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Abstract Background: Checkpoint inhibition has radically improved the perspective for pa-

tients with metastatic cancer, but predicting who will not respond with high certainty remains

difficult. Imaging-derived biomarkers may be able to provide additional insights into the het-

erogeneity in tumour response between patients. In this systematic review, we aimed to sum-

marise and qualitatively assess the current evidence on imaging biomarkers that predict

response and survival in patients treated with checkpoint inhibitors in all cancer types.

Methods: PubMed and Embase were searched from database inception to 29th

November 2021. Articles eligible for inclusion described baseline imaging predictive factors,

radiomics and/or imaging machine learning models for predicting response and survival in

patients with any kind of malignancy treated with checkpoint inhibitors. Risk of bias was as-

sessed using the QUIPS and PROBAST tools and data was extracted.
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Results: In total, 119 studies including 15,580 patients were selected. Of these studies, 73 investi-

gated simple imaging factors. 45 studies investigated radiomic features or deep learning models.

Predictors of worse survival were (i) higher tumour burden, (ii) presence of liver metastases, (iii)

less subcutaneous adipose tissue, (iv) less densemuscle and (v) presence of symptomatic brainme-

tastases. Hazard rate ratios did not exceed 2.00 for any predictor in the larger and higher quality

studies. The added value of baseline fluorodeoxyglucose positron emission tomography parame-

ters in predicting response to treatment was limited. Pilot studies of radioactive drug tracer imag-

ing showed promising results. Reports on radiomics were almost unanimously positive, but

numerous methodological concerns exist.

Conclusions: There is well-supported evidence for several imaging biomarkers that can be used in

clinical decision making. Further research, however, is needed into biomarkers that can more

accurately identify which patients who will not benefit from checkpoint inhibition. Radiomics

and radioactive drug labelling appear to be promising approaches for this purpose.

ª 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The introduction of immune checkpoint inhibitors has

greatly improved survival for patients in advanced

stages of several cancer types. Since the approval of
checkpoint inhibitors for metastatic melanoma and non-

small cell lung carcinoma (NSCLC) in 2011 and 2015

[1,2], respectively, 5-year survival rates have increased

from less than 10% to more than 50% and 30%,

respectively [3e6]. Checkpoint inhibitors have subse-

quently been approved for a range of malignancies with

similar improvements in survival [7].

However, the effect of checkpoint inhibitors varies
significantly from patient to patient. Patients who reach

complete or partial remission under therapy have a fair

chance of long-term survival or even cure frommetastatic

disease. In patients with melanoma who responded to a

combination of checkpoint inhibitors, median overall

survival was 6 years [5]. Non-responding patients, how-

ever, experience little-to-no benefit from treatment and

have limited survival. For example, only 4% of patients
with NSCLC who were alive but showed progression at 6

months were still alive after 4.5 years [7,8].

The prediction of response to treatment is a relevant

topic. If non-responding patients can be identified before

treatment is started, this can prevent severe and even life-

threatening adverse events [9]. These severe events are

especially common in patients treated with both anti-PD1

and CTLA-4 inhibitors, occurring in over 30% and 50%
of patients with NSCLC and melanoma, respectively

[9,10]. Furthermore, accurate patient selection can reduce

the high costs associated with check inhibitor therapy,

which typically approach 100,000 USD per quality-

adjusted life year gained [11]. Lastly, the prediction of

non-response is relevant as these patients can, without

delay, be treated with other treatments such as targeted

therapy [12], or be enrolled in clinical trials investigating
novel therapeutic approaches.
To guide treatment decisions, a biomarker must be

able to identify non-responding patients with a high

specificity. If high specificity is not ensured, the use of

this biomarker alone would mean that potentially

benefitting patients will not receive treatment. A po-

tential biomarker should, therefore, demonstrate the

ability to stratify patients into groups with a marked
difference in survival and/or response.

Accurate prediction of response has proven to be a

challenge, however, as we do not fully understand why this

variation in response exists. Checkpoint inhibition work by

blocking proteins (e.g. PD-1, PD-L1 or CTLA-4) that

inhibit the body’s immune response to tumours [13].

Several crucial factors in anti-tumour response have been

explored as predictive markers, such as PD-L1 expression,
presence of tumour infiltrating lymphocytes and tumour

mutational burden [14,15]. Clinical biomarkers, for

example stage of disease, WHO performance status,

neutrophil-to-lymphocyte ratio, and level of lactate dehy-

drogenase have been examined as well. None have, how-

ever, proven to be accurate enough to select patients who

should not be treated with checkpoint inhibition [16]. Pa-

tients with NSCLCmay, for instance, respond to anti-PD1
treatment even though PD-L1 expression is absent [17].

Imaging may be able to provide additional insights

into the heterogeneity in tumour response between pa-

tients. The underlying rationale for this hypothesis is

that different tumour genotypes will be expressed as

different imaging phenotypes. Readily available baseline

imaging may therefore provide potentially valuable

information about tumour size, tumour/metastasis
location and, if acquired, fluorodeoxyglucose positron

emission tomography (FDG-PET) parameters.

