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d Institute for Systems and Robotics, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal 
e Experimental Psychology, Utrecht University, PO Box 80125, 3508 TC Utrecht, Netherlands 
f Radiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands   

A R T I C L E  I N F O   

Keywords: 
Line-scanning 
BOLD fMRI 
7T 
Multi-echo 
Denoising 
Motion correction 

A B S T R A C T   

Background: Functional magnetic resonance imaging (fMRI), typically using blood oxygenation level-dependent 
(BOLD) contrast weighted imaging, allows the study of brain function with millimeter spatial resolution and 
temporal resolution of one to a few seconds. At a mesoscopic scale, neurons in the human brain are spatially 
organized in structures with dimensions of hundreds of micrometers, while they communicate at the millisecond 
timescale. For this reason, it is important to develop an fMRI method with simultaneous high spatial and tem
poral resolution. Line-scanning promises to reach this goal at the cost of volume coverage. 
New method: Here, we release a comprehensive update to human line-scanning fMRI. First, we investigated multi- 
echo line-scanning with five different protocols varying the number of echoes and readout bandwidth while 
keeping the TR constant. In these, we compared different echo combination approaches in terms of BOLD 
activation (sensitivity) and temporal signal-to-noise ratio. Second, we implemented an adaptation of NOise 
reduction with DIstribution Corrected principal component analysis (NORDIC) thermal noise removal for line- 
scanning fMRI data. Finally, we tested three image-based navigators for motion correction and investigated 
different ways of performing fMRI analysis on the timecourses which were influenced by the insertion of the 
navigators themselves. 
Results: The presented improvements are relatively straightforward to implement; multi-echo readout and 
NORDIC denoising together, significantly improve data quality in terms of tSNR and t-statistical values, while 
motion correction makes line-scanning fMRI more robust. 
Comparison with existing methods: Multi-echo acquisitions and denoising have previously been applied in 3D 
magnetic resonance imaging. Their combination and application to 1D line-scanning is novel. The current 
proposed method greatly outperforms the previous line-scanning acquisitions with single-echo acquisition, in 
terms of tSNR (4.0 for single-echo line-scanning and 36.2 for NORDIC-denoised multi-echo) and t-statistical 
values (3.8 for single-echo line-scanning and 25.1 for NORDIC-denoised multi-echo line-scanning). 
Conclusions: Line-scanning fMRI was advanced compared to its previous implementation in order to improve 
sensitivity and reliability. The improved line-scanning acquisition could be used, in the future, for neuroscientific 
and clinical applications.  

Abbreviations: fMRI, functional magnetic resonance imaging; BOLD, blood oxygenation level-dependent; HRF, hemodynamic response function; GE, gradient 
echo; TR, repetition time; TE, echo time; PMC, prospective motion correction; NORDIC, NOise Reduction with DIstribution Corrected; PCA, principal component 
analysis; SPIR, spectral presaturation with inversion recovery; SoS, sum of squares; tSNR, temporal signal-to-noise ratio; GLM, general linear model; t-stats, t-statistic 
values; OVS, outer volume suppression; ROI, region of interest; GM, gray matter; WM, white matter; SVD, singular value decomposition; EPI, echo planar imaging; 
ANOVA, analysis of variance; FOV, field of view. 
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1. Introduction 

In the human brain, neurons with similar functions cluster together 
in spatial structures with an extent of hundreds of micrometers, i.e. 
mesoscopic scale, while they communicate at the millisecond timescale 
(Dumoulin et al., 2018; Sabatini and Regehr, 1996). For example, in the 
cortex neurons are organized in columnar and layer structures (Brod
mann, 1909; Hubel and Wiesel, 1968; Mountcastle, 1957). Cortical 
layers differ in neuronal content, but also in their connectivity to other 
parts of the brain. Brodmann (Brodmann, 1909) used differences in 
cortical layers to define distinct cortical areas. Thus, cortical layers are 
considered a basic anatomical and physiological unit of the cortex and 
for this reason it is interesting to study responses at the mesoscopic scale. 

Functional magnetic resonance imaging (fMRI) plays an important 
role in the study of brain function (Ogawa et al., 1990), allowing 
detection of brain activity through the changes in blood flow and 
oxygenation. Blood oxygenation level-dependent (BOLD) contrast 
weighted imaging is one of the primarily used contrast mechanisms in 
both cognitive (Logothetis, 2008) and clinical (Eickhoff et al., 2020) 
neuroscience. BOLD imaging has two important advantages: it is 
non-invasive and readily available at any MRI scanner. For BOLD fMRI, 
high spatial and temporal (<1 mm, ~100 ms) resolutions are required to 
detect spatiotemporal features of the hemodynamic response function 
(HRF) which describes how the hemodynamic signal propagates 
through the cortex at the mesoscopic scale, in particular across cortical 
layers. 

However, functional MRI is an inherently noisy acquisition method 
(Liu, 2016). As a result, most fMRI data are denoised in some form 
before statistical testing, usually by applying a spatial smoothing step 
(Ashburner, 2012; Jenkinson et al., 2012; Smith, 2004). For 
high-resolution acquisitions, smoothing is not appropriate because of 
the concurrent loss in spatial definition (Stelzer et al., 2014), even 
though noise levels increase at these higher resolutions. This means that 
other techniques have to be applied to increase the signal-to-noise-ratio 
(SNR) and decrease the noise (Caballero-Gaudes and Reynolds, 2017). 

