels), rotation (< 3°), scaling (< 10%) and vertical reflection. In addition, we
applied intensity shift (< 10/256), contrast shift (< 0.1) and addition of white noise (< 10/256) to
the iOCT frames. Experiments with different learning rates and loss functions indicated that
different models lead to different types of segmentation errors for the validation set (n= 33). We
therefore constructed an ensemble of 12 U-Nets: Five models were trained using Dice loss and
initial learning rates of 0.0001, 0.0002, 0.0003, 0.004, and 0.0005. Another seven models were
trained based on a weighted binary cross-entropy (WBCE) loss, with a weight determining the
relative penalty for misclassified foreground pixels (= DMEK graft) in comparison to background
pixels. Beta values of 0.5, 1, 2, 4, 8, 12, and 16 were used, and the WBCE models were trained
with an initial learning rate of 0.0003. All models were optimized with Adam for 3500 iterations
where the initial learning rate was multiplied by 0.3 every 1400 iterations [26]. Each U-Net in
the ensemble provides a segmentation prediction and the final segmentation was obtained by
taking the mean across the 12 segmentation maps (Fig. 2(A)).

2.3. Post-processing

To ensure the graft is represented as a single smooth line, a post-processing algorithm was
developed (Fig. 2(B)) consisting of the following steps: (1) Median filtering (filter size= 2× 2)
to reduce noise; (2) Binarization to assign pixels to either background or graft class; (3)
Skeletonization to obtain the topological skeleton (one-pixel thick) of the segmented areas [27];
(4) Removal of small islands (<100 pixels) to get rid of small areas falsely identified as graft; (5)
Morphological pruning to remove side-branches from the remaining skeletonized line segments.
We implemented the pruning by finding the longest pathway for each segment and removing any
pixels not belonging to these paths. The longest pathway was determined by determining the
largest number of pixels needed to travel along the skeleton from any branch end to any other
branch end; (6) Closing of gaps between endings of line segments with a Euclidian distance less
than 100 pixels, by in painting with a one-pixel thick straight line. For the post-processing steps,
all design choices and parameter selections were based empirically on results for the validation
set.

Next, the largest line segment was identified and the coordinates of every 15th pixel along the
line were used to compute a parametric cubic smoothing spline curve. The parametrization was
then used to resample 100 points along a smooth line representing the graft.

2.4. Graft orientation

To determine the orientation of the graft, we first assessed the rolling behavior of the graft. The
rolling behavior can be measured as the signed curvature κ, similar to the previously described
method by Steven et al. [13].

A Python implementation of the Matlab LineCurvature2D package [28] was used to calculate
the local curvature at each of the 100 graft points obtained with the post-processing step (Fig. 2(C)).
Summing all local curvatures for the length of the graft (L), the total curvature (κtotal) can be
calculated, taking into account the distance arc length steps (ds):

κtotal = ds
L∑︂

i=1
κi

We are however mostly interested in the graft curvature at the endings (κend), since this is typically
used by our corneal specialists to determine graft orientation. The graft ending is here defined as
the first and last 20% of the graft points:

κend = ds
20∑︂
i=1
κi + ds

100∑︂
i=81
κi
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The curvature of a graft ending was only calculated if it was visible in the iOCT-frame. A
graft end is classified as invisible (out of iOCT-frame bounds) when the first or last point of
the calculated curve is within 10 pixels of the original iOCT-frame boundary. Prediction of the
graft’s orientation is primarily based on the curvature of the graft’s endings κend. Alternatively,
the overall curvature κtotal is used to determine the orientation only when: (1) both the graft’s
endings are not visible in the iOCT-frame or (2) the graft’s endings show no curvature. To
determine the orientation of the graft, the curvature of the graft (κparameter) was compared with a
threshold value (κthreshold). A graft with a curvature smaller than this threshold was considered
incorrectly oriented.

2.5. Evaluation and statistical analysis

Performance of the automatic DMEK orientation model was evaluated for the test set iOCT
frames (n= 100). The predicted orientation was compared to the ground truth orientation and a
receiver operating characteristic (ROC) curve was determined by varying the κthreshold threshold.
Sensitivity was defined as the accurate prediction of correctly oriented grafts while specificity
represents true prediction of incorrectly oriented grafts (i.e., upside-down). For comparison
of the automatic method with the corneal specialists, an operating point was chosen by setting
a single value for κthreshold, based on an optimal F1-score. The set κthreshold was used for all
prediction methods. All statistical analysis were performed using R statistical software version
4.0.3 (CRAN, Vienna, Austria). The ROC plots were produced using the ROCR package (version
1.0-11).

