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Background and purpose: Changes of healthy appearing brain tissue after radiotherapy (RT) have been
previously observed. Patients undergoing RT may have a higher risk of cognitive decline, leading to a
reduced quality of life. The experienced tissue atrophy is similar to the effects of normal aging in healthy
individuals. We propose a new way to quantify tissue changes after cranial RT as accelerated brain aging
using the BrainAGE framework.
Materials and methods: BrainAGE was applied to longitudinal MRI scans of 32 glioma patients. Utilizing a
pre-trained deep learning model, brain age is estimated for all patients’ pre-radiotherapy planning and
follow-up MRI scans to acquire a quantification of the changes occurring in the brain over time.
Saliency maps were extracted from the model to spatially identify which areas of the brain the deep
learning model weighs highest for predicting age. The predicted ages from the deep learning model were
used in a linear mixed effects model to quantify aging of patients after RT.
Results: The linear mixed effects model resulted in an accelerated aging rate of 2.78 years/year, a signif-
icant increase over a normal aging rate of 1 (p < 0.05, confidence interval = 2.54–3.02). Furthermore, the
saliency maps showed numerous anatomically well-defined areas, e.g.: Heschl’s gyrus among others,
determined by the model as important for brain age prediction.
Conclusion: We found that patients undergoing RT are affected by significant post-radiation accelerated
aging, with several anatomically well-defined areas contributing to this aging. The estimated brain age
could provide a method for quantifying quality of life post-radiotherapy.
� 2022 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 175 (2022) 18–25 This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
One of the primary treatments for tumors in the brain is
radiation therapy (RT), usually with a combination of surgery,
chemotherapy [1,2] and, occasionally, immunotherapy [3]. Due to
the complex nature of changes in the brain, quantifying the effects
of RT on seemingly healthy brain tissue remains a challenge. Tissue
atrophy occurs both post-RT and in normal aging, with atrophy
caused by normal aging occurring at a low rate of �0.5% per year
in the healthy elderly [4]. As tissue atrophy caused by RT resembles
accelerated natural aging, the ability to calculate a patient’s ”brain
age” to quantify atrophy could provide useful insights due to ease
of interpretation compared to other methods such as cortical thick-
ness and volumetric measures, which rely on pre-defined features
[5–7]. One method to quantify brain age is the BrainAGE frame-
work [8], which has already been widely used in describing
disease-related changes of the brain, such as Alzheimer’s disease
[8,9] and psychiatric disorders [10,11]. BrainAGE, or brain age
gap estimation, is a technique to determine the discrepancy
between a person’s chronological- and biological brain age [12],
using magnetic resonance imaging (MRI) scans. In a healthy brain,
showing normal aging patterns, the chronological and biological
ages are expected to be identical, however, in case of an abnormal
condition or disease the biological age may differ from the chrono-
logical age. In this study, BrainAGE will be applied in glioma
patients who have undergone RT.

RT plays an important role in the treatment of cranial tumors,
however, the effect of radiation is not selective to cancer affected
tissue and it comes with the unintentional side effect of
radiation-induced brain injury to the rest of the brain tissue, which
can lead to progressive cognitive decline. Cognitive symptoms
occur in approximately 50–90% of patients undergoing RT [13],
and can lead to a reduced quality of life (QoL) [14]. Quantification
of changes in the brain using an age-based metric is of interest, as
it can be related to some of the changes in QoL using existing
knowledge on brain aging [15]. By predicting a brain age of a
patient before RT and comparing that age to the ages predicted
for the follow up scans, the effects of RT on brain aging can be
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determined in a longitudinal manner. Since the effects of RT on
cancer-affected tissue are extremely destructive, a similar effect
can be expected on the healthy tissue. Moreover, the effects of
RT on healthy tissue are similar to aging in a healthy brain, e.g.
enlarged ventricles due to tissue atrophy [15], understanding
age-related changes in a healthy brain is of importance. Two exam-
ples of healthy brain aging is shown in Fig. 1. In Fig. 1/A, an exam-
ple of aging over a longer time span in cross-sectional data is
shown from the Information eXtraction from Images (IXI) data
set [16]. Noticeable differences are in the size of the ventricles
and space between the gyri, indicating a loss of tissue volume.
An example of relatively short-term aging is shown in Fig. 1/B,
taken from the MyConnectome data set [17]. The time between
the scans is approximately 11 months, which is similar to the mean
Fig. 1. Two examples of aging, with Fig. 1/A showing long term aging in cross-sectional co
to right respectively. Fig. 1/B shows two longitudinal MRI scans from the MyConnectome
preprocessed using optiBET for brain extraction [18] and FLIRT for linear registration to M
darker colour of the brain stem in the second scan, are related to the different noise pa
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follow-up time of 11.67 months between first and last scan within
our RT data set. The short-term (non-)aging example shows that
the healthy brain is not affected by tissue atrophy in a similar time
span as the expected overall survival of glioma patients. The differ-
ences between the scans, most notably the slightly darker colour of
the brain stem in the second scan, are related to the different noise
patterns and contrast.
Materials and methods