Advances in fMRI methodology have been aimed at increasing both 
the spatial and the temporal resolution, with the ultimate goal of 
recording at sub-millimeter spatial resolution and sub-second sampling 
rate. In the past decade, line-scanning fMRI in rodents achieved very 
high resolution across cortical depth (50 µm) and time (50 ms) by 
scanning only a single line of data, sacrificing volume coverage and 
resolution along the cortical surface in the process (Yu et al., 2014). 
Line-scanning fMRI in rodents has also been used in combination with 
other techniques such as fiber-based optogenetic stimulation (Albers 
et al., 2018) and diffusion-sensitizing gradients (Nunes et al., 2021), to 
investigate the fast BOLD onset times at high spatial resolution. 
Line-scanning fMRI in rats has been extended towards a multi-line 
implementation, acquiring line profiles from different cortical regions 
to investigate laminar-specific functional connectivity mapping under 
both evoked and resting-state conditions (Choi et al., 2021). 

Recently, line-scanning was employed in human studies, for micro
structural investigations (Balasubramanian et al., 2022, 2021) and with 
the goal of isolating microvessel responses and characterizing the dis
tribution of blood flow and laminar functional MRI profiles across 
cortical depth, at high spatiotemporal resolution (Morgan et al., 2020; 
Raimondo et al., 2021). Our first human line-scanning implementation 
(Raimondo et al., 2021) achieved resolutions of 250 µm and 200 ms and 
demonstrated its utility for measuring BOLD responses along cortical 
depth, in the visual cortex, during a visual stimulation task. The 
sequence was a modified 2D gradient-echo (GE) sequence employing a 
single-echo readout, with low bandwidth for increased SNR, but still 
with some deadtime within the repetition time (TR). Here, we propose 
several ways to improve this line-scan sequence for increased sensitivity. 
This increased sensitivity is necessary to make line-scanning a more 
robust and generalizable technique, which could be used for future 
neuroscientific and clinical applications. Specifically, diseases such as 

small vessel or sickle cell diseases (Afzali-Hashemi et al., 2021; DeBaun 
and Kirkham, 2016; van den Brink et al., 2022; Zwanenburg and van 
Osch, 2017) would benefit from high spatial and temporal resolutions to 
gain insights about the altered hemodynamic responses in patients 
across cortical depths. 

First, the unused deadtime within the TR permits the acquisition of 
additional echo readouts without increasing the TR. The BOLD contrast 
is known to be maximal when the echo time (TE) is equal to the local 
tissue T2* relaxation rate (Olsrud et al., 2008). With multi-echo imaging, 
we can measure the T2* signal decay curve and reach optimal readout 
efficiency and BOLD sensitivity. In addition, the T2* signal decay curve 
can be used to disentangle BOLD-like (T2*) changes from non-BOLD 
signal changes (Kundu et al., 2012). Non-BOLD signals can be caused 
by drift, motion, physiological noise or other contaminating signals that 
impact the initial signal intensity (S0) of the T2* decay curve sensitivity 
(Caballero-Gaudes and Reynolds, 2017; Poser et al., 2006; Posse et al., 
1999). 

Second, thermal noise dominates at the high spatial and temporal 
resolution of line-scanning. The “MR signal” can be specifically defined 
as an electrical current induced in the receiver coil by the precession of 
the net magnetization during resonance, as the manifestation of Fara
day’s Law of Induction (Hahn, 1953). However, the definition of noise in 
an fMRI time series is more complex, due to the different noise sources 
(Krüger and Glover, 2001). Thermal noise, classified as a zero-mean 
Gaussian distributed noise, is generated either from the electronics or 
from the sample being imaged and depends on a range of parameters 
including the static magnetic field strength, the electronics, the readout 
bandwidth and sampling scheme (Edelstein et al., 1986; Hoult and 
Richards, 2011). It becomes predominant when small voxel sizes are 
used. Other sources of signal variance include subject motion and 
physiological noise through respiration and heartbeat (Triantafyllou 
et al., 2005). For denoising, the final goal is to decrease noise without 
compromising any physiological aspects of the data, but, generally, 
some information has to be sacrificed. Many denoising techniques 
(Alkinani and El-Sakka, 2017; Fan et al., 2019; Kaur et al., 2018) are 
based on a trade-off between the removal of unwanted signal and the 
preservation of the data quality, such as spatial and temporal resolution, 
as well as the underlying biological processes. In a newly described 
approach from (Vizioli et al., 2021), thermal noise is selectively sup
pressed from high-resolution fMRI data while preserving the amplitude 
of the hemodynamic response, the spatial resolution and the functional 
point-spread function. 

Finally, line-scanning is highly sensitive to subjects’ motion. 
Generally in fMRI, participant movement leads to inconsistencies in the 
fMRI timecourse. These are typically corrected by coregistering the 
volume timepoints (Friston et al., 1994; Smith et al., 2004). Motion is 
even more problematic in high-resolution MRI, where the impact of 
smaller movements is amplified (Gallichan et al., 2016; Maclaren et al., 
2012; Schulz et al., 2012). In the case of line-scanning, the 1-dimen
sional nature of the data only allows motion detection in the line di
rection, whereas rotations or displacements perpendicular to the line 
lead to spin-history artifacts or line acquisition outside the area of in
terest. These effects cannot be corrected by post-hoc motion correction 
in line scans; therefore, a prospective motion correction scheme (PMC) is 
required (Zaitsev et al., 2015). This can be achieved with external 
hardware (Maclaren et al., 2012; Schulz et al., 2012; Stucht et al., 2015) 
or with image-based navigators (Andersen et al., 2019; Glover et al., 
2000). Here we use an image-based navigator implementation. 

In this work, we aim to improve the line-scanning acquisition in 
three ways: first, we investigated five different multi-echo protocols 
varying the numbers of echoes and readout bandwidth while keeping 
the TR — and thus the overall scan time — constant. We compared 
different echo combination approaches in terms of BOLD activation 
(sensitivity) and temporal signal-to-noise ratio. Second, we imple
mented an adaptation of the NORDIC thermal noise removal for line- 
scanning fMRI data, and finally, we tested three image-based 
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navigators for motion correction. 