Furthermore, the measurements of lesion shape, in-

tensity and texture on imaging can potentially capture

information about the tumour phenotype. These mea-

surements, collectively known as radiomics, may then

subsequently be correlated to clinical outcomes [18].

http://creativecommons.org/licenses/by/4.0/
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Lastly, radioactive labelling of checkpoint inhibitor

molecules can provide insight into the drug uptake

throughout the body including in the tumour [19].

To our knowledge, no comprehensive review has been

published on the entire spectrum of prognosis research in

imaging biomarkers and outcome to checkpoint inhibitors

across malignancies. Earlier publications were dedicated to

either a single modality (e.g. PET imaging or radiomics) or
a single malignancy [20e23]. This limits a complete over-

view, as advancements in one disease may very well be

applicable in another. Furthermore, the predictive value of

more sophisticated modalities (e.g. radiomics) should be

compared to that of simple markers (e.g. tumour burden)

to see if they add value. With this comprehensive review,

we aim to fill this gap and facilitate future research.

In this work, we aimed to systematically review the
ability of different imaging modalities to predict

response to checkpoint inhibitors. The population of

interest consists of patients treated with any checkpoint

inhibitor for any malignancy. Investigated predictors are

any individual biomarkers derived from imaging mo-

dalities and models including these. The outcomes of

interest are response (according to RECIST [24] or

iRECIST [25] criteria), progression-free survival (PFS)
and overall survival (OS). Both prognostic and predic-

tive factors are examined. A prognostic factor provides

information about a future outcome irrespective of

therapy (e.g. tumour stage for OS). In contrast, a pre-

dictive factor forecasts the effect of a specific treatment

(e.g. oestrogen receptor status for tamoxifen in patients

with breast cancer) [26]. Despite this difference, prog-

nostic factors are still important in guiding treatment
decisions: preventing unnecessary side-effects and costs

in a patient due to a very poor prognosis is no less

valuable than doing so based on a pure predictive factor.

For this reason, both types of factors were investigated.
2. Methods

This systematic review was conducted using the Preferred

Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) statement [27]. Details of the pro-

tocol for this study were registered on PROSPERO and

can be accessed at www.crd.york.ac.uk/PROSPERO/

display_record.asp?IDZCRD42020186199.
2.1. Selection of studies

On 29th November 2021, the PubMed and Embase

databases were searched for relevant studies. Other data

sources were publications found from references of
selected articles. Also, to ensure sensitivity of the search

strategy and to identify additional relevant studies,

Scopus was used. No date restrictions were applied on

the systematic searches and included articles published

on 29th November 2021.
Inclusion criteria for eligible articles were original

full-text research articles describing baseline imaging

prognostic factors and radiomics and/or imaging pre-

diction models (e.g. using machine learning) for

response and survival in patients treated with anti-PD1

checkpoint inhibition with any kind of malignancy

above 18 years of age.

The literature search used the following terms (with
synonyms, MeSH terms, and closely related words):

‘immunotherapy’ or ‘immune checkpoint inhibitor’

combined with ‘radiological’, ‘baseline factors’ and

‘predictive’, or combined with ‘radiomics’ or ‘machine

learning’. We specifically adopted a broad search to

include all articles related to imaging and predictive

factors and to radiomics and machine learning studies.

Duplicates were removed using EndNote. The complete
search strategy is listed in Supplementary file 1.

All articles were screened for relevance. Studies only

reported as conference abstracts without published full-

text reports were not included owing to the inability to

completely assess validity and methodologies. Other

exclusion criteria were case reports, reviews and meta-

analyses. The search was restricted to studies in human

participants and papers written in English. Furthermore,
studies only reporting predictive factors, radiomics or

machine learning models based on on-treatment imaging

(instead of pre-treatment imaging) were excluded.
2.2. Screening process

Titles and abstracts were screened for relevance by two

reviewers (ID and LM) using the Rayyan QCRI web

application [28]. Articles were excluded if they did not meet

the inclusion criteria. Next, the selected full-text articles

were assessed for eligibility by the same reviewers. Subse-

quently, the final selection of studies was made (Fig. 1).
2.3. Critical appraisal

Two tools were used to evaluate the risk of bias: the

QUIPS tool [29] was used to assess studies reporting

individual prognostic or predictive factors; the PRO-

BAST tool [30] was used to assess studies constructing

models that make predictions for individual patients.
The QUIPS tool is specifically designed to assess the

risk of bias in prognostic factor studies and does so by

judging the quality of a prognostic factor study on six

key domains: ‘study participation’, ‘study attrition’,

‘prognostic factor measurement’, ‘outcome measure-

ment’, ‘study confounding’ and ‘statistical analysis and

reporting’. The domain ‘study attrition’ was not evalu-

ated, as almost all studies were retrospective cohort
studies that did not report on loss to follow-up during

the data collection period. This domain could therefore

not be accurately assessed and was consequently not

used. Adaptation of the QUIPS tool for specific

http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42020186199
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Fig. 1. PRISMA flow chart of article screening and selection. PRISMA, Preferred Reporting Items for Systematic Reviews andMeta-Analyses.
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purposes is encouraged by the developers in the

accompanying article [29].