Quality of the segmentations was evaluated using the Dice score. Additionally, we evaluated a
pipeline that uses the manual annotated masks instead of deep learning-based segmentations.
The post-processing of these segmentations was similar to the end-to-end pipeline, although
steps (4) removal of pixel islands and (6) closing of gaps were skipped. This ‘semi-automatic
method’ was evaluated on the test set as well as the recently acquired frames of the development
set (n= 108), as these are comparable to the frames in the test set in terms of frame size and
resolution.

3. Results

Of the 335 iOCT-frames included in this study, 255 frames contained correctly oriented grafts
versus 80 incorrectly oriented grafts (i.e., upside-down). In 195 iOCT-frames the graft was free
floating (i.e., no contact with other ocular structures) and in 134 iOCT-frames a mirroring artefact
of the cornea was present, which (partially) overlapped with the graft in 65 iOCT-frames. Mean
age of the graft donors was 74 years (range: 55-88). The indications were Fuchs endothelial
corneal dystrophy (n= 79), Pseudophakic bullous keratopathy (n= 9), and graft failure (n= 1).
Segmentation performance on iOCT-frames of the test set was similar across the 12 deep learning
models, with Dice scores ranging from 0.72 to 0.74. For the ensemble, where the mean prediction
of the 12 models was used, the Dice score was 0.75.

3.1. Performance of the DMEK orientation model

In Fig. 3 the ROC curves are displayed for the DMEK orientation model using the deep learning-
based segmentations (automatic method) and manually annotated grafts (semi-automatic method).
Additionally, the performance of the corneal specialists is shown for both datasets. The automatic
method achieves an AUC of 0.84, which is considered a good to excellent predictive power
[29]. The semi-automatic method performs even better than the automatic method, with an AUC
of 0.92 for both the development set and test set and is comparable to the performance of the
corneal specialists using the same information (i.e., a single iOCT-frame). Causes for the gap
in performance between the automatic and semi-automatic methods include segmentation and
post-processing errors, which are described in detail in the Qualitative analysis.
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Fig. 3. Receiver operating characteristic curves of the performance of the DMEK orien-
tation model in the test set (n= 100) and the most recent frames of the development set
(n= 108), obtained by varying the curvature threshold. The circles and squares represent the
performance by the corneal specialists. The dashed 45-degree line constitutes a model with
no discriminative power.

In line with the aim of this study – determining graft orientation using iOCT – the optimal
trade-off between sensitivity and specificity was selected to determine κthreshold (Fig. 3). The
detailed results of the DMEK orientation model at κthreshold are shown in Table 1. The automated
method was able to correctly identify the grafts’ orientation in the iOCT frames in 78% of the
iOCT-frames in the test set and in 86% of the iOCT-frames for both the development and test
set using manually segmented grafts. The automatic method achieved a high sensitivity (0.82)
and moderate specificity (0.69). Thus, the model was able to correctly classify the majority of
the correctly oriented grafts, though had only a moderate predictive power to correctly classify
incorrect oriented grafts. Using the manually annotated grafts leads to slightly better sensitivity
and markedly higher specificity compared to the automatic method. The outcomes of the
semi-automatic methods were comparable to the performance of the corneal specialist (Table 1).
If only the segmentation of a single U-Net was used, the AUC varied between 0.78 and 0.86
across the 12 models in the test set (range accuracy: 0.68–0.80).