2. Methods 

2.1. Participants 

Our pool of participants is composed of two groups: multi-echo 
section: 6 participants (3 male, 32 ± 6 years old (mean ± standard de
viation)), noise removal section: 4 participants (4 male, 28 ± 4 years 
old) and for the motion correction section: 8 participants dataset (7 
male, 31 ± 8 years old, including the individuals participating in the 
noise removal section). All the participants were healthy individuals 
who provided written informed consent as approved by the medical 
ethics committee of the Amsterdam University Medical Centre. The 
guidelines of the Helsinki Declaration were followed throughout the 
study, and all participants were screened for MRI compatibility prior to 
the experiments. 

Note that the line-scanning method allows a high sampling rate 
within the participant, hence we can reach statistical power without the 
need to average over many participants. In addition, we aimed to find an 
effect in every single participant, which is easily achieved with the 
strong visual task we employed across the study. The number of par
ticipants can be seen as replication of the same effect rather than a way 
to measure the effect itself (Normand, 2016; Smith and Little, 2018). 
Ultimately, for clinical research it is essential to maximize signal and 
minimize noise to have information in individuals (Gratton et al., 2022). 

2.2. Selection of multi-echo acquisition and echo combination version 

The 7 T MRI (Philips Healthcare, Best, NL) was equipped with a 2 
channel transmit and 32 channel local receive surface coil (Petridou 
et al., 2013), positioned close to the visual cortex. 

Line-scanning acquisition used a modified 2D multi-echo gradient- 
echo sequence where the phase-encoding in the direction perpendicular 
to the line, needed for conventional 2D imaging, was omitted: line res
olution= 250 µm, TR= 105 ms (108 ms for one participant), flip angle=
16◦, array size= 720, line thickness= 2.5 mm, in-plane line width= 4 
mm, fat suppression using SPIR. Two saturation pulses (7.76 ms pulse 
duration) suppressed the signal outside the line of interest. Five different 
multi-echo schemes (including 3, 5, 7, 9 and 11 echoes) were compared 
by adapting the readout bandwidth for the different schemes. The 
longest echo time for all schemes was 38 ms. The order of acquisitions 
was randomized across participants; details are provided in Table 1. 

The line was manually positioned approximately perpendicularly to 
the medial gray matter sheet of the occipital lobe. We acquired one run 
of functional data with each protocol, using a block design visual task 
consisting of an 8 Hz flickering checkerboard presented on the entire 
screen for 10 s on/off. Runs lasted 5 min and 40 s. The total run duration 
for the 11 echoes acquisition runs was shortened for 3 participants due 
to technical constraints and skipped for one other participant. Recon
struction was performed offline (MatLab, Gyrotools). 

We combined the multi-channel coil data with a temporal signal-to- 
noise ratio (tSNR) and coil sensitivity-weighted sum of squares (SoS) 
weighted scheme per echo in the data reconstruction as in (Raimondo 

et al., 2021). The SoS was defined as: 

S(t,TE) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
Si(t,TE)2

√
√
√
√ (1)  

where Si is the MR signal for each receive coil channel and N is the 
number of channels. The resulting S(t,TE) is the MR signal as a function 
of time and TE. 

Multi-echo data were combined in 3 different ways: SoS (with the 
same formula as Eq. (1), but summing over echoes instead of channels), 
T2* fit and a tSNR weighted combination (wtSNR) based on Poser et al. 
(Poser et al., 2006). ‘T2* fit’ fits the T2 * decay per voxel with a linear fit 
of Eq. (2) in a least-squares way: 

S(t,TE) = S0e
− TE

T∗2 (2) 

Functional data were analyzed in Matlab using a general linear 
model (GLM) approach. We used the SPM implementation of the ca
nonical HRF (Friston et al., 1994) as block design experiments do not 
allow one to fit the HRF shape. T-statistic values (t-stats) were computed 
to identify active voxels. We also evaluated the tSNR for each voxel 
through: 

tSNR =
S(t)

σ(S(t)) (3)  

where S(t) is the mean signal over time, across the whole timecourse and 
σ(S(t)) is the standard deviation of the signal across time for the whole 
timecourse. Note that the tSNR is computed across the whole time
course, hence including voxels with functional activation due to the 
visual task. However, within the line, very few voxels contain task 
activation and task effects on the tSNR are minimal. 

We compared the mean and maximum t-stats in a region of interest 
(ROI) for the 5 different multi-echo acquisitions, the three echo- 
combination methods and the ROI average tSNR. The ROIs were 
defined as the 11 voxels, 11 × 0.25 mm = 2.75 mm, covering the gray 
matter (GM) ribbon (identified in a slice image centered on the line), 
surrounding the voxel showing the highest t-stats, for all acquisitions. 
For the tSNR comparison, we also defined a white matter ROI (WM ROI). 

2.3. Noise removal 

For the noise removal dataset, we acquired data using the 5 echoes 
acquisition with the same visual task as the previous section, adding 20 s 
baseline in the beginning. 

