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Abstract

The univariate and multivariate logistic regression model is discussed where response variables are subject to randomized response
(RR). RR is an interview technique that can be used when sensitive questions have to be asked and respondents are reluctant to answer
directly. RR variables may be described as misclassified categorical variables where conditional misclassification probabilities are
known. The univariate model is revisited and is presented as a generalized linear model. Standard software can be easily adjusted to
take into account the RR design. The multivariate model does not appear to have been considered elsewhere in an RR setting; it is
shown how a Fisher scoring algorithm can be used to take the RR aspect into account. The approach is illustrated by analyzing RR
data taken from a study in regulatory non-compliance regarding unemployment benefit.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Randomized response (RR) is an interview technique that can be used when sensitive questions have to be asked
and respondents are reluctant to answer directly (Warner, 1965; Chaudhuri and Mukerjee, 1988). Examples of sensitive
questions are questions about alcohol consumption, sexual behavior or fraud. RR variables can be seen as misclassified
categorical variables where conditional misclassification probabilities are fixed by design. The misclassification protects
the privacy of the individual respondent. A meta-analysis by Lensvelt-Mulders et al. (2005) shows that RR yields more
valid prevalence estimates than other methods for sensitive questions.

This paper discusses the univariate and the multivariate logistic regression model when the response variables are
subject to RR. The discussion consists of two parts. First, we consider the univariate logistic regression model for
binary RR response variables and present this model as a generalized linear model (GLM). By presenting the model
as a GLM, two aspects of the model will become clear that have not been noticed in the literature. (i) The model
inherits useful properties from the standard GLM; for example, properties of parameter estimates. (ii) The model can
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be assessed by adjusting standard software for GLMs. The paper shows how adjustments of routines in R and GLIM
are possible, making the assessment of logistic regression models for RR response variables reliable and fast.

The second part of the discussion in this paper is the presentation of a multivariate logistic regression model for RR
response variables. As far as we know this model has not been considered elsewhere. The model makes it possible to
investigate the relation between several RR response variables and a set of covariates jointly. There are various ways to
define a multivariate logistic regression model without RR (Fahrmeir and Tutz, 2001, Section 3.5). The present paper
extends the multivariate logistic regression model as presented by Glonek and McCullagh (1995) and shows how the
model can be adapted to take the RR design into account.

We briefly review the literature on univariate logistic regression for RR response variables. Maddala (1983) was
the first to present the likelihood of the model with respect to the RR design by Warner (1965). Scheers and Dayton
(1988) discuss the model with respect to both the Warner model and the unrelated-question model (Greenberg et al.,
1969). Van der Heijden and Van Gils (1996) present the model where the response variable is subject to either the RR
design by Boruch (1971) or the RR design by Kuk (1990). A recent application of the univariate model is presented in
Lensvelt-Mulders et al. (2006). Chen (1989) describes the link between RR and misclassification in the context of log-
linear models. Magder and Hughes (1997) discuss the logistic regression model where the response variable is subject
to misclassification comparable to the perturbation induced by the RR design. As far as we know, the encompassing
GLM framework has not yet been discussed.

The outline of the paper is as follows. Section 2 describes the RR design. Section 3 present the logistic regression
model given a binary RR response variable. Section 4 discusses the multivariate logistic regression model for RR
response variables. In Section 5, applications are discussed using RR data from a Dutch study in regulatory non-
compliance regarding unemployment benefit. Section 6 concludes the paper.

2. The RR design

This section starts with the forced response design (Boruch, 1971) as an example of an RR design and shows how
the design can be seen as a misclassification design.

Assume that the sensitive question asks for a yes or a no. The forced response design is as follows. After the sensitive
question is asked, the respondent throws two dice and keeps the outcome hidden from the interviewer. If the outcome
is 2, 3 or 4, the respondent answers yes. If the outcome is 5, 6, 7, 8, 9 or 10, the respondent answers according to the
truth. If the outcome is 11 or 12, the respondent answers no. This design protects the privacy since an observed yes does
not necessarily imply a latent yes. In other words, the interviewer does not know whether a respondent answers yes
because he or she answers the question truthfully—it might also be the case that the respondent answers yes because
he or she is forced to do so by the design.