Patient selection and data collection

For this study, MRI scans of 32 histologically proven glioma
patients, who received RT in the UMC Utrecht in the period from
hort from the IXI data set [16], showing 3 MRI scans at 40, 60 and 80 years, from left
project [17], taken approximately 11 months apart. Both MyConnectome scans were
NI152 template.[19,20] The differences between the scans, most notably the slightly
tterns and contrast.
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2016 to 2017, were analyzed retrospectively. The first scan of every
patient was acquired during the postoperative RT planning. The
scans are T1-weighted and were acquired on a 3 T Philips Ingenia
scanner with the 3D turbo-spin echo sequence without gadolinium
enhancements. The voxel resolution is 1 x.

0.96 � 0.96 mm3, with a matrix size of 207 � 289 and 213 con-
tinuous axial slices without gap. The parameters used were
TR = 8.1 ms, TE = 3.7 ms and the flip angle was 8 degrees. The min-
imum number of scans per patient was 2, the pre-RT scan and the
first scan after RT. The maximum amount of scans acquired was 9,
with a mean of 4.03, and a SD of 1.96. The mean time between first
and last scan is 11.67 months, with a SD of 4.29 months. See sup-
plementary Fig. 1 for a visualization of the time between scans and
Table 1 for an overview of the patient characteristics. The institu-
tional review board waived informed consent for this retrospective
study (study ID 18/274). The IXI data set, utilized for validating the
saliency maps, was adjusted for this study to contain 310 healthy
individuals between the age range of 42 and 82. This selection of
individuals contains 134 males and 176 females, with a mean
age of 59.19 and a SD of 9.27.
Preprocessing

To be able to utilize the model from Peng et al. [21] the data
required preprocessing. Specifically, the data had to be reoriented
to stereotaxic 1 mm Montreal Neurological Institute (MNI) space
and non-brain tissue had to be removed. Both of these actions were
performed using FSL version 6.0. [22] First, the non-brain tissue
was removed using optiBET [18], an optimized version of BET (Brain
Extraction Tool) [23], using the default settings. The rigid registra-
tion to MNI space was done using the FSL FLIRT tool [19,20], with 6
degrees of freedom, using the image output from optiBET and the
MNI152 template as reference. Finally, the transformed images
were subject to the pre-trained network to obtain a predicted
age for each brain. In Fig. 2, a visualization of the complete pre-
processing pipeline can be found. The MRI scan in this figure is
from a 42 year old patient, which will function as an example
throughout the manuscript.
Deep learning model

The Simple Fully Convolution Network (SFCN) model by Peng
et al. [21], which was trained on UK Biobank data [24] and selected
for winning the PAC2019 contest [25], was used via Python 3.85
[26] to obtain a probability distribution for each of the MRI scans.
Table 1
Table of baseline patient characteristics.

N (total n = 32)

Age 57.64 ± 9.01
Sex
Male 18 (56.25%)
Female 14 (43.75%

Chemotherapy
Yes 22 (68.75%)
No 10 (31.25%)

Surgery
Biopsy 5 (15.625%)
Partial resection 21 (65.625%)
Complete resection 6 (18.75%)

WHO Grade
II 10 (31.25%)
III 3 (9.375%)
IV 19 (59.375%

Prescribed dose
50.4 10 (31.25%)
60 22 (68.75%)
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This distribution ranged from ages 42 to 82, adding up to a total of
40 possible outcomes. The age with the highest probability was
selected as the predicted age. See supplementary Fig. 2 for an
example of the model output, showing the softmax layer output
histogram of the 42 year old patient pre-RT and a predicted age
of 54.
Saliency maps

Furthermore, saliency maps were extracted from the SFCN
model to visualize which parts of the brain contribute to the age
estimation the most. These saliency maps were created and aver-
aged for both the RT data set and the IXI data set. By retrieving
the voxel weights the model used to predict the ages for each
patient and average them across the whole cohort, a visualization
of the contribution of all brain areas was created. The FSL tool au-
toaq was used to aid the anatomical interpretation of such areas
using built-in atlases [27–30]. An arbitrary threshold of 0.05 was
selected to eliminate the voxels with a relatively low weight to
aid visual interpretation and highlight hotspots. Finally, the sal-
iency maps for both data sets were compared by subtracting the
saliency maps from each other and removing all data points with
a difference less than 0.015.
Statistical modeling