In fMRI, it is common to perform some kind of noise reduction data 
processing to increase the SNR, with the final goal of maintaining signal 
integrity (including spatial and temporal resolutions). To achieve this 
purpose, for this section, we employed a thermal noise removal step in 
the reconstruction pipeline based on Noise reduction with Distribution 
Corrected (NORDIC) principal component analysis (PCA) (Vizioli et al., 
2021). The denoising was applied to k-space data before the coil and the 
echo combination (see Fig. 1). A singular value decomposition (SVD) of 
the data was submitted to “hard thresholding” that eliminates all com
ponents indistinguishable from zero-mean Gaussian distributed noise 
(Fig. 1a). The singular value decomposition of our line-scanning k-space 
data matrix (for every channel and echo) was U ⋅S ⋅VH, where U and V 
are unitary matrices, and S is a diagonal matrix whose diagonals are the 
spectrum of ordered singular values. The singular values below a chosen 
threshold were replaced by 0, and the other singular values were unaf
fected. Sth is a new diagonal matrix generated as a result of thresholding, 
and the estimate of the NORDIC-denoised data was given as U ⋅Sth ⋅VH. 
The threshold was chosen from the elbow point of the ‘scree plot’ 
depicting the eigenvalues versus the number of components (see Fig. 1) 
for every channel and every echo separately. Note that, during a pilot 
study we ensured that noise was preferentially removed, leaving 

Table 1 
Parameters for the 5 multi-echo line-scan acquisitions. N-echoes is the number of 
echoes, TE1 is the first acquired echo, echo spacing is the time difference be
tween echoes acquisitions and readout BW is the readout bandwidth per pixel. 
The last echo time in the series was always 38 ms.   

N echoes TE1 [ms] echo spacing [ms] Readout BW [Hz/pixel] 

acq1  3  9.2  14.4  71.7 
acq2  5  6  8  131.4 
acq3  7  5  5.5  197.6 
acq4  9  4.4  4.2  264.2 
acq5  11  4  3.4  337.6  
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task-driven signal variation, by verifying that t-values rose as a function 
of removed variance. 

Thermal noise removal was then followed by a tSNR and coil 
sensitivity-weighted SoS multi-channel data combination and SoS echo 
combination. To estimate the performance of the reconstructions with 

and without denoising, we compared the two in terms of tSNR, and t- 
stats in an 11 voxel ROI centered around the voxel with maximum t-stats 
within the brain. 

Fig. 1. NORDIC implementation for multi-echo line-scan data, based on (Vizioli et al., 2021). Line-scanning k-space data for every channel and echo separately were 
decomposed through singular value decomposition (SVD); the diagonal matrices containing the eigenvalues (S) were thresholded through the elbow (red arrow) of 
the scree plot depicting the eigenvalues versus the components. 

Fig. 2. Sequence diagram for prospective motion correction.  
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2.4. Prospective motion correction 

For the motion correction section, we combined line-scanning with 
prospective motion correction (PMC) using an interleaved scanning ar
chitecture (MISS, Philips) following (Andersen et al., 2019). We inserted 
a navigator at every dynamic (i.e. every 440 timepoints = ~46 s) 
(Fig. 2), as a trade-off between motion tracking and the resulting 
navigator-introduced signal transients in the time series (see below). 
Following every navigator acquisition, the navigator was reconstructed 
and registered to the previous one in the series in real-time. 

The field of view (FOV) of both the navigator and target sequence 
was updated based on the estimated translation and rotation parameters 
(1 s waiting time). The required time gap in the line-scanning acquisi
tion for recording and real-time processing of the PMC navigator in
troduces a consistent transient signal due to the temporary loss of the 
steady-state of the transversal magnetization. This is observed as a T1- 
driven return to steady-state, here dubbed ‘T1-transient’. 

Three possible navigators were compared (Table 2): a highly- 
accelerated surface-coil-receive fat-navigator only covering the back of 
the head (surf fat-nav), a slower whole-head, transmit-coil-receive fat- 
navigator (vol fat-nav) and a surface-coil-receive water-excitation navi
gator (surf wat-nav), used to reduce the amplitude of the T1-transient 
signal. The order of acquisitions was randomized across participants. 

We acquired one run of functional data (6 min 20 s) using the 5-echo 
acquisition and the same visual task described above. For each scan, we 
applied the NORDIC-denoising step in the reconstruction of the data. 

We investigated three ways of managing the gaps and T1-transient:  

1. Regressing out the T1-transient during the GLM analysis (regressed): 
30 points around every T1-transient of each timecourse were aver
aged and fitted to an exponential decay (a − be− cx Each voxel time
course was then submitted to the T1-transient regression in the GLM 
analysis;  

2. Interpolating the points corresponding to the T1-transient by 
substituting 30 point in correspondence of the T1-transient with the 
average of the 10 points after it (imputed);  

3. Analyzing the T2* estimates which are implicitly non-sensitive to 
baseline T1 effects (T2*PMC fit); 

The time points during which the navigators were acquired and the 
following pause were removed from the GLM’s regressors that model the 
visual task. 

We evaluated the t-stats and tSNR values along the line, to find the 
optimal acquisition and analysis strategy. Specifically, for our group 
comparison, we plotted the tSNR evaluated from the whole timecourse 
following the dummy acquisition, and the mean t-stats along the line for 
all the participants, for all the different ways of managing the T1-tran
sient and for every PMC navigator method. We compared those results 
using an ANOVA test, to check if the imputed data showed a significant 
improvement compared to the other methods and the echo combined 
data (raw). 

The navigator method allows for motion measurements. Pilot ex
periments on four participants with different navigator acquisitions and 
length of the scans showed average frame wise displacement of 
~0.2 mm. This results in motion patterns that are well within the range 
that can be corrected for using fat navigator-based motion correction 
(Andersen et al., 2019; Gallichan and Marques, 2017). 

2.5. Comparison of denoised multi-echo with single-echo line-scanning 

In the very last section, for one participant only, we acquired a 
functional scan with the same functional task as in Section 2 to 
demonstrate the improvements we made to our previous implementa
tion of line-scanning (Raimondo et al., 2021). Here, we compared the 
single-echo gradient echo line-scanning sequence from Raimondo et al. 
and the 5-echo multi-echo version with SoS echo combination and 
NORDIC-denoising in terms of t-stats. 