Let Y be the latent binary RR variable that models the sensitive item, Y ∗ the binary variable that models the observed
answer, and yes ≡ 1 and no ≡ 0. The RR design of the forced response design is given by

P(Y ∗ = 1) = P(Y ∗ = 1|Y = 0)P(Y = 0) + P(Y ∗ = 1|Y = 1)P(Y = 1)

= 1/6 + 3/4P(Y = 1). (1)

Note that probabilities P(Y ∗=j |Y=k) are fixed for j, k ∈ {0, 1}by the known distribution of the sum of the two dice. The
first equation of (1) shows that RR variables can be seen as misclassified variables, where conditional misclassification
probabilities are given by P(Y ∗ = j |Y = k). We assume that the respondent complies with the instructions provided to
him in the interview setting. Given this assumption, the distribution of the misclassification error is under control by
the researcher.

If we write P(Y ∗ = 1) = c + dP(Y = 1), other RR designs can be described in the same way (compare Böckenholt
and van der Heijden, in press). In the original Warner (1965) design every person in a population belongs to either
group A or group B. With probability p ∈ (1/2, 1) the question is “Do you belong to group A?” and with probability
1 − p the question is “Do you belong to group B?” In this case we have c = 1 − p and d = 2p − 1.

In the Kuk (1990) design, a yes-or-no question is asked using stack of cards. As an example, let two stacks of cards
contain both black and red cards. In the right stack the proportion of red cards is 8

10 and in the left stack 2
10 . The

respondent is asked to draw one card from each stack and to keep the color of the cards hidden from the interviewer.
Next, the question is asked. Instead of answering the question directly, the respondent names the color of the card he
took from the related stack, i.e., when the answer is yes, the respondent names the color of the card he took from the
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right stack, and when the answer is no, he names the color of the card from the left stack. In this case we have c = 1
5

and d = 3
5 .

3. The RR binary logistic regression model as a GLM

3.1. The random component

A GLM is described by a random component, a systematic component and a link function. The standard logistic
regression model is a GLM, see, e.g., Agresti (2002) or Aitkin et al. (2005). Regarding the random component, the
binary response variable Y with values {0, 1} is a Bernoulli trial. In the RR logistic regression, the misclassified version
Y ∗ of a binary Y is also a Bernoulli trial given that the latent Y is a Bernoulli trial. It follows that

Y ∗ ∼ Bernoulli(c + dP(Y = 1)).

Note that 0 < c + dP(Y = 1|xi ) < 1 holds since 0 < c, 0 < d , and c + d = P(Y ∗ = 1|Y = 1) < 1 in an RR design.

3.2. The systematic component

If data are given by (yi, xi ), i ∈ {1, . . . , n}, the systematic component of the standard logistic regression is

�i = E[Yi |xi] = P(Yi = 1|xi ) and g(�i ) = log
�i

1 − �i

= �txi ,

where � is the parameter vector, and the link function g is a monotonic differentiable function on (0, 1). In the RR
logistic regression model we have

�∗
i = E[Y ∗

i |xi] = c + dP(Yi = 1|xi ) = c + d
exp(�txi )

1 + exp(�txi )
. (2)

It follows that the link function g∗ of the RR logistic regression model is given by

g∗(�∗
i ) = log

�∗
i − c

c + d − �∗
i

= �txi .

The function g∗ is a monotonic differentiable function on (0, 1) since

c < �∗
i = c + dP(Yi = 1|xi ) < c + d ,

which holds since P(Yi = 1|xi ) ∈ (0, 1). Notice that the inverse of g∗ is given by (2). Fig. 1 depicts this inverse for the
standard GLM, where c = 0 and d = 1, for the GLM with the Kuk design, where c = 1

5 and d = 3
5 , and for the GLM

with the forced response design, where c = 1
6 and d = 3

4 . The graph shows what is already implicit in (1), i.e., given c
and d, �∗ ∈ (c, c + d). If there is no misclassification, we have of course (c, c + d) ≡ (0, 1). The graph also shows that
the forced response design discriminates better between values of � = �tx than the Kuk design with c = 1

5 and d = 3
5 .

In the application section, we compare the efficiency of the RR designs numerically.

3.3. Maximum likelihood estimation

To estimate parameter vector � in the RR logistic regression model, the likelihood is maximized. In the case of RR,
the likelihood is given by

L(�|(y∗
i , xi ), i ∈ {1, . . . , n}, c, d) ∝

∏
y∗
i =0

1 − P(Y ∗
i = 1|xi )

∏
y∗
i =1

P(Y ∗
i = 1|xi )

=
∏
y∗
i =0

1 −
(

c + d
exp(�txi )

1 + exp(�txi )

) ∏
y∗
i =1

c + d
exp(�txi )

1 + exp(�txi )
.
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Fig. 1. The inverse of the link functions, given � = �tx, for the standard GLM, the RR GLM with the Kuk design, and the RR GLM with the forced
response design.