The PROBAST tool is designed to judge the risk of bias

in studies on models that make predictions for individual
patients. As the PROBAST tool was developed for the

appraisal of regression-type models, the authors recom-

mend the use of additional signalling questions when eval-

uating studies on machine learning models [30]. The

statistical analysis domain of the PROBAST tool was

therefore augmented with the following three questions: (i)

‘Is all data from a single patient reserved to only a single

data partition (e.g. training, testing or tuning)?’, (ii) ‘Is the
optimal model selected and are hyperparameters tuned?’

and (iii) ‘Is only the best model evaluated on the indepen-

dent validation set?’ (see Supplementary file 2). The

remaining domains (‘Participants’, ‘Predictors’ and

‘Outcome’) were not altered.

In addition to the risk of bias assessment, the

Radiomics Quality Score (RQS) was used to evaluate

study quality in all studies reporting on quantitative
imaging-derived features (radiomics) [163]. All quality

assessments of the included studies were done by two

independent reviewers (ID and RM). Any disagreement

was resolved through discussion.

2.4. Data extraction

The following details were extracted from the studies:

total number of patients investigated, cancer type, study

treatment and design, imaging modality (computed to-

mography (CT), magnetic resonance imaging (MRI) or
PET/CT), results and corresponding significance and

outcome. Both response to therapy (odds ratio or com-

parison between groups resulting in a p-value) and sur-

vival parameters (hazard ratio for progression-free
survival and overall survival) were obtained for the indi-

vidual predictor studies. In the prediction model studies,

an area under the curve or sensitivity and specificity of the

model was stated, this information was also collected. For

radiomics and machine learning studies, the size of the

training- and validation cohorts were extracted as well.

2.5. Synthesis

The investigated prognostic factors and prediction

models were grouped into six categories: tumour burden,
body composition, location, FDG-PET features, other

radioactive tracer imaging and radiomics. Extracted

characteristics and results from all studies were grouped

according to category, marker and disease. A quantitative

meta-analysis was not considered feasible due to hetero-

geneity in population, predictor definitions and reported

outcomes. The available evidence was therefore sum-

marised based on (in order of importance) study quality,
consistency of the results across studies and sample size.

3. Results

3.1. General characteristics

The search yielded 6873 records from databases and 9

through reference screening. A total of 119 studies



Table 1
Summary of findings.

Category Biomarker Study results N Cancer(s) Reference

Tumour

burden

Higher tumour

burden

Y OS, PFS 303, 103, 21, 83, 96, 58,

583, 37, 1461

Melanoma, NSCLC,

HNSCC

[32,34,35,36,37,

41,42,43,45]

Y Response 303 Melanoma [32]

No effect on OS, PFS or

response

111, 140, 85, 251, 49, 9 Melanoma, NSCLC, RCC,

various

[31,33,38,39,40,44]

Higher number of

metastases

Y OS, PFS 183, 303, 201 Melanoma, NSCLC [46,32,48]

Y Response 303 Melanoma [32]

No effect on OS, PFS or

response

520, 80, 58 Melanoma, NSCLC [47,49,41]

Body

composition

More visceral

adipose tissue

Y OS, PFS 133 Melanoma [53]

[ OS 55 NSCLC [50]

[ PFS 70, 79 Urothelial carcinoma [52,51]

No effect on OS, PFS or

response

74, 117, 153, 147 NSCLC, various,

melanoma

[54,55,56,57]

More subcutaneous

adipose tissue

[ OS 55, 70 NSCLC, urothelial

carcinoma

[50,52]

[ OS, PFS 90 Various [58]

[ OS, PFS and response 79 RCC [51]

No effect on OS, PFS or

response

117, 153, 147 Melanoma, various [55,56,57]

Higher skeletal

muscle quantity

[ OS 36, 100 NSCLC, various [59,66]

[ PFS 149 Gastric cancer [65]

[ PFS and response 42, 28 NSCLC [61,63]

[ OS, PFS 61, 27 HNSCC [62,64]

[ OS, PFS and response 103 NSCLC [60]

No effect on OS, PFS or

response

133, 287, 23, 46, 74, 156,

117, 251, 88

Melanoma, NSCLC,

various

[53,67,68,69,54,

70,55,39,71]

Higher skeletal

muscle density

[ OS 44, 90 Melanoma, various [72,58]

[ PFS 156, 147 NSCLC, melanoma [70,57]

[ Response 133 Melanoma [53]

[ OS, PFS and response 70 Urothelial carcinoma [52]

No effect on OS, PFS or

response

287, 79, 100, 88, 74 NSCLC, melanoma, renal

cell carcinoma, various

[67,51,66,71,54]

Location Liver metastasis Y OS, PFS 140, 336, 514, 201, 296,

58, 172, 90

Melanoma, NSCLC,

various

[33,74,47,48,75,

41,79,78]

Y Response 315, 140, 583, 336 Melanoma [73,33,42,74]

No effect on OS, PFS or

response

303, 213, 80 Melanoma, NSCLC [32,76,49]

Lung metastasis [ PFS 140 Melanoma [33]

[ ORR 140, 583 Melanoma [33,42]

Y PFS 201 NSCLC [48]