3. Results 

3.1. Multi-echo acquisition and echo combination approach 

Fig. 3 shows a multi-echo line-scanning dataset for a representative 
participant: the position of the slice (3a), the placement of the saturation 
slabs (3b), the line signal distribution image (3c) and finally, an example 
of multi-echo line-scanning acquisition (for a 5-echo acquisition), for 
every echo separately (3d) and for the combined version (through SoS) 
(3e). Note the decreasing signal intensity with increasing TE in 
consecutive echoes. 

We evaluated t-stats for every acquisition and echo combination 
method, and we averaged the maximum t-stat across participants 
(Fig. 4a) and the mean value of t-stats in the 11-voxel gray matter (GM) 
ROI centered on that maximum (Fig. 4b). As the echo combination 
methods used the same data, the variance was higher between acquisi
tion types than between echo combination methods. There were no 
statistically significant differences for different numbers of acquired 
echoes, though visual inspection showed higher t-stats, both mean and 
peak, for the 5-echo acquisition. We found significantly higher 
maximum and mean t-stats for SoS and wtSNR echo combination 
compared to the T2* fit method (Student t-test, p < 0.05). Regarding the 
tSNR (evaluated across the whole timecourse), we averaged the values 
of two different ROIs: GM ROI and white matter (WM) ROI (Fig. 4c and 
d, respectively). In both ROIs, the SoS echo combination gave slightly 
higher tSNR compared to the other two methods. Considering that the 
second acquisition (5-echo) led to the highest mean and maximum t- 
stats across groups, we used this approach for the rest of the compari
sons. For the reconstruction, we selected the SoS because of the slightly 
higher tSNR and ease of implementation. 

3.2. NORDIC denoising for multi-echo line-scanning 

In Fig. 5, the comparison of line-scanning data without (a) (‘Stan
dard’) and with (b) (‘NORDIC’) denoising are shown for one exemplar 
participant. Note that the signal found outside the brain (i.e. mostly 
resulting from thermal noise) was notably reduced after NORDIC 
denoising. The BOLD response to the visual task was preserved after 
NORDIC, as demonstrated for a single voxel time course in Fig. 5c. 
NORDIC notably improves tSNR and the distribution of t-stats (Fig. 5d 
and e, respectively). A scatter plot (Fig. 5f) of the t-stats shown in Fig. 5e, 
showed that the voxels with positive t-stats became more positive; they 
are found above the unity line on the positive x-axis (black line, Fig. 5f). 
There are very few voxels for which the absolute t-stat became smaller. 
The effect of denoising was highly consistent: in every individual 
participant, we saw a substantial improvement in both t-stats and tSNR 
by at least 200%. Table 3 showed the group average of tSNR mean, t- 
stats mean and t-stats maximum, within an 11 voxel ROI surrounding 
the voxel showing the highest t-stats. 

Table 2 
Scan parameters of the interleaved navigators scans for the prospective motion 
correction during line-scanning acquisition, using the interleaved scanning ar
chitecture (MISS).  

Acquisition surf wat-nav vol fat-nav surf fat-nav 

sequence 3D EPI 3D EPI 3D EPI 
excitation water selective fat selective fat selective 
TR [ms] 13 18 18 
TE [ms] 3.5 5.1 4.1 
FA [deg] 8 1 1 
resolution [mm] 2 iso 2.5 × 3.12 × 2.5 2 iso 
SENSE factor 4 × 1.1 1 4 × 1.1 
duration/dyn [s] 0.546 1.7 0.751 
receiver coils surface, 32ch transmit, 2ch surface, 32ch  
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3.3. Prospective motion correction using water and fat excitation 
navigators 

Fig. 6a, b and c showed for a single voxel the raw data timecourse for 
the three acquisitions; surf wat-nav, vol fat-nav, and surf wat-nav. The T1- 
transient signal due to the time needed for navigator coregistration and 
acquisition update is highlighted in Fig. 6a. The selected single voxel 
was at the same nominal location in the brain in an area with large task- 
driven responses. Note that the faster, more undersampled, navigators 
(surf wat-nav and surf fat-nav) resulted in reduced T1-transient signal 
amplitude due to the shorter acquisition gap. The utilization of water 
excitation for the navigators reduced the T1-transient signal amplitude 
even further. The regressed, imputed and T2*PMC fit corrected data are 
shown in Fig. 6d, e and f. For this particular voxel, BOLD responses were 
visible in all timecourses, despite the T1-transient. For all acquisitions, 
the T1-transient signal was much reduced after this GLM-based signal 
regression and completely disappeared in T2*PMC fit corrected data. 
T2*PMC fit data is plotted separately as the resulting T2 * time course has 
physical units in ms. 

Fig. 7 showed box plots for the mean tSNR across participants, 
evaluated on the whole timecourse, across the whole line, for the PMC- 
induced T1-transient correction approaches. With each correction 
approach displayed separately: (a) the water navigators acquired with 
surface coils (surf wat-nav), (b) the fat navigators acquired with the 
transmit coils (vol fat-nav) and (c) the fat navigators acquired with 
surface coils (surf fat-nav). 

Fig. 8 showed the box plots for the mean t-stats across participants 

across the whole line, for the PMC-induced T1-transient correction ap
proaches. As seen in Fig. 6, the navigators acquired with surface coils 
(surf wat-nav and surf fat-nav) offered slightly higher tSNR (Fig. 7) and t- 
stats (Fig. 8) compared to the navigators acquired with the transmit coil 
(vol fat-nav). 

