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Background and purpose: Magnetic resonance (MR)-guided linear accelerators (MR-Linac) enable accu-
rate estimation of delivered doses through dose accumulation using daily MR images and treatment
plans. We aimed to assess the association between the accumulated bladder (wall) dose and patient-
reported acute urinary toxicity in prostate cancer (PCa) patients treated with stereotactic body radiation
therapy (SBRT).
Materials and methods: One-hundred-and-thirty PCa patients treated on a 1.5 T MR-Linac were included.
Patients filled out International Prostate Symptom Scores (IPSS) questionnaires at baseline, 1 month, and
3 months post-treatment. Deformable image registration-based dose accumulation was performed to
reconstruct the delivered dose. Dose parameters for both bladder and bladder wall were correlated with
a clinically relevant increase in IPSS (� 10 points) and/or start of alpha-blockers within 3 months using
logistic regression.
Results: Thirty-nine patients (30%) experienced a clinically relevant IPSS increase and/or started with
alpha-blockers. Bladder D5cm3, V10–35Gy (in %), and Dmean and Bladder wall V10–35Gy (cm3 and %) and
Dmean were correlated with the outcome (odds ratios 1.04–1.33, p-values 0.001–0.044). Corrected for
baseline characteristics, bladder V10–35Gy (in %) and Dmean and bladder wall V10–35Gy (cm3 and %) and
Dmean were still correlated with the outcome (odds ratios 1.04–1.30, p-values 0.001–0.028). Bladder wall
parameters generally showed larger AUC values.
Conclusion: This is the first study to assess the correlation between accumulated bladder wall dose and
patient-reported urinary toxicity in PCa patients treated with MR-guided SBRT. The dose to the bladder
wall is a promising parameter for prediction of patient-reported urinary toxicity and therefore warrants
prospective validation and consideration in treatment planning.
� 2022 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 171 (2022) 182–188 This is

an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Stereotactic body radiation therapy (SBRT) has become a stan-
dard treatment for patients with low- and intermediate-risk pros-
tate cancer (PCa). With this form of extreme hypofractionation,
patients are commonly treated with 5 fractions of 7.25 Gy over
the course of 1–2.5 weeks [1]. Oncological outcomes after SBRT
are excellent, with 7-year biochemical failure-free survival rate of
93.7% [1].

Severe toxicity rates after prostate SBRT are low, with � 1%
combined genitourinary (GU) and gastrointestinal (GI) grade � 3
toxicity [1]. However, physician-reported incidences of acute grade
2 GU toxicity ranged between 21–28% in phase-3 trials comparing
conventional treatment with SBRT [2,3]. Also, patient-reported
outcome measures (PROMs), such as the International Prostate
Symptom Score (IPSS) questionnaire, have shown clinically rele-
vant side acute effects in a significant number of patients [3–7].

The introduction of magnetic resonance (MR)-guided linear
accelerators (MR-Linac) has enabled intra-fraction MR imaging
and daily plan adaptation [8,9]. While the potential clinical bene-
fits of MR-guided treatment have yet to be established, the incor-
poration of high-quality MR imaging provides more detailed
anatomical information shortly before and during the treatment
compared to conventional systems [10–12]. With online plan
adaptation, the treatment plan is adapted to fit the daily anatomy,
thereby potentially increasing treatment effectiveness while also
reducing radiation dose to organs-at-risk (OARs) [9]. Furthermore,
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the daily repeated imaging and re-planning allow more accurate
estimation of the actual delivered dose [13,14]. Additionally, the
use of high-quality MR imaging enables identification of soft-
tissue substructures, such as the bladder wall [15].

Currently, evidence on the relationship between the actual
delivered dose to urinary structures and acute urinary toxicity
after PCa SBRT is scarce as many studies considered pretreatment
plan data only [16,17]. The aim of the current study was to gain
insight into the dose–effect relationship between the accumulated
bladder and bladder wall dose and patient-reported acute urinary
toxicity in PCa patients treated with MR-guided SBRT.
Materials and methods

Patients and treatment procedures

For this study, PCa patients treated with 5 fractions of 7.25 Gy
on a 1.5 T MR-Linac (Unity, Elekta AB, Stockholm, Sweden)
between March 2020 and May 2021, who provided informed con-
sent for the use of their data within the prospective Utrecht Pros-
tate Cohort (UPC) study (NCT04228211), were identified. In the
UPC study, patients with primary localized PCa are included before
treatment and prospectively followed over time. After exclusion of
29 patients with missing baseline and/or follow-up IPSS data, 132
patients were included.

Patients were eligible for SBRT treatment in case of low- or
intermediate-risk PCa (NCCN classification), IPSS � 20, and good
clinical condition (WHO performance status 0–2). No restrictions
with respect to age and/or prostate size were applied. Seven
patients with high-risk PCa, including two patients with cT3a
PCa, were treated ‘off-protocol’ at the physician’s discretion
(Table 1). Treatment was delivered in five fractions over the course
of 2.5 weeks (two fractions per week). A dose of 36.25 Gy was pre-
scribed to the planning target volume (PTV) (Supplementary Data
A). The clinical target volume (CTV) included the prostate body,
the gross tumor volume (GTV) with a 4 mm margin excluding
OARs, and up to 1/3rd of the seminal vesicles. An isotropic CTV to
Table 1
Baseline patient, tumor, and treatment characteristics for the complete cohort and stratifie
(Toxicity �).