3.2. Qualitative analysis of segmentation and post-processing

All deep learning-based segmentations in the test set were qualitatively evaluated for errors in the
predicted segmentation or post-processing. In 54 iOCT-frames a near perfect representation of
the graft was achieved after post-processing compared to the manually labeled results (Fig. 4(A))
and in 46 iOCT-frames noticeable segmentation (n= 37) and/or post-processing errors (n= 13)
were present after post-processing Fig. 4(B)-(G)). A total of 22 grafts were incorrectly classified
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Table 1. Performance analysis of the orientation model and corneal specialists

TablePrediction Images Segmentation Sensitivity Specificity Accuracy AUC

DMEK orientation model 108a semi-automatic 0.86 0.85 0.86 0.92

Corneal specialist 1 108a - 0.97 0.85 0.94 -

Corneal specialist 2 108a - 0.92 0.85 0.91 -

DMEK orientation model 100b semi-automatic 0.90 0.78 0.86 0.92

DMEK orientation model 100b automatic 0.82 0.69 0.78 0.84

Corneal specialist 1 100b - 0.96 0.78 0.90 -

Corneal specialist 2 100b - 0.96 0.81 0.91 -

AUC: area under the curve,
aDevelopment set consisting of only recently acquired frames measuring 610 pixels by 275 pixels were included for
comparability with the test set.
aTest set frames measuring 610 pixels by 275 pixels

using the automatic method of the orientation model, because of segmentation errors in 8 frames,
post-processing errors in 2 frames, and a limited differentiative predictive power of the model in
12 frames (i.e., in both the automated and manual method these grafts were incorrectly classified

Fig. 4. Examples of correct and incorrect segmentation and post-processing: a near perfect
segmentation (A), a segmentation error at image boundaries (B), a segmentation error at
the graft end (C), segmentation gaps resulting in partial segmentation (D), segmentation
gaps too wide to connect in the post-processing (E), segments wrongly connected during
post-processing (F & G), correct segmentation resulting in an incorrect prediction (H).
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regardless of any errors; Fig. 4(H)). In 29 iOCT-frames containing errors the model still correctly
predicted the orientation.

The majority of the segmentation errors were considered minor, such as slightly incomplete
segmentation of the graft ends or at the image boundary (Fig. 4(B) & Fig. 4(C)). Notwithstanding,
despite considered minor these errors may affect the algorithms performance. Partial segmentation
of the graft or large gaps between segments were considered large segmentation errors (Fig. 4(D)).
Causes for large segmentation errors included: corneal mirror artefacts, background noise, hypo
reflectance of the graft, and contact of the graft with the cornea or iris.

All post-processing errors occurred during filtering of the frames and connecting the line
segments resulting in partial or wrong segmentation. During filtering smaller segments (<100
pixels) were removed, which resulted in gaps too large to bridge in the subsequent step. Similarly,
in cases with large gaps (>100 pixels) the line segments were not connected and the smaller
segments were removed after identification of the largest segment (Fig. 4(E)). In some frames the
line segments were connected with wrong segments or an image artefact falsely identified as
graft (e.g., fluid reflection, the lens capsule) resulting in an incorrect representation of the graft
Fig. 4(F) & Fig. 4(G)).

4. Discussion and conclusion

In this exploratory study we developed a method to in-vivo segment a DMEK graft using a
deep-learning approach and demonstrated that an image analysis tool that can automatically
identify the orientation of a DMEK graft using iOCT. Several studies have pointed out the lack of
(integrated) image analysis tools and clinical decision support systems (CDSS) for iOCT that can
improve the clinical value [30–33]. Computerized CDSS have the potential to improve outcomes,
optimize treatments, and improve workflow efficiency [34–36]. We believe our tool might be of
similar value for iOCT by improving and standardizing clinical decision making. Moreover, the
tool could help ease the learning curve for starting surgeons and aid experienced surgeons in the
transition towards DMEK [13].

Determining graft orientation using iOCT is arguably more reliable and safer compared to
other methods in use (i.e., the Moutsouris sign and various stamps/cuts) [10,12,14,16]. However,
current manual review of both live and static iOCT-scans for DMEK orientation can be time
consuming and disrupt the surgical workflow hindering implementation and sustainable use of
iOCT [30,31]. Our proposed automatic image analysis may alleviate these hurdles by aiding the
surgeon in determining graft orientation and may reduce interpretation errors.