No effect on OS, PFS or

response

336, 303, 213, 9, 172, 90 Melanoma, NSCLC, RCC,

various

[74,32,76,78,79,78]

Lymph node

metastasis

No effect on OS, PFS or

response

140, 303, 201, 90 Melanoma, NSCLC,

various

[33,32,48,78]

Brain metastasis Y OS 168, 291 Melanoma, various [47,82]

No effect on OS, PFS or

response

336, 303, 92, 201, 58,

296, 213, 172, 90

Melanoma, NSCLC,

various

[32,41,48,74e76,78,79,81]

Symptomatic brain

metastasis

Y OS 514 Melanoma [47]

Bone metastasis No effect on OS, PFS or

response

140, 303, 213, 58, 201,

172, 90

Melanoma, NSCLC,

various

[32,33,41,48,76,78,79]

Pleural effusion Y PFS 213 NSCLC [76]

No effect on OS, PFS or

response

296, 201 NSCLC [48,75]

FDG-PET Higher SUVmax/

mean

[ Response 89, 63 NSCLC [84,77,98]

Y Response 32, 111 NSCLC [87,31]

Y OS 34 Melanoma [86]

[ PFS 63 NSCLC [77]

Y PFS 105, 30 HNSCC [89,90]

No effect on OS, PFS or

response

9, 92, 40, 55, 80, 85, 90,

111, 63, 92, 32, 49, 30,

NSCLC, RCC, melanoma,

various

[44,81,83,85,

49,38,88,31,77,

81,40,90]
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Table 1 (continued )

Category Biomarker Study results N Cancer(s) Reference

Higher metabolic

tumour volume

Y OS, PFS 55, 85, 112, 56, 80, 63,

105

NSCLC, Melanoma,

HNSCC

[38,46,49,50,85,92,93]

Y Response 56, 55, 80, 63 Melanoma [49,77,85,93]

[ Response 105 HNSCC [89]

No effect on OS, PFS or

response

92, 40, 34, 32, 49, 90, 30 NSCLC, Melanoma,

Lymphoma, RCC

[40,81,83,86e88,90]

Higher total lesion

glycolysis

Y OS 56, 34, 85 Melanoma [93,86,38]

Y Response 55 Melanoma [85]

No effect on OS, PFS or

response

92, 90, 111, 32, 49, 40,

63, 30

Melanoma, NSCLC,

various

[81,88,31,87,40,

,83,77,90]

Other tracers Higher total lesion

sodium fluoride

Y OS 111 Genitourinary tumours [94]

Higher Zr-

atezolizumab

SUVmax

[ OS, PFS 25 Various [96]

Higher Zr-

pembrolizumab

SUVmax

[ Response, PFS 18 Various [97]

[ Response 12 NSCLC [98]

Higher uptake of [F]

FB-IL2

No effect on OS, PFS or

response

13 Melanoma [100]

Higher Zr-

durvalumab

SUVpeak

No effect on OS, PFS or

response

13 NSCLC [99]

Higher 18F-

BMS986192 tumour-

to-blood ratio

[ Response 8 Melanoma [101]

Higher F-

fluorothymidine

SUVmean

No effect on OS, PFS or

response

17 Prostate cancer [95]

Radiomics Various individual

radiomics

Predictive of OS 105, 31, 103, 48 Melanoma brain metastasis,

melanoma, renal cell

carcinoma

[102,103,34,109]

Predictive of PFS 54, 60, 104 Melanoma, NSCLC [104,105,106]

Predictive of OS, PFS 21 NSCLC [107]

Predictive of response 112 NSCLC [108]

Radiomics models Predictive of response 70, 66, 203, 63, 11, 30,

22, 83, 48, 75, 64, 86, 57,

254, 409, 94

Melanoma, NSCLC,

HNSCC, Urothelial

carcinoma, renal cell

carcinoma, overian

carcinoma, oesophageal

squamous cell carcinoma,

hepatocellular carcinoma,

various

[112,22,114,119,

121,124,127,128,130,

132,133,135,136,

137,138,139]

Predictive of OS, PFS 46, 83, 332 NSCLC [115,118,123]

Predictive of OS 38 Lung adenocarcinoma [125]

Predictive of PFS 297, 289, 47, 31, 68 NSCLC, urothelial

carcinoma, various

[116,117,122,129,135]

Predictive of response, OS

and PFS

92 NSCLC [120]

Not predictive of response 50, 257 Melanoma, NSCLC [22,111]

Deep learning

models

Predictive of response 803, 151, 54, 41 NSCLC, lung

adenocarcinoma, urothelial

carcinoma

[144,142,141,140]

Predictive of PFS 938 NSCLC [145]

Predictive of OS, PFS 573 NSCLC [144]

Notes: ‘No effect’ is defined as ‘no statistically significant effect demonstrated’.
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remained after title/abstract screening (Fig. 1). These
studies are listed in Supplementary Table S1. The studies

included a total of 15,580 patients, with a median sam-

ple size of 74 (range 8e1461). The most studied malig-

nancy was NSCLC (42 studies), followed by melanoma

(33 studies) and urothelial carcinoma (seven studies). All
but one study investigated patients with metastatic
disease.