To obtain the aging rate for each patient, RStudio 1.2.5019 [31]
with the package’lme40 [32] was used to implement mixed models.
For the linear mixed model, the formula.

y ¼ changes � timeþ ðtimejsubjectÞ
was used, where the ”changes” are the biological changes in aging
in months, and the ”time” is the time passed in months. The model
is adjusted for normal aging, so only accelerated or decelerated
aging are predicted, with 0 being normal aging. The model predicts
an age, using mixed effects linear regression for each patient, with
the subject being an exclusively random effect, while the time
passed is both a fixed and a random effect. By using ”time” as both
a fixed and random effect, the average aging rate is used as predic-
tor due to the fixed effect, and the random effect allows the aging
rate to vary between patients. To correct for the baseline prediction
error, the error was removed from all scans, taking the initial error
per patient and subtracting it from every scan for that patient. Addi-
tionally, a model was created in which the baseline error was
removed before training the model. Both models were validated
with a standard leave-one-out cross validation (LOOCV).

Results

To test the accuracy of the SFCN model before RT, the pre-RT
scans were first analyzed separately. The mean absolute error
(MAE) for the pre-RT scans is 6.53 years. In supplementary Fig. 3,
the chronological age is compared to the predicted age. The figure
shows that the ages of older patients are underestimated by the
model, while the ages of younger patients are overestimated.

To show the model output, Fig. 3 contains three follow-up scans
of the aforementioned 42 year old male patient. The chronological
age for this patient is 42, while the SFCN model predicts 54 years
for the pre-RT scan. Four months after RT at the first follow-up,
the scan is predicted at 59 years, indicating a five year increase
in biological age, or a BrainAGE score of + 5 years in four months,
which indicates a 15x aging rate. Similar effects are found based
on the next two follow-up scans, showing that this particular
patient’s brain aged a total of 8 years in the 9 months after RT.
The clear upward aging trend presented for this patient is visible
in the tissue changes.



Fig. 2. The processing pipelipe for applying the model, starting with A), the unprocessed MRI from the 42 year-old patient. The unprocessed MRI is processed using optiBET to
obtain B), the optiBETMRI, which is then put into MNI152 space to get C), the MNI152 MRI. This MRI can then be used in the model, providing D), the model output, which can
be used to perform E), the statistical analysis and obtain F), the saliency maps.
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To analyze the changes in aging rate, the SFCN model predicted
the ages for all images. Fig. 4/A shows the predicted age for all
scans, minus the chronological age (adjusted for normal aging).
The red curve represents a smoothed average of all predictions
using a locally estimated scatterplot smoothing (LOESS) function
[33]. As this curve trends upward, an increased aging rate is
implied as time passes. However, this analysis does not take into
account the prediction error, which was shown based-on the pre-
RT scans, resulting in a biased average. The averaged curve contin-
ues to trend upward towards the late follow-ups at the two year
mark. The grey-coloured bands show that the confidence interval
is much wider for this area, as the available data is more sparse
in this time period. The confidence bands remain narrow in the
first 12 months. Fig. 4/B represents the predicted aging over time,
corrected for the baseline prediction error. The smoothed average
LOESS curve shows a positive slope and narrow confidence bands
21
after the bias is removed. This indicates that the changes in aging,
on average, are accelerated.

In Fig. 4/C, the individual aging rates per patient, as predicted by
the mixed effects model based on the data in Fig. 4/A, are shown.
The average predicted aging rate for all patients was 2.78, which
is statistically significant compared to a baseline aging rate of 1
(p < 0.05, CI 2.54–3.02). To adjust for the bias introduced by the
prediction error of the pre-RT scans in the SFCN model, as well
as to show the heterogeneity of the slopes, Fig. 4/D shows the same
regression slopes as Fig. 4/C with the intercepts removed. The
smoothed average LOESS regression curve (red) shows an upward
trend with the curve flattening as data points get sparser. All lines
have a higher slope than normal aging, showing that the linear
mixed effects model predicts every patient to age faster than nor-
mal, which indicates that all patients undergoing RT will show
increased aging when measured with this framework. The narrow