In recent years corneal OCT image analysis has gained interest. Several studies showed the
ability of automatic tools to successful detect a DMEK graft in OCT images, quantifying graft
detachment after lamellar corneal transplant surgery [37–40]. Our automatic method has a good
to excellent predictive power [29] and when using manually annotated grafts the performance
of our model improves considerably and is comparable to the performance of both corneal
specialists. The gap in performance between the automatic and manual method is primarily the
result of segmentation and post-processing errors, which in turn resulted in wrong predictions
as shown with the qualitative analysis of the end-to-end outcome. Automatic segmentation of
iOCT imaging is challenging because of the design and dynamic use of iOCT, which may result
in higher signal noise, variable image quality, image decentration, and prevents standardized
image acquisition [19]. Notwithstanding, we consider our dataset a realistic representation of
images acquired in clinical practice for determining the orientation and therefor consider the
performance generalizable to other datasets.

The threshold for determining the graft’ orientation used in the results in Table 1 was slightly
negative after optimizing the F1-score (i.e., optimal operating point), which corresponds to a
slight curve downwards. This makes sense since the cornea itself also curves downward and
the floating DMEK typically partly follows the shape of the cornea. In this study the optimal
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trade-off between sensitivity and specificity was chosen to optimize the predictive power of the
model. However, it can be argued that depending on the use case or user expectations, either
sensitivity or specificity may be more important.

The difference in AUC between the automatic method and the pipeline with manual annotated
grafts indicates that improvements for the automatic method can be achieved by improving the
automatic segmentation. In particular, correct segmentation of the graft endings could contribute
to a better estimate of the graft curvature. The deep learning-based segmentation can potentially
be improved by the addition of more training data, including a wider variety of anatomies and
image artifacts. If a large enough training set could be obtained, an end-to-end deep learning
method could be considered, where a classification model is trained only on orientation labels.
However, even if enough training data would be available, such a method would come at the cost
of having a CDDS without explanation for the decision-making, which could hamper acceptation
by the end users. Alternatively, future research could investigate a segmentation approach that
uses shape constraints [41,42], such as the fact that the graft is a continuous and smooth structure.
Such an approach should take into account that not the whole graft necessarily lies in the field of
view. We also experimented with the addition of extra frames to the input taken shortly before
or after the investigated iOCT image, in which the location and orientation of the DMEK graft
slightly differed from the center frame. For example, we added the 5th and 10th frames before and
after the center frame as additional channels to the input, similar to Vu et al. [43], hypothesizing
that the extra information would help the learning process. However, no benefits were found
from this step and it was omitted for the final ensemble.

It should be noted that assessment of graft orientation based on a single frame does not reflect
clinical practice. Instead, a corneal specialist would reduce uncertainty by assessing multiple
frames or manipulate the graft until orientation is evident. Future work could incorporate such a
strategy in the automatic image analysis pipeline, for example by using a recurrent neural network
on follow-up frames [44,45]. For clinical implementation, the image analysis pipeline needs to
be directly applied to the video-feed. In this research, iOCT frames were qualitatively reviewed
for image quality and presence of characteristics on which orientation could be determined.
However, the qualitative analysis indicated not every frame contains enough information for
evaluation of the orientation. Future research could include an automatic frame-based quality
assessment, or an uncertainty estimate and only provide a prediction if the certainty is high. A
challenge for real-time image analysis is the speed at which the segmentation and post-processing
can be performed. Here an ensemble of 12 U-Nets was used for the segmentation, but this might
require more computational power than standardly offered with an iOCT system resulting in a
longer inference time required to determine the orientation. However, the benefit of an ensemble
compared to a single U-Net seemed marginal and perhaps an ensemble is not required if more
annotated training data is used. Another solution could be the use of knowledge distillation
techniques, which have recently been proposed to train a single segmentation model that performs
similar to an ensemble [46,47]. It should be noted that we only tested our methods for a single
OCT-system at a single center and additional research is needed to evaluate the feasibility for other
settings. Especially the deep learning-based segmentation is known to often poorly generalize to
out of distribution data. To ensure generalization to a wide variety of scanners and scanning
parameters, training could be done using data from various OCT systems, or with the use of
extensive data-augmentation.

In conclusion, we present an automated image analysis method for iOCT to detect a DMEK
graft, quantify the curvature, and determine the graft’s orientation. Our future research efforts
will focus on improving automatic segmentation and predictive certainty of our algorithm.
Funding. F.P. Fischer stichting (FS 2020-1, UZ 2016-14); Carl Zeiss Meditec AG; Philips; Nederlandse Organisatie
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