This is the general formulation of the likelihood in the RR setting. Maximization is possible by general Newton–Raphson
methods, but as is shown in the Appendix, we can also adapt standard GLM software to take into account the RR design
by defining a specific link function. The Appendix shows how this can be done in R and in GLIM. It is also possible
to use the Fisher scoring algorithm directly, as presented in the next section.

4. The RR multivariate logistic regression model

4.1. The random component

For the RR multivariate logistic regression model, we describe the RR design per variable Y by using a matrix
PY = (pjk), where pjk = P(Y ∗ = j |Y = k). If the variable has K categories, matrix PY is a K ×K non-singular matrix
and the misclassification design is given by �∗ = P�, where �∗ = (�∗

1, . . . , �
∗
K)t is the distribution of the observed

variable Y ∗ and � = (�1, . . . , �K)t is the distribution of the latent variable Y. The case of a binary Y has already been
illustrated by the forced response design (1). For this design it follows that

PY =
(

p00 p01

p10 p11

)
=

(
10/12 1/12

2/12 11/12

)
.

Note that c = p10 and d = p11 − p10. The advantage of the matrix notation becomes apparent when we assess the
multivariate RR design. As an example, if the misclassification of Y1 is described by PY1 and the misclassification of
Y2 is described by PY2 , the misclassification of the Cartesian product Y = (Y1, Y2) is described by PY = PY1 ⊗ PY2 ,
where ⊗ denotes the Kronecker product, see, e.g., Chaudhuri and Mukerjee (1988).

For the general situation, assume that Y is multinomially distributed with parameter vector �. Let the RR design be
given by the non-singular matrix P. From the fact that P is non-singular and Pt is a transition matrix, it follows that Y ∗
is multinomially distributed with parameter vector �∗ = P�.

4.2. The systematic component

The multivariate logistic regression model is described by Glonek and McCullagh (1995). The general form of the
link in the multivariate model between the linear predictor and the expected response vector is

� = Ct log(L�), (3)

where C is the contrast matrix and L is the marginal indicator. We illustrate the model for the bivariate case with
the binary responses Y1 and Y2. Let � = (�00, �01, �10, �11)

t , where �kl = P(Y1 = k, Y2 = l), for k, l ∈ {0, 1}.
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Given � = (0, �Y1
, �Y2

, �Y1Y2
)t , the link functions are given by

�Y1
= log

�1+
1 − �1+

, �Y2
= log

�+1

1 − �+1
and �Y1Y2

= log
�00�11

�01�10
, (4)

where the plus subscript denotes summation, for example, �1+ = �10 + �11. The regression equations are given by

�Y1
= �t

Y1
xY1 , �Y2

= �t
Y2

xY2 and �Y1Y2
= �t

Y1Y2
xY1Y2 . (5)

This model is a marginal model—it implies univariate logistic models for both Y1 and Y2 marginally (Glonek and
McCullagh, 1995). The odds ratio is used to model the dependence between Y1 and Y2. The contrast matrix and the
marginal indicator for this model are given by

Ct =
⎛
⎜⎝

1 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 0 1 −1 −1 1

⎞
⎟⎠ and Lt =

⎛
⎜⎝

1 1 0 1 0 1 0 0 0
1 1 0 0 1 0 1 0 0
1 0 1 1 0 0 0 1 0
1 0 1 0 1 0 0 0 1

⎞
⎟⎠ .

The first element of � represents the null contrast log(�++)=0. For an observation i, the regression is given by �i =Xi�,
where � = (�t

Y1
, �t

Y2
, �t

Y1Y2
)t and

Xi =

⎛
⎜⎜⎝

0 0 0
xt
Y1

0 0
0 xt

Y2
0

0 0 xt
Y1Y2

⎞
⎟⎟⎠ .