The predictive value of tumour burden was investi-

gated by 19 papers; body composition by 24 papers;

metastasis location by 18; FDG-PET features by 21;

other traces by 8; radiomics by 45 papers; models other
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than radiomics by two (Supplementary Table S1). All

studies reporting on factors in the first five categories

and nine radiomics studies investigated individual pre-

dictive factors. These studies were therefore assessed for

the risk of bias using the QUIPS tool (Supplementary

Table S2). The remaining studies reported the perfor-

mance of predictive models and were assessed for the

risk of bias using the PROBAST tool (Supplementary
Table S3). One study reported both on individual pre-

dictive factors and on a model and was assessed using

both tools. The results of the RQS screening are shown

in Supplementary Table S4. Data extraction results are

given per category in Supplementary Tables S5eS11. A

summary table of all results is provided in Table 1. A

discussion of the two papers describing predictive

models without the use of radiomics is provided in
Supplementary file 3. For the other categories, an

overview of the results is provided below.

3.2. Tumour burden

Measures of tumour burden (defined as the total

amount of cancer in the body) were grouped into two

categories: measures of total tumour volume (e.g. sum of

largest diameters, sum of volumes) and tumour count

(either number of metastases or number of affected or-
gans). Although volume and tumour count are expected

to be correlated in patients, these measures may diverge

in patients with many small metastases. As this specific

pattern of metastases may indicate different tumour

biology, count and volume were considered separately.

Measures of tumour volume were investigated in 15

studies [31e44]. Nine studies indicated that a higher

tumour volume was associated with worse survival
across tumour types [32,34e37,41e43,45]. These

included the three studies with the largest sample size

(n Z 1461, n Z 583 and n Z 303) and a low risk of bias

[32,42,45]. Hopkins et al. (n Z 1461) reported a hazard

rate ratio (HR) of 1.64 for overall survival per decimetre

increase of the sum of diameters of target lesions in

patients with NSCLC [45]. Similarly, Joseph et al.

(n Z 583) reported a HR of 1.64 for overall survival in
patients with melanoma and with a sum of diameters

above the median [42].

Six studies reported on the number of metastases as a

prognostic factor [32,41,46e49]. In univariate analysis,

this factor was a significant prognostic factor for sur-

vival in three studies [32,46,48] with a trend towards

significance in a fourth [49]. In multivariate analysis, this

effect remained significant only in one paper [46].

3.3. Body composition

Metrics of body composition were divided into four

categories, namely visceral adipose tissue, subcutaneous

adipose tissue, skeletal muscle quantity and skeletal

muscle density.
The eight papers reporting on the metrics of visceral

adipose tissue showed conflicting findings: three papers

demonstrated improved survival [50e52], whereas one

paper reported worse survival in patients with mela-

noma and with more visceral adipose tissue [53]. The

remaining papers reported no significant association

with survival [54e57]. Furthermore, there were consid-

erable methodological concerns: one paper [50] was at
low, one [57] at moderate, five [51e53,55,56] at high and

one [54] at an unclear risk of bias.

Seven papers investigated the predictive value of sub-

cutaneous adipose tissue. The results indicated either

better (4 papers) [50e52,58] or equal (3 papers) [55e57]

survival in patients with higher amounts of subcutaneous

fat, with HRs for OS ranging from 0.2 to 1 at varying

thresholds. Five papers [51,52,55,56,58] were at high risk
of bias, primarily due to the use of data driven optimised

thresholds without validation. The risk of bias of the

remaining two papers was low [50] and moderate [57].

Seventeen papers reported on various measures of

skeletal muscle quantity. Eight papers demonstrated

that higher skeletal muscle quantity was associated with

better survival [59e66]; the remaining nine papers re-

ported no significant correlation [39,53e55,67e71].
Reported HRs for overall survival ranged from 0.75 to

2.99. Risk of bias was low in 3 [61,64,67], high in 10

[39,53,55,59,63,65,66,68,70,71] and unclear in 4 papers

[54,60,62,69], data driven thresholds again being the

most common concern.

The influence of skeletal muscle density was investi-

gated by 11 papers. Five papers indicated that higher

skeletal muscle density was associated with a better sur-
vival [52,53,57,70,72]; six papers reported non-significant

findings [51,54,58,66,67,71]. One paper [67] was at low,

one [57] at moderate, eight [51e53,58,66,70e72] were at

high and one paper [54] at unclear risk of bias.

3.4. Metastasis location

In 14 papers, the presence of liver metastases was

investigated [32,33,41,42,47,48,73e80]. These papers

indicated that liver lesions were associated with worse

survival across all tumour types, with HRs between 1.6

and 1.9 for progression-free survival in the three highest

quality studies [47,48,74]. Additionally, radiological
response to treatment appeared to be lower in patients

with melanoma and with liver metastases (odds ratios

between 0.3 and 0.6) [33,42,73,74]. Results describing

the correlation with response in other tumour types were

not provided or showed no significant findings. Overall

study quality varied: five studies [42,47,48,73,74] were at

low risk, one [77] at high risk and eight

[32,33,41,75,76,78e80] at unclear risk of bias.
Thirteen of the included studies investigated the pres-

ence of brain metastases [32,33,41,47,48,74e76,78e82].