Analysis of variance (ANOVA) test was used to assess whether one of 
the ways of dealing with the T1-transient showed a significant 
improvement in either t-stats or tSNR compared to the other two and 
raw data. We found significant effects on t-stats for the surf wat-nav (F3,15 
= 7.4, p = 0.03), vol fat-nav (F3,15 =12.8, p = 0.01), and surf fat-nav 
(F3,15 = 9.3, p = 0.01). Using a pairwise post-hoc T-test, we found no 
significant contrasts. 

Regarding the tSNR we found F3,15 = 26.7, p = 0.003 for surf wat- 
nav, F3,15 = 31.9, p = 0.002 for vol fat-nav and F3,15 = 25.2, p = 0.004 
for surf fat-nav. The post-hoc T-test showed that the imputed and regressed 
methods resulted in higher tSNR values compared to the T2* PMC fit 
method, as well as raw data, for every navigator acquisition strategy. 

3.4. Comparison of denoised multi-echo line-scanning with previous 
single-echo line-scanning 

As a final comparison, in Fig. 9 we showed the line-scanning data 
acquired with single-echo (a), NORDIC-denoised multi-echo (b) as well 
as a single voxel timecourse for both acquisitions (c). 

We observed an increase in signal intensity when multi-echo data are 
acquired, compared to the single-echo acquisition, and a significant 
decrease of noise in the multi-echo denoised single voxel timecourse, as 

Fig. 3. (a) Accompanying 2D reference slice before 1D line-scanning and (b) outer volume suppression (OVS): placement of saturation slabs to suppress unwanted 
signal outside the line of interest, depicted by the gap (4 mm) between the saturation slabs. (c) line signal distribution image, (d) example of multi-echo line-scanning 
acquisition (position of the voxels vs time) for every echo separately (5 echoes acquisition) and (e) resulting line-scan data after multi-echo combination. 
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demonstrated from the averaged tSNR along the line, of 4.0 for the 
single-echo line-scanning and 36.2 for NORDIC-denoised multi-echo. 
Moreover, from Fig. 9d where t-stats distributions are shown, we 
observed an improvement in t-stats when multi-echo NORDIC-denoised 
data are used. On average, across the line, a mean t-stats value of 3.8 
± 8.4 (mean±standard deviation) was found for single-echo line-scan
ning, and 25.1 ± 20.5 for NORDIC-denoised multi-echo line-scanning. 

4. Discussion 

Line-scanning fMRI is a novel technique for high spatiotemporal 
resolution fMRI in humans with multiple potential applications such as 
cognitive neuroscience, including layer and columnar imaging, but also 
clinical studies on, for instance, small vessel disease. Here, we report on 

three improvements to our first implementation of line-scanning (Rai
mondo et al., 2021) to increase the sensitivity and flexibility of 
line-scanning and mitigate the effects of motion: 1) multi-echo acqui
sitions, 2) NORDIC denoising and 3) real-time motion correction using 
interleaved navigators. 

Multi-echo fMRI is known to increase SNR and BOLD contrast-to- 
noise ratio (CNR) and decrease sensitivity to physiological noise 
(Kundu et al., 2012; Poser et al., 2006). We found that a scheme with 5 
echoes showed the highest sensitivity. This is likely the result of the 
known interplay between SNR (and tSNR) and TE-dependent BOLD CNR 
as reflected by the higher t-stats from the visual task. Other multi-echo 
studies have also opted for 5 echoes (Hesse et al., 2009; Poser et al., 
2006), suggesting that this number of echoes is a suitable balance be
tween exploiting the power of the multiple echo acquisition (in terms of 

Fig. 4. (a) mean value of t-stats within the GM ROI for every multi-echo (N echoes) line-scanning acquisition, averaged across participants; Shaded areas correspond 
to the standard error over participants. (b) maximum value of t-stats within the ROI, averaged across participants; (c) mean tSNR within a GM ROI for every 
acquisition, averaged across participants; (d) mean tSNR within a WM ROI for every acquisition, averaged across participants. We found significantly higher max and 
mean t-stats for SoS and wtSNR echo combination compared to the T2* fit method. The SoS echo combination gives slightly higher tSNR compared to the other two 
methods. The 5 echoes acquisition led to the highest mean and maximum t-stats. 
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T2* range broadening) while maximizing the readout length without too 
much time spent in the risetime of the readout gradients. Further 
increasing the number of echoes in the same readout-time pushed the 
first echo to earlier echo times, resulting in the highest tSNR for 9 
echoes, albeit with reduced CNR (t-stats) compared to the other 
multi-echo schemes, possibly due to the increased gradient ramp time. 

The tSNR weighted echo combination approach (wtSNR) showed a 
similar behavior of tSNR profile with increasing echoes compared to SoS 
(Fig. 4c). The T2* fit echo combination approach consistently showed 
reduced t-stats and tSNR, reflecting the challenges of obtaining a good 
T2* fit while retaining the necessary bandwidth for our current spatio
temporal resolution. Note that the tSNR increase with respect to the 
increasing number of echoes appears larger in WM rather than the GM 
ROI (Fig. 4d). WM is known to contain less physiological noise than GM 
(Krüger and Glover, 2001), so the larger tSNR increase likely reflects a 
reduction in the contribution of thermal noise. 

Regarding the echo combination methods, we investigated three 
echo combination strategies. Note that many other combination ap
proaches exist, some of which might exploit the benefit of multi-echo 
acquisitions better (Heunis et al., 2021; Kundu et al., 2017), though 
most do not solve the T1-transient that we have to deal with in the 
motion-corrected data. 