Given an RR design, the link between the linear predictor and the expected response vector is

� = Ct log(L�) = Ct log(LP−1�∗). (6)

4.3. Maximum likelihood estimation

To estimate the RR multivariate logistic regression model, we adapt the method that is presented in Glonek and
McCullagh (1995), who do not consider the RR case. Assume that data are given by independent observations (y∗

i , Xi ),
i = 1, . . . , n. Let the RR design be described by P, be it a univariate or a multivariate situation. The log likelihood is

l(� |(y∗
i , Xi ), i ∈ {1, . . . , n}, P) =

n∑
i=1

(y∗
i )

t log �∗ =
n∑

i=1

(y∗
i )

t log P�. (7)

The maximization of the log likelihood consists of two parts that are iterated. Given a starting value of �, the first part
uses a Newton–Raphson iteration to obtain � given �. This part does not need an adaption for the RR design since the
relation between the linear predictor and the latent distribution does not change. The second part is a Fisher scoring
algorithm that takes the RR into account and updates the estimation of �.

Part one: To invert Eq. (3), work with v = log(�). The Newton–Raphson iterations are described by

(a) The initial approximation is v0.
(b) Then set

vn = vn−1 − {Ct(diag(L exp(vn−1))
−1)L}−1{Ct log(L exp(vn−1)) − �}.

For details see Glonek and McCullagh (1995, Section 3).
Part two: The adaptation of the scoring algorithm is straightforward given the above. The derivative ��/�� is given

by (Ct diag(L�)−1L)−1X. The score vector and the Fisher information matrix are given by

s(�|y∗
i ) =

(
P

��

��

)t

diag(P�)−1y∗
i ,
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and

I(�|y∗
i ) = EY ∗

i
[s(�; yi )s

t(�; yi )] =
(

P
��

��

)t

diag(P�)−1
(

P
��

��

)
. (8)

If the cross-classification of the latent response variables contains one or more sample zeros, we propose to smooth the
data in the maximization procedure. That is, after part one, add a small probability mass to each entry of �̂, normalize
�̂ such that the entries sum up to one, and then go to part two. Sample zeros in the cross-classification of RR data are
discussed in Van den Hout and Van der Heijden (2004).

5. Applications

This section illustrates the foregoing by analyzing data taken from an RR survey concerning unemployment benefit
in the Netherlands in 2004. This analysis is limited in the sense that we utilize a limited number of variables from the
original survey and only consider main-effect models.

The sample size is n = 753. For i ∈ {1, . . . , n}, let y∗
1i denote the observed answer to the RR question whether the

number of job applications of respondent i is below the required minimum (yes = 1, no = 0). Likewise let y∗
2i denote

the observed answer to the question whether respondent i did any voluntary work without reporting this. In addition,
x1i is sex (male = 1, female = 0), x2i is age in years and x3i denotes whether the income of respondent i constitutes
the larger part of the income of the household (yes = 1, no = 0).

The RR design is given by p00 = 0.813 and p11 = 0.933 and it is a slightly adapted form of the forced response
design.

5.1. Univariate regression

The univariate logistic regression analyses are presented in Table 1, where AIC stands for the Akaike Information
Criterion. The results in the table—bar the AICs—consist of the output of the glm() procedure in R if this procedure
is adapted for RR as described in the Appendix.

The first estimated model and the reductions in the deviance show that covariate x2 is important when modelling the
question whether respondents apply frequently enough for new jobs. The second model shows that covariates x1 and
x2 are associated with the question whether respondents did any unreported voluntary work. Looking at the parameter
estimates we note that the estimates of �3 are pretty close in the two models. However, variable x3 does not induce a
significant reduction in deviance after controlling for x1 and x2. We shall use these results in the multivariate modelling
in the next section.

Table 1
Univariate logistic regression analyses of the unemployment data, where the RR design is taken into account

Full model Analysis of deviance (terms added sequentially)

logit(P(Y = 1|x)) = �tx Reduction in deviance Deviance AIC

Estimate SE

Y1 �0 −0.048 0.556 (Intercept) 952.95 954.95
�1 −0.330 0.369 x1 0.74 952.21 956.21
�2 −0.034 0.014 x2 4.65 947.56 953.56
�3 0.534 0.390 x3 1.93 945.63 953.63

Y2 �0 −3.515 0.717 (Intercept) 979.26 981.26
�1 0.168 0.378 x1 5.81 973.44 977.44
�2 0.043 0.015 x2 12.33 961.12 967.12
�3 0.310 0.370 x3 0.49 960.62 968.62

Variable Y1 is job application and Y2 is voluntary work. Sample size is 753 and �0 is the intercept.
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Table 2
Standard errors for RR designs w.r.t. univariate logistic regression analysis of the unemployment data in Table 1

Design Standard errors of �̂1, �̂2, �̂3, and �̂4

Current RR design with c = 0.187 and d = 0.746 0.556 0.369 0.014 0.390
Forced response with c = 1

6 and d = 3
4 0.545 0.362 0.014 0.383

Kuk with c = 1
5 and d = 3

5 0.684 0.453 0.018 0.480
Kuk with c = 1

10 and d = 4
5 0.485 0.321 0.012 0.340

No RR, i.e., c = 0 and d = 1 0.355 0.234 0.009 0.246

The response variable is Y1 and we assume � = �̂.