The presence of brain metastases was not found to be a

significant predictor of inferior outcomes in most studies.
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A notable exception was the largest and only real-world

study on this topic by Van Zeyl et al. (n Z 583) in

advanced melanoma, which showed that brain metastases

in the presence of symptoms were associated with worse

overall survival (HR 1.91) [47]. The quality of included

studies was reasonable: three studies [47,48,74] were at low

risk, one [82] at high risk and nine [32,33,41,75,76,78e81]

at unclear risk of bias.
Other investigated tumour locations were bone

[32,33,41,48,76,78,79], lung [32,33,42,44,48,74,76,78,79],

pleural effusion [48,75,76], lymph node [32,33,48,78], soft

tissue [32,33], gastrointestinal [33], adrenal [33,76] and

spleen [33]. None of these locations appeared to be a

consistent and independent predictor of response or

survival.
3.5. FDG-PET features

Several FDG-PET features were investigated as po-
tential predictors. The most reported features were

standardised uptake value (SUV) (15 studies), (total)

metabolic tumour volume (16 studies) and total lesion

glycolysis (10 studies).

Sixteen studies examined SUVmax and SUVmean of

the primary lesion and metastases as prognostic factors

[31,38,40,44,49,77,81,83e91]. The findings of the

included studies indicated that neither SUVmax nor
SUVmean were robust predictors of survival: reported

significant findings were sparse and conflicting. Further-

more, risk of bias was substantial: one study [38] was at

low, nine studies [31,40,49,77,83,85e87,89] were at high

and six studies [44,81,84,88,90,91] at unclear risk of bias.

Sixteen studies investigated total metabolic tumour

volume [38,40,46,49,50,77,77,81,83,85e90,92]. Of these,

eight studies demonstrated significantly worse survival
in patients with higher metabolic tumour volume

[38,46,49,50,77,85,92,93]. This included the largest study

by Awada et al. (nZ 112), which was at a low risk of bias

and reported a HR for OS of 1.004 per mL [46]. Consid-

erable methodological concerns existed in the remaining

studies: risk of biaswas low in three studies [38,46,50], high

in ten studies [40,49,77,83,85e87,89,90,92,93] and unclear

in three [81,88,90]. Furthermore, two of the studies had at
least a partial overlap in study population [85,93].

Total lesion glycolysis, which is the product of SUV

and metabolic tumour volume, was investigated by 11

studies [31,38,40,77,81,83,85e87,90,93]. It combines

volumetric and metabolic information, and therefore

presumably contains more information on the tumour

than SUV and morphological tumour value (MTV).

Four articles reported a significant association of total
lesion glycolysis with survival [38,85,86,93], three of

which studied patients with melanoma [85,86,93].

Findings were not significant in the other studies.

Overall risk of bias was similar to the previous markers:
one study [38] was at a low risk of bias, 8 studies

[31,40,77,83,85e87,93] were at high risk and two studies

[81,90] at unclear risk of bias.

3.6. Other PET radioactive tracers

Other investigated tracers included sodium fluoride, F-

fluorothymidine and Zirconium labelled to different

anti-PD1 antibodies, namely atezolizumab, pem-
brolizumab and durvalumab.

Lim et al. investigated total lesion fluoride in geni-

tourinary tumours and found this feature to be a sig-

nificant prognostic factor for overall survival (HR 2.64)

[94]. Scarpelli et al. investigated the relation between

tumour SUVmean and SUVtotal in F-fluorothymidine

PET-CT. Neither feature was significant in the multi-

variate Cox-regression [95]. Furthermore, both studies
were judged to be at a high risk of bias due to inade-

quate correction for known predictors.

Bensch et al. prospectively investigated the predictive

value of Zirconium-labelled atezolizumab in various

tumour types [96]. They found that the increased uptake of

labelled atezolizumab corresponded to a better response to

atezolizumab at first assessment and better overall and

progression-free survival (HR 6.3 and HR 11.7,
respectively).

Zirconium was also used to label pembrolizumab

[97,98] and durvalumab [99]. Similar results were found

in these studies: increased uptake to labelled anti-PD1

corresponded with higher response and survival.

An interesting approach was performed by Van de

Donk et al. Interleukin-2 was labelled to fluorine-18, in

order to visualise T-cell activity by tumour infiltrating
T-cells who express the high-affinity interleukin-2 re-

ceptor [100]. The tracer was safe; however, no correla-

tion with response to therapy could be found possibly

due to including only 13 patients.

Another way to visualise mechanisms of PD1 inhibitors

on a cellular level was carried out by Nienhuis et al. [101].

They performed PET imaging in eight patients with met-

astatic melanoma and with a tracer that visualises PD-L1
expression on the tumour. This pilot study indicated that

baseline tracer uptakewas associatedwith change in lesion

size at follow-up when normalised for tracer availability in

the blood pool (Pearson’s r Z �0.43).

3.7. Radiomics

Studies investigating radiomics were grouped according

to their methodology: nine studies investigated the value
of individual radiomic features; 30 studies constructed a

(machine learning) model based on extracted radiomic

features and six studies trained a deep learning model.