To further optimize line-scanning, we aimed to reduce thermal noise 
by adapting NORDIC denoising for multi-echo line-scanning (Vizioli 
et al., 2021). High spatial resolution line-scanning data is likely domi
nated by thermal noise, as opposed to physiological noise. We observed 
that most of the principal components (99.7%, on average across par
ticipants) after SVD were removed from the data, suggesting that ther
mal noise is indeed dominant and needs to be removed. T-stats increased 
after denoising, with respect to the standard reconstruction (no 
denoising), for every participant. The “hard-thresholding” we used in 
the adapted NORDIC denoising is very liberal (due to the large number 
of components removed from the data), hence, as for any denoising 
techniques, one should be wary of potential biases that can be intro
duced (Kay, 2022; Vizioli et al., 2021). This is particularly important 
when less strong stimuli (leading to smaller responses) are used. In these 
cases, other thresholding approaches can be adopted (such as ap
proaches involving noise scans or g-factor maps when parallel imaging is 
used, or approaches involving cross-validation (Kay et al., 2013) to 
evaluate a threshold that allows removing specific noise sources while 
retaining signal components. 

Importantly, besides the t-stats, the tSNR also strongly improved 
when NORDIC-denoising was applied, in agreement with the findings of 
(Vizioli et al., 2021). Note that line-scanning presents some analogies 
with electroencephalography (EEG) data; both have a one-dimensional 
nature, high noise levels, and temporal resolution in the order of ms. 
This suggests that denoising methods used in EEG could also be inves
tigated for line-scanning. Specifically, some non-linear approaches 

Fig. 5. (a) Standard line-scanning fMRI data, (b) NORDIC denoised line-scanning fMRI data after noise removal, (c) single voxel timecourse for standard line- 
scanning data (red line) and NORDIC-denoised data (blue line), together with the GLM model following the visual task, (d) tSNR comparison of the standard 
line-scanning data (red line) and the NORDIC-denoised data (blue line), (e) t-stats distributions for the standard data (red) and for the NORDIC denoised data (blue), 
and (f) scatter plot of standard t-stats and NORDIC-denoised t-stats for one representative participant. The black line indicates the unity line. NORDIC denoising 
notably improves tSNR and increases the t-stats upon a visual task. The BOLD response to the visual task is preserved after NORDIC, while NORDIC notably improves 
tSNR and t-stats distribution. 

Table 3 
Comparing NORDIC denoising to non-denoised (standard) line-scanning in 
terms of tSNR and t-stats upon a visual task, group results: average tSNR mean, 
mean t-stats and maximum t-stats in the 11 voxels ROI; mean and standard error 
over participants. We observe that NORDIC denoising improves tSNR and t-stats 
by > 200% for line-scanning.   

Standard line-scanning NORDIC line-scanning  
tSNR 
mean 

t-stats 
mean 

t-stats 
max 

tSNR 
mean 

t-stats 
mean 

t-stats 
max 

sub1 13 6 8 46 17 18 
sub2 11 7 9 43 56 62 
sub3 17 14 20 55 34 36 
sub4 10 4 11 29 17 31 
Mean  

± se 
13 ± 1 8 ± 2 12 ± 2 43 ± 5 31 ± 8 37 ± 8  
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(Aydin, 2008, 2009), as well as ICA-based methods, particularly on 
short-time Fourier transforms of EEG signals (Hyvärinen et al., 2010), 
appear to efficiently denoise EEG data. 

Line-scanning data are by definition 1D fMRI recordings in the 
spatial domain. The 1D nature renders line-scanning more susceptible to 
motion compared to standard fMRI, which is exacerbated by the fact 
that volume coregistration cannot be applied as a post-hoc correction 
method. Moreover, if motion occurs during the functional line-scanning 
acquisition, any drift out of the selected FOV is impossible to detect and 

fix. Here, we implemented a motion correction procedure using inter
leaved large FOV navigators to track and correct the acquisition in real- 
time, albeit at the temporary loss of both fMRI samples and the signal 
steady-state, which induces a consistent T1-transient signal warranting 
the reported correction schemes. We employed three different naviga
tors: two surface coil navigators (surf wat/fat-nav), which have the 
advantage of being faster due to the possibility of strong SENSE accel
eration by parallel imaging, at the cost of brain coverage and possibly 
reduced coregistration quality, and one transmit coil navigator (vol wat/ 

Fig. 6. (a,b,c) single voxel timecourse (first 139 s) for an example participant, for the three PMC approaches, for raw data (gray line) and (d,e,f) T2*PMC fit data (light 
blue line), regressed (red line) and imputed data around the T1-transient (green line). The black curves depict the visual task for every time course, while the gray bars 
indicate the time during which the navigators were acquired. The inset in (a) highlights a region where the T1-transient effect is visible. This is caused by the required 
time gap in the line-scan acquisition for the PMC navigator and introduces a consistent transient signal due to the temporary loss of steady-state of the transversal 
magnetization. surf wat-nav and surf fat-nav result in reduced T1-transient signal amplitude. BOLD responses are visible in all timecourses, despite the T1-transient. 
The T1-transient signal appearance is much reduced after GLM-based signal regression (regressed) and completely disappears in T2*PMC fit corrected data. 

Fig. 7. box plots showing the mean tSNR across participants, evaluated on the 20 s time baseline, across the whole line, for the PMC-induced T1-transient correction 
approaches: (a) the water navigators acquired with surface coils (surf wat-nav), (b) the fat navigators acquired with the transmit coils (vol fat-nav) and (c) the fat 
navigators acquired with surface coils (surf fat-nav). The boxes extend from the first quartile (Q1) to the third quartile (Q3) of the data, with the orange line at the 
median. The whiskers extend from the box by 1.5 times the inter-quartile range. Higher tSNR values are reached when surf wat-nav and surf fat-nav are used, and 
particularly when the imputed method is applied. 
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fat-nav), which was much slower (2–3 times slower than surface coils 
navigators), but whole brain movements could be tracked, favoring the 
coregistration. 