Fig. 3. Four MRI scans from the same 42-year old patient, with the axial plane showing the ventricles, while the sagittal and coronal plane show the location of the tumor. The
age is predicted by the SFCN model at pre-RT, and at each of the follow-ups.
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confidence bands show that the model has low uncertainty,
especially up to 12 months. In supplementary Fig. 4, the results
of the alternative model can be found which has a higher predicted
aging rate of 3.22 (p = 0.00029, CI 2.11–4.33), but more variance
between the rates. This model utilizes the changes in age, but with
the baseline error removed before creating the model. To compare
these two models and validate them, a leave-one-out cross valida-
tion was performed, the results of which can be found in supple-
mentary Table 1. In short, the adjusted model performed slightly
better in terms of MAE, but the increase in MAE after LOOCV was
similar to the original model. However, while the p-value of the
original model increased to 0.156, the p-value of the adjusted
model remained similar (1.342e-05). Finally, aging rates of differ-
22
ent patient subgroups were compared, the results of which can
be found in supplementary Figs. 5, 6 and 7, for chemotherapy-,
WHO grade- and gender-based comparisons, respectively. There
are no significant differences between any of the groups
(p = 0.583 for male/female, p = 0.1797 for chemotherapy/no
chemotherapy and p = 0.2136 for low/high WHO grade). The lar-
gest differences between the groups come from the data past
15 months, which is sparse and therefore has high confidence
intervals.

To visualize which areas of the brain had the highest contribu-
tion in the SFCN model for determining brain age, a population
average saliency map was created, shown in supplementary
Fig. 8. A saliency map shows which voxels of an MRI scan



Fig. 4. For each graph, the predicted change in aging (y axis) is shown over the time during follow-up in months (x axis). The red curves show the LOESS averaged regression
curves, with the grey bands showing the 95% confidence interval for each respective curve. Each line represent a single patient, the points on the lines represent an MRI scan,
and the horizontal lines shows normal aging. Fig. 4/A shows each of the predicted ages per scan per patient. Fig. 4/B shows the same predicted ages, but adjusted for the
baseline prediction error. For Fig. 4/A and 4/B the colouring is lighter blue for higher chronological ages, and darker blue for lower chronological ages. Fig. 4/C shows the
regression slopes prediction by the linear mixed effects model. Fig. 4/D contains the same regression slopes with the intercept removed.
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contributed the most to the outcome. In Fig. 5 the thresholded
saliency map is shown with a cortical atlas on top. The green cross-
hair emphasize a cluster of 753 voxels within the Heschl’s gyrus,
which borders are shown in dark blue. The Heschl’s gyrus is asso-
ciated with acoustic processing [34], indicating that the model
weights could be translated to specific brain functions. Other
examples of contributing anatomically well-defined areas are the
Fig. 5. The population average saliency map with the background image of the MNI152
brain regions contains the high-weighted clusters. One of which is the Heschl’s gyrus, u
weighed by the model, with purple being the least weighed.
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brain stem and the middle cerebellar peduncle clusters with more
than 1500 voxels.

Supplementary Fig. 9 shows the saliency maps from both the RT
population and the healthy IXI population [16], to compare the dif-
ference in brain areas of importance between the two populations.
The general structure of the saliency maps stay the same, although
there are differences between the two, as seen in supplementary
2 mm template. The HarvardOxford cortical atlas [27] is overlaid, showing which
nder the green crosshair. The more warm (red) an area is coloured, the higher it is
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Fig. 9/C. The areas with a difference of more than 0.015 for the
radiotherapy patients are the Heschl’s Gyrus and white matter in
the cerebellum, while in the healthy cohort the brain stem had
more contribution.

In supplementary Fig. 10/A, the MRI scan of a 52 year old
patient with a large resection cavity in the frontal part brain is
shown, with the saliency map and the radiation dose on top.
Since purple colour in the current colour scale indicates the low-
est model weight, and no colour means zero weight, the model
does not take the resection cavity into account for patient A.
For patient B, the resection cavity does have a model weight,
but the irradiated area shows a lower model weight than the
rest of the brain.
Discussion

In this study, we show that cranial RT has a remarkable effect on
the brain, which we conceived as postradiation accelerated brain
aging. A deep learning model was able to quantify changes in the
brain post radiotherapy. After RT, the brain showed a statistically
significantly accelerated aging of 2.78–3.22 times the normal rate
in 32 glioma patients (p < 0.05). Overall, these results imply that
radiation changes the tissue of the brain, which manifests similarly
to accelerated aging. Based on studies investigating the effect of
normal, healthy aging, an increased brain age after RT may also
result in cognitive decline [15]. textcolorredConsequently, normal
appearing brain tissue should be spared as much as possible to
avoid this post-radiation accelerated aging when irradiating the
tumor-affected area.