Table 3
Deviances of bivariate logistic regression models taken the RR design into account

Model # parameters Deviance AIC

1 Intercept(1,2,3) 3 1928.033 1934.033
2 Intercept(1,2,3), x2(1, 2) 5 1905.071 1915.071
3 Intercept(1,2,3), x1(2), x2(1, 2) 6 1903.411 1915.411
4 Intercept(1,2,3), x2(1, 2), x3(2) 6 1903.098 1915.098
5 Intercept(1,2,3), x2(1, 2), x3(1, 2), �Y13 = �Y23 6 1901.638 1913.638
6 Intercept(1,2,3), x2(1, 2), x3(1) 6 1903.799 1915.799
7 Intercept(1,2,3), x2(1, 2), x3(1, 2) 7 1901.611 1915.611
8 Intercept(1,2,3), x1(1, 2), x2(1, 2), x3(1, 2) 9 1900.889 1918.889

Sample size is 753. Notation: xj (k, . . .) means the covariate xj is included in the kth regression equation, where the order of the equations is given
by (5).

To apply the Fisher scoring algorithm of Section 4 to the univariate case, choose

Ct =
(

1 0 0
0 −1 1

)
and Lt =

(
1 1 0
1 0 1

)
.

As a reviewer of the paper suggested, the information matrix (8) can be used to investigate the RR design with respect
to the extra variance induced by the misclassification. The matrix does not depend on observed values of the response
variable—its link with the RR design is P. Given a value of �, we can compare the variance for various choices of c and
d. For job application (Y1) and corresponding �̂, standard errors for five designs are presented in Table 2. Regarding
the extra variance, the design in our application is in between the two Kuk options and similar to the original forced
response design. The closer (c, d) to (0, 1) the better in terms of standard errors, but the closer to (0, 1), the greater the
lack of privacy protection and, hence, the higher the probability that respondents do not follow the instructions of the
RR design, see Böckenholt and van der Heijden (in press). A discussion of the efficiency with respect to the Warner
model and the unrelated-question model can be found in Scheers and Dayton (1988).

5.2. Bivariate regression

Continuing with the application in the previous section, we now turn to the multivariate models. Table 3 presents the
results of the analysis. As an illustration, Model 8 is defined by (3), (4) and the regression equations �i = Xi� which
are given by � = (�Y10, �Y11, �Y12, �Y13, �Y20, �Y21, �Y22, �Y23, �Y1Y20)

t and

Xi =
⎛
⎜⎝

0 0 0 0 0 0 0 0 0
1 xY11,i xY12,i xY13,i 0 0 0 0 0
0 0 0 0 1 xY21,i xY22,i xY23,i 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎠ .

So the odds ratio is estimated by using an intercept only. Models 1–7 are defined by restrictions on the parameters,
see Table 3. The order of the models in the table reflects the findings in the previous section. Model 3 versus Model 2
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shows that adding x1 does not seem necessary. With respect to adding x3, the best model according to the AIC is
Model 5 in which the regression coefficient of x3 is restricted to be the same in the marginal models for Y1 and Y2, and
�Y11 = �Y21 = 0. Coefficient estimates for this model are given by

�̂Y10 = −0.03 (0.54), �̂Y20 = −3.31 (0.68),

�̂Y12 = −0.03 (0.01), �̂Y22 = 0.04 (0.013),

�̂Y13 = �̂Y23 = 0.44 (0.33) and �̂Y1Y20 = 1.30 (0.54),

where the estimated standard errors are within the brackets. The standard errors are estimated by evaluating the
information matrix at the optimum. The Wald 95% confidence interval of exp(�Y13) = exp(�Y23) is (0.81; 2.99) which
suggest that including x3 in the model is not necessary. If we use the deviance to select a model, we would opt for model 2.