The quality of the nine studies [34,102e109] investi-

gating individual radiomic features was judged to be
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poor, as reflected in both the QUIPS rating and RQS

score. Primary concerns were use of optimal thresholds,

lack of independent validation and absence of correction

for known predictors. Furthermore, all studies reported

a significant finding, although none of the radiomic

features were so far reproduced or validated in an in-

dependent study. Thus, no solid evidence exists for the

predictive value of any single radiomics marker.
Similarly, all but two [110,111] of the 30 studies

[110e139] that constructed a radiomics model reported a

positive finding. The median reported area under the

curve for predicting response was 0.787 (range

0.52e0.963). However, numerous methodological con-

cerns exist for these studies as well. First, a significant

fraction of studies was at high (nZ 15) or unclear (nZ 6)

overall risk of bias. The most common flaws were lack of
correction for overfitting (ten studies) and a lack of

transparency regarding model selection and tuning (11

studies). These weaknesses were affirmed by the low

overall RQS, with amedian score of ten out of amaximum

of 36. Second, most studies had a limited sample size

(median nZ 68). Third, the three studies with the highest

RQS (RQS Z 24, 18 and 14) and largest sample size

(n Z 289, 210 and 332) appeared to have a significant
overlap in patient population [116,117,123]. These studies

can therefore not be considered independent. Lastly, the

predictions of the only radiomics model [138] that has

been validated in subsequent studies [135,139] correspond

closely with the presence of liver metastasis, which is a

known predictor of worse outcome. As the authors did

not correct for this predictor, the added value of this

model is unclear and needs to be further investigated.
Six studies investigated deep learning radiomics

models. Three studies were judged to be at a high risk of

bias and had only small validation cohorts (41, 12 and 29

patients) [140e142]. In the three remaining studies, the risk

of bias was judged to be low, size of the validation set was

adequate (n Z 123, 187 and 94) and the RQS was at or

above the median (13, 15 and 10) [143e145]. Two of these

studies appeared to have an overlap in study population
[143,144]. Notably, all three studies reported on a deep

learning model that was trained to predict an intermediate

variable (PD-L1 expression, tumourmutational burden or

EGFR mutation); patients could subsequently be strati-

fied into risk groups with a HR for PFS of, respectively,

1.78 and 2.57 and OR for response of 2.03.
4. Discussion

4.1. Overview

The objective of this review was to identify imaging

biomarkers in prognosis research in all patients with

cancer and treated with checkpoint inhibitors. Based on

the findings of the included studies, several groups of
predictors were identified with varying strength and

quality of evidence.

Higher tumour burden is very likely to be predictive

of worse survival. This finding is consistently supported

across tumour types by the highest quality studies on

this topic. It also corresponds to our knowledge in other

oncological populations undergoing other types of

treatment [146e148]. Furthermore, there is a reasonable
biological basis. First, higher tumour burden leads to

sicker patients, and they are therefore more likely to

succumb before they experience benefit from treatment.

Second, hypoxia plays a bigger role in larger necrotic

masses. Hypoxia is associated with immune escape and

therefore worse response [149e151]. However, despite

the correlation between tumour burden and survival, the

reported effect sizes indicate that this marker is not
strong enough to guide treatment decisions by itself and

there is also insufficient evidence that tumour count

adds predictive value to tumour volume.

Higher amounts of subcutaneous adipose tissue may

be associated with better survival. Although the findings

on visceral adipose tissue are conflicting, the results on

subcutaneous adipose tissue are consistently in accor-

dance with the so-called ‘obesity paradox’, in which a
high body mass index appears to be a protective factor

in cancer patients [152e155]. It must be noted, however,

that the reported results may be an overestimation of the

true effect, as reflected in the risk of bias assessment.

Furthermore, it is unknown whether the value of this

predictor is independent from simple clinical metrics,

such as body mass index. It is therefore deemed unlikely

that this marker will further impact clinical decision
making in the near future.

More and denser muscle may be predictive of better

survival. The findings of the included studies on this

topic are supported by similar observations in other

oncological populations [156e158]. Again, however,

there is a risk that the observed effect is an overestimate

due to biased analysis. Furthermore, the reported effect

sizes appear to be smaller in the larger studies, indicating
that publication bias may play a role. In conclusion, the

association of muscle density and quantity with survival

is plausible as they indicate fitter patients with more

reserve, but currently investigated parameters may be

only of limited predictive value.

The presence of livermetastases is shown tobe amarker

of worse survival across cancer types. This marker, too, is

an indicator of more advanced disease with spread to the
visceral organs. Interestingly, several large, high-quality

studies in patients with melanoma show that the presence

of liver metastases also predicts worse response compared

to metastasis in other organs. Whether this is due to liver

metastases being less responsive, or to patients with liver

metastases being innately different, is the topic of an

emerging field of research. In pre-clinical models, several

hepatic cell types have shown to modulate T-cells in the
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liver and create a systemic immune desert [159]. Further-

more, systemic T-cell loss and diminished immunotherapy

efficacy has been observed in patients with liver metastases

[159].