The T1-transient on the timecourse can be minimized by reducing the 
navigator acquisition time, i.e. by employing high-undersampling 
afforded by dense surface receive arrays. Surface-array-recorded 

navigators (surf wat/fat-nav) provided large gains in t-stats and tSNR 
compared to a whole-head but slower navigator (vol wat/fat-nav), ac
quired with the transmit coil. Using water excitation rather than a fat- 
based excitation navigator leads to lower T1-transient amplitudes, as 
the excitation of the navigator counteracts the T1-driven magnetization 
recovery. Note that the water-based navigator images are less sparse 

Fig. 8. box plots showing the mean t-stats across participants, across the whole line, for the PMC-induced T1-transient correction approaches: (a) the water navi
gators acquired with surface coils (surf wat-nav), (b) the fat navigators acquired with the transmit coils (vol fat-nav) and (c) the fat navigators acquired with surface 
coils (surf fat-nav). The boxes extend from the first quartile (Q1) to the third quartile (Q3) of the data, with the orange line at the median. The whiskers extend from 
the box by 1.5 times the inter-quartile range and the dot indicates an outlier. Higher t-stats values are reached when surf wat-nav and surf fat-nav are used, and 
particularly when the imputed method is applied. 

Fig. 9. (a) Single-echo line-scanning fMRI data implemented in Raimondo et al. (2021), (b) NORDIC-denoised multi-echo line-scanning fMRI data (c) single voxel 
timecourse for single-echo line-scanning data (red line) and NORDIC-denoised multi-echo data (blue line), and (d) t-stats distributions for the single-echo data (red) 
and for the NORDIC denoised multi-echo data (blue). Substantial improvements in signal quality (tSNR single-echo = 4.0, tSNR NORDIC denoised multi-echo = 36.2; 
averaged across the line) and t-stats (t-stats single-echo = 3.8, t-stats NORDIC denoised multi-echo = 25.1; averaged across the line) upon a visual task is 
demonstrated for the NORDIC denoised multi-echo line-scanning. 
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than fat images, resulting in potentially increased SENSE artifacts. 
However, our current undersampling factor of four in an array of 32 
receive coils, did not prove to be problematic. In terms of signal analysis, 
large gaps and a T1-transient signal are introduced to the timecourse. 
From the analysis of all participants, we found that a simple interpola
tion of the points corresponding to the T1-transient was the optimal 
option for managing the issue, in terms of both tSNR and t-stats. Even 
though the interpolation method is the simplest, it completely removes 
the T1-transient distortions, (unlike our regression method, which only 
reduces the T1-transient signal), hence enhancing both the tSNR and t- 
stats. The T2*PMC fit method yielded noisy timecourses and, while the 
T1-transient signal is fully eliminated, it does not fulfill the requirement 
of high tSNR. A more sophisticated regression might bring the results 
closer to the imputed data quality while retaining more of the original 
timecourse. However, the limited tSNR of linescan acquisitions and the 
sharp peak of the T1-transients to be removed would complicate such 
regressions. 

We already acknowledged that the presence of the T1-transient is a 
limiting factor in the motion-corrected data, but it is a great tool when 
scanning specific groups, such as patients, young adults and non-trained 
participants (i.e. participants that are completely naive to scanning), as 
well as to validate the sensitivity of the method to motion. In general, 
considering the necessary pause for navigator acquisition and the 
resulting T1-transient effect to perform PMC, we recommend using 
image-based prospective motion correction only when non-trained 
participants are involved. Highly trained participants are capable of 
staying still within 250 µm for remarkably long periods of time (Zim
mermann et al., 2011), if necessary supported externally, such as 
through head fixation. 

From our last comparison, on a single participant, we observed a 
substantial improvement in data quality and obtained functional re
sponses for NORDIC denoised multi-echo line-scanning compared to the 
original single-echo line-scanning (Raimondo et al., 2021), in terms of 
both t-stats and tSNR. The NORDIC-denoising proved to be a great tool 
for decreasing thermal noise, while the use of multi-echo data per se 
offers an increase in MR signal and more freedom in the processing of 
the data, such as different possibilities of echo combination strategies or 
physiological noise regression. We decided not to add the PMC in the 
comparison with the single-echo line-scanning version to avoid the 
T1-transient, which would bias the comparison. 

The presented improvements are relatively straightforward ways to 
increase the data quality and make line-scanning fMRI more generaliz
able and open for new neuroscientific questions, as well as possible 
clinical research. Specifically, with a double session approach we would 
aim for a subject-specific line planning, in order to investigate the he
modynamic responses function across cortical depth in patients with 
small vessel and sickle cell diseases, compared to healthy participants 
(Afzali-Hashemi et al., 2021; DeBaun and Kirkham, 2016; van den Brink 
et al., 2022; Zwanenburg and van Osch, 2017). 

5. Conclusion 

Line-scanning is a powerful fMRI technique to detect BOLD responses 
at ultra-high spatial and temporal resolutions. Here, we added multi- 
echo readouts, NORDIC denoising, and real-time motion correction. 
We suggest a 5-echo multi-echo acquisition with NORDIC-denoising for 
line-scanning fMRI in the visual cortex. For non-trained participants, we 
recommend using prospective motion correction and we suggest inter
polating the time points corresponding to the T1-transient time in order 
to correct for it. Using multi-echo readouts and NORDIC denoising for 
line-scanning, we found a substantial increase in tSNR and t-stats upon a 
visual task compared to the original single-echo line-scanning protocol. 
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