The interpretation of the parameters of the marginal models for Y1 and Y2 is the same as in the univariate logistic
regression model. In the multivariate model, we can easily investigate whether an effect of a covariate is the same
in the marginal models. This is illustrated by Model 5 which states that the effect of whether or not the income of
the respondent constitutes the larger part of the income of the household is the same for the prevalence of regulatory
non-compliance regarding job applications and the prevalence of non-compliance regarding voluntary work. More
specific, Model 5 states that a change from x3 = 0 to 1, means that the odds on non-compliance regarding both Y1 and
Y2 changes multiplicatively by exp(̂�Y13) = exp(̂�Y23) = exp(0.44) = 1.56. So the odds on non-compliance is higher
when a person’s income constitutes the larger part of the income of the household.

In addition, the multivariate model describes the association between the two response variables Y1 and Y2 by
estimating the odds ratio. In Model 5, the ratio of the odds in the two rows of the cross-classification of Y1 and Y2
is estimated to be exp(1.30) = 3.67 with Wald 95% confidence interval (1.28; 10.49). Thus, interpreting this model,
respondents appeared to be nearly 4 times as likely to ignore rules concerning job applications as to do voluntary work
without reporting them.

6. Discussion

This paper presents methods to estimate univariate and multivariate logistic regression models where the response
variable is subject to RR. The framework is quite general in the sense that the methods can deal with various RR designs
and that the RR regression models have the same flexibility as the standard regression models. The application section
shows that once the methods are implemented, analyzing RR data and interpreting the results resemble the analyses
and interpretations in the situations without RR. The Fisher information matrix can be used to compare the variance
induced by various RR designs.

To take RR into account, we extended the multivariate logistic regression model as discussed in Glonek and
McCullagh (1995). Both the extension and the standard model are marginal models. Bergsma and Rudas (2002)
introduce a general definition of marginal models that includes the multivariate logistic regression model. They also
consider aspects of marginal models that we did not discuss, e.g., the existence of a joint distribution with certain
restrictions on some of its marginals.

An important assumption in the paper is that respondents comply in the sense that they follow the instructions of the
RR design. This assumption will not always be justified. For instance, it might be that some respondents do not trust the
privacy protection offered by the RR design and give a socially desirable answer anyway. The general idea, however,
is that RR performs relatively well, see Lensvelt-Mulders et al. (2005). Future RR surveys may profit from research
into cheating with respect to the RR design, see Böckenholt and van der Heijden (in press) and the references therein.

Acknowledgment

Most of the work of the first author was done at the Department of Methodology and Statistics, Utrecht University,
the Netherlands.



Author's personal copy

6068 A. van den Hout et al. / Computational Statistics & Data Analysis 51 (2007) 6060–6069

Appendix A. Using GLM software to estimate the univariate model

Using R (R Development Core Team, 2005). It is possible to extend glm()with a user-specified link function that
takes the RR design into account. The general idea how to define your own link function was explained by B. Ripley
(R mailing List, 2001).

1. Make a new family object my.binomial<-edit(binomial) by changing
if(any(linktemp= = c("logit","probit","cloglog","log")))
stats<-make.link(linktemp)

into
if(any(linktemp= = c("logit","probit","cloglog","log","RRlogit")))
stats<-my.make.link(linktemp)

2. Make a new link function my.make.link<-edit(make.link) by extending make.link with a user-
specified link RRlogit. This new link is the same as the logit link except for linkfun, linkinv, and mu.eta,
which should be adapted such that they describe the new link function as given in Section 3.2
3. The function call is glm( ...., family = my.binomial(link= "RRlogit"))

Using GLIM (Francis et al., 1993). For the forced response RR design we have c = 0.16667 and d = 0.75. Assume
that n = 1000 is the sample size. For the RR univariate logistic regression model with ystar and x1 and x2:
$sl 1000 $data ystar x1 x2 $din ’RRdata.dat’ $err b n
$calc n= 1 $yvar ystar $num c d $ass c= 0.16667: d= 0.75
$macro ownlink
$calc emineta= %exp(-%lp)
$c Calculate mu as in eqn (2)
$calc %fv= c+d/(1+emineta)
$c Calculate the derivative of eta w.r.t. the mu from eqn (2)
$calc %dr= (1+emineta)**2/(d*emineta)
$endmac
$c Fit a model without RR to get starting values
$fit x1+x2 $di e
$c Fit univariate RR model
link o ownlink $fit . $di e
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