The changes are quantified with an interpretable score using
the entire brain without the potential bias or limitation of com-
monly used, pre-defined features found in neuroimaging studies,
such as cortical thickness [6] and volumetric measures [7], e.g.:
hippocampus volume [35]. The population average saliency maps
provide insights into the workings of the SFCN model. The areas
weighed highest by the model are located in well defined anatom-
ical areas of the brain, and may encompass certain functions of the
brain, showing that the saliency maps could be of interest for fur-
ther research on how the brain changes after radiotherapy. The
absence of model weights for brain abnormalities indicates that
the model values the existing brain structure most, and bases the
predictions on the existing tissue patterns. It is not unexpected
that the high dose areas do not overlap with the high saliency
weight areas, given the highly interconnected structure of brain
[36]. This concept, called the connectome, has been utilized in
many disciplines, such as Alzheimers disease [37], bipolar disorder
[38] and brain tumor research [39]. It uncovers how disease or
intervention related changes alter the underlying brain networks,
which have widespread consequences. The regions that received
the largest amount of radiation to fulfill the therapeutic needs
show lower model weights in the saliency maps. This indicates
that the brain tissue that received large amounts of radiation does
not necessarily contribute more to the brain age prediction. While
the saliency maps can provide insight into the understanding of
brain changes, their localization utility should be interpreted with
caution [40], especially when multiple models are compared. In
order to fully explain the localization element of the deep learning
model, there are additional requirements, such as having matched,
controlled data from the same MR system and proper statistical
correction for multiple comparisons. In the absence of these fac-
tors, we performed our comparison only in a qualitative manner.

Lastly, there are some limitations to this study, starting with the
baseline prediction error of the deep learning model. The SFCN
model has a relatively large prediction error of 6.53 years MAE
for the pre-RT scans, which is higher than the 2.14 years found
24
by Peng et al. [21]. All patients present some sort of abnormality,
because of the tumor itself and treatment side-effects such as tis-
sue scarring and oedema, which could cause this discrepancy.
Since the SFCN model was trained on healthy volunteers without
such abnormalities, they are not represented in the prediction,
which can affect the performance of the model. Another factor is
the differences between scanners, as the deep learning model
was trained on UK Biobank data, which uses different scanners
and scanner parameters than our cohort. Despite the baseline error
introduced by the pre-trained model, the trends shown by the
model are clear, indicating that while the accuracy of the pre-RT
predictions may not be perfect, the aggressive effect of RT acts
despite such model imperfections, measured by the increased
aging rate. Furthermore, we assume that the baseline error estab-
lished from the pre-RT scans applies systematically to all follow-up
scans, therefore the measured upward trend in brain ages corre-
sponds solely to the RT-related tissue changes. We find this
assumption permissive, as it is highly unlikely that the prediction
errors largely collide with the measured effects, since such an error
would have to have the same direction as the effect, while a ran-
dom error is expected on a population level. Additionally, the
LOOCV for the mixed effects model should be taken lightly, as cross
validation for mixed effects models remain a challenge. [41] The
mixed effects model is only intended for parameterization, not
for out of sample prediction, as it can only predict new scans for
existing patients. In any case, this study does not aim to provide
a clinical prediction model, but a proof of concept for brain age pre-
diction in radiotherapy. For future work, BrainAGE may provide a
novel way to quantify the effectiveness and damage caused by
treatment by comparing patient outcomes. Damage to healthy
brain tissue could be minimized by selecting the treatment with
reduced accelerated aging.

Conclusion

In conclusion, in this work we show that patients who have
undergone cranial RT experience brain tissue atrophy, which can
be identified as post-radiation accelerated aging using the Brai-
nAGE method. Due to the lack of pre-defined features, BrainAGE
can be used to predict aging rates in a non-biased manner. Since
the saliency maps indicate that there is an aging effect occurring
in the healthy tissue, a global aging effect might be present for
the entire brain. This indicates that the mere presence of RT will
cause postradiation accelerated aging, potentially affecting
patients’ QoL. By comparing the post-radiation accelerated aging
between patients and selected the treatment with the least
amount of aging, damage to healthy tissue caused by the treatment
may be reduced.

Data sharing

MRI scans of the patients cannot be shared. The IXI data set can
be found on the IXI website [16]. The MyConnectome data set can
be found on the MyConnectome website [42]. The SFCN model
code can be found on the GitHub page of Peng et al. [43]. The pop-
ulation average saliency maps from both the patient and the IXI
groups are available as supplementary materials.
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Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.radonc.2022.08.002.
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