Symptomatic brain metastases may be associated

with worse survival in melanoma. No significant impact

of the presence of asymptomatic brain metastases was

observed in most of the included studies. However,
almost all included studies on this topic investigated trial

populations, in which patients with brain metastases

were excluded. The study conducted by Van Zeyl at el.,

however, examined real-world data and demonstrated

that symptomatic brain metastases were associated with

worse survival in patients with melanoma [47]. As pre-

vious studies have shown that checkpoint inhibitors are

effective against brain metastases, this difference in
survival is likely to be caused by more frequent neuro-

logical complications [160].

The added value of baseline FDG-PET features in

predicting response to treatment seems to be limited. Of

the investigated PET features, only a higher total MTV

was consistently shown to be associated with worse sur-

vival. However, since metabolic and MTV are at least

partly associated and none of the included studies cor-
rected for morphological tumour burden, it is unclear if

MTV is of added predictive value. Significant findings

about other FDG-PET-derived metrics (SUVmax,

SUVmean and TLG) are scarcer and were often at a high

risk of bias.

Radioactive drug labelling appears promising,

although current evidence is very preliminary. The hy-

pothesis that uptake corresponds to response has a very
strong biological basis. Furthermore, the reported re-

sults from small pilot cohorts are promising. However, it

remains to be investigated if the positive results will

generalise to larger sample sizes and if they will be in-

dependent of known predictors.

The value of radiomics remains unknown due to the

lack of high-quality evidence. Although the results of

the included papers on radiomics are almost exclusively
positive, the reported findings are likely to be over-

optimistic for several reasons. First, methodological

flaws may have led to an overestimation of the predic-

tive value of the described models. Second, the aggre-

gated results are likely to be additionally affected by

publication bias. Arguably, studies into radiomics are at

an even higher risk of publication bias: while negative

findings about traditional markers may be informative,
a negative finding about a radiomics model can be

viewed as ‘a complex machine that does not work’. This,

in combination with limited sample sizes in included

papers and repeated publications on very similar data-

sets, may have considerably skewed the aggregate re-

sults. Third, many radiomics features are sensitive to

variation in scanner type and protocol between centres

[161]. This variation may therefore reduce the predictive
value of the proposed models to only a fraction of what
is shown. In conclusion, the positive findings of the few

high-quality papers are promising, especially those that

use an intermediate endpoint for training. These find-

ings, however, remain to be confirmed through external

and prospective validation.

4.2. Future research

The predictive value of imaging biomarkers may improve

through future developments. Specifically, we believe that
subsequent research should focus on three key areas.

First, imaging biomarkers should be integrated with

predictors from other modalities. As no single biomarker

has yet been proven to be sufficient for effectively guiding

treatment decisions, we must investigate combinations of

multiplee uncorrelatede predictors. Concretely, this can

be envisioned as a multivariate prediction model

combining imaging biomarkers with clinical, histological,
biochemical and genetic predictors, among others. Sec-

ond, the added value of radioactive drug labelling should

be explored in larger studies. These studies should also

particularly report on the added value of this biomarker

over known predictors. In addition, negative results about

these markers would also be very beneficial in advancing

the field of research due to the efforts and costs needed to

produce these tracers. Third, new studies should more
closely adhere to methodological guidelines and should

confirm previous findings through rigorous validation.

This is especially the case for radiomics studies, of which

the impact is currently limited by methodological short-

comings. If, however, radiomics are proven to be inde-

pendent predictors, they would be able to provide us with

valuable information at no additional cost or harm to the

patient.

4.3. Limitations

The first main limitation of this review is the lack of a

universally agreed upon tool to assess the risk of bias in

machine learning studies. We used a combination of the

PROBAST tool and RQS to assess the quality of the

radiomics studies. Both tools, however, have limitations

for this purpose. The PROBAST tool addresses most

domains that put a machine learning model at a risk of
bias, but not all. The PROBAST-AI tool is currently

under development to meet this need [162]. Further-

more, the RQS provides excellent guidance in the design

of a good radiomics study but is not intended for scru-

tinising papers to detect a possible risk of bias.

The second main limitation is the lack of a quanti-

tative meta-analysis due to the differences in definition

of predictor or outcome in the included studies. Signif-
icant variation regarding predictors exists, often caused

by dichotomising continuous values at various thresh-

olds. This, in combination with the fragmentation of

evidence across different diseases and treatments, makes

a quantitative analysis essentially impossible. We were
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therefore unable to quantify the predictive power of the

investigated markers. We do, however, think that there

is enough ground for the conclusion that no individual

imaging-based biomarker is proven to be sufficient.

5. Conclusion

In conclusion, there is well-supported evidence for
several imaging biomarkers of response to checkpoint

inhibitors. Especially, higher tumour burden and the

presence of liver metastases are demonstrated to be

predictors of worse outcomes across malignancies and

drugs. However, none of these single predictors seem

strong enough to reliably identify patients that will not

derive benefit from treatment. A high degree of accuracy

is required for this purpose, as falsely designating a
patient as a non-responder would deny a patient access

to long-term ICI. Radiomics and radioactive drug

labelling appear to be very promising, although reported

findings on these approaches should be regarded as

preliminary at this moment. In addition to further

validation of these methods, future research should

focus on integrating imaging biomarkers with predictors

from other modalities in high-quality and sufficiently
large independent cohorts.
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