Number of patients (n)
Age in years (mean, SD)
Risk classification (NCCN) (n, %) Low

Intermediate
High

Gleason score (n, %) 3 + 3 = 6
3 + 4 = 7
4 + 3 = 7
8

cT-stage (n, %) cT1
cT2
cT3

Diabetes Mellitus (n, %) No
Yes

Cardiovascular disease (n, %) No
Yes

Hormonal therapy (n, %) No
Yes

Alpha-blocker usage at baseline (n, %) No
Yes

PTV in cm3 (median, IQR)
Mean* bladder volume in cm3 (median, IQR)
Mean* bladder wall volume in cm3 (median, IQR)
Baseline IPSS (median, IQR)

Legend: SD = standard deviation. NCCN = National Comprehensive Cancer Network. IQR
(wall) volume over the five-course treatment.
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PTV margin of 5 mm was applied. All patients were treated with
a so-called ‘Adapt-to-Shape’ workflow [9]. In short, during each
fraction, an initial daily T2-weighted 3D MR scan (MRinitial) was
acquired. Contours were propagated non-rigidly from the pre-
treatment MR to the current daily MR scan. Next, the operator
visually checked the propagated contours and – if needed – manu-
ally adapted them [18]. After contour approval, treatment plan
optimization was initiated. Before the end of plan optimization,
an additional MR scan was acquired for position verification (PV)
purposes (MRPV). In all patients, an additional virtual couch shift
(VSC), also known as ‘Adapt-to-Position’ (ATP), was applied before
treatment delivery in case of prostate shifts of > 1 mm between
MRinitial and MRPV (for details see [19]).
Dose accumulation and dosimetry parameters

The accumulated dose (Doseacc) was reconstructed using the
daily dose distributions (Dosefx1–5) corresponding to the daily PV
scans (MRPV1–5), so that the latest anatomy prior to beam-on time
was considered (Fig. 1). As previously reported, the time between
MRPV and beam-on in our cohort was on average 5 min compared
to approximately 27 min between MRinitial and beam-on [19].
Therefore, dose calculation on MRPV will ensure a better estimation
of the actual delivered dose as compared to using MRinitial or the
pre-treatment plan only. For image registration purposes and
dose-volume analyses, the inner and outer bladder wall structures
were delineated by two physicians on MRPV1–5 (Supplementary
Data B). The bladder was defined as the entire volume circum-
scribed by the outer bladder wall, including the bladder content.
The bladder wall was defined as the hollow structure bordered
by the outer and inner bladder wall contours.

An in-house developed deformable image registration (DIR)
algorithm and pipeline was used (‘EVolution’) [20], which was
extended with dose accumulation possibilities [21]. The algorithm
was chosen based on its previous successful employment for regis-
tering longitudinally-acquired MR images in PCa patients [21–23].
The delineated outer and inner bladder wall contours were used to
d by ‘IPSS + 10 and/or start of alpha-blockers within 3 months’: yes (Toxicity + ) or no

Total group Toxicity + Toxicity �
130 39 91
69 (6) 68 (6) 69 (6)
14 (10.8) 5 (12.8) 9 (9.9)
109 (83.8) 30 (76.9) 79 (86.8)
7 (5.4) 4 (10.3) 3 (3.3)
25 (19.2) 9 (23.1) 16 (17.6)
79 (60.8) 24 (61.5) 55 (60.4)
25 (19.2) 6 (15.4) 19 (20.9)
1 (0.8) 0 (0) 1 (1.1)
66 (50.8) 20 (51.3) 46 (50.5)
62 (47.7) 19 (48.7) 43 (47.3)
2 (1.5) 0 (0) 2 (2.2)
123 (94.6) 36 (92.3) 87 (95.6)
7 (5.4) 3 (7.7) 4 (4.6)
117 (90.0) 37 (94.9) 80 (87.9)
13 (10.0) 2 (5.1) 11 (12.1)
122 (93.8) 36 (92.3) 86 (94.5)
8 (6.2) 3 (7.7) 5 (5.5)
116 (89.2) 38 (97.4) 78 (85.7)
14 (10.8) 1 (2.6) 13 (14.3)
100 (84–122) 114 (102–134) 93 (80–114)
153 (115–207) 137 (113–190) 162 (118–225)
41 (34–47) 40 (33–47) 41 (36–47)
6 (4–10) 7 (4–9) 6 (3–11)

= interquartile range. IPSS = international prostate symptom score. *Mean bladder



Fig. 1. Exemplary dose distributions (left: transversal slice; right: sagittal slice) for the anatomy on the position verification (PV) scan of fraction 1–5 and the accumulated
dose distribution (ACC) on the reference anatomy (PV 1 for this case). The outer and inner bladder wall contours are displayed in black and grey.
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guide the registration process. Dosefx1–5 for each scan (MRPV1–5)
was calculated based on the corresponding treatment plan
(Fig. 1). Next, MRPV2–5 were registered to MRPV1 (reference), result-
ing in four deformation vector fields (DVF) for each patient. The
DVF were used to map the dose distribution to the reference image
using the energy-per-mass transfer technique [21]. Dice similarity
coefficient (DSC) and Hausdorff distance (HD) were calculated for
the bladder and bladder wall structures (delineated versus propa-
gated) to evaluate the DVF of MRPV2–5 to MRPV1. For each case, the
mean DSC and HD (DSCmean and HDmean) over the four registrations
were calculated. Outliers were identified based on DSC and HD and
visually checked to assess the location and extent of misregistra-
tion. In case of registration errors due to large bladder volume dif-
ferences between MRPV1 and MRPV2–5, a different reference scan
was used. Granted the results were satisfying, the case was
included for dose-toxicity analyses. Two cases were excluded from
dose-toxicity analyses due to misregistrations near the prostate-
bladder interface, which could not be resolved by using a different
reference scan.

The following bladder (wall) dose parameters were extracted
from Doseacc: absolute (cm3) and relative (%) volume receiving
10–35 Gy (V10–35Gy) in 5 Gy bins and 37 Gy (V37Gy), mean dose
(Dmean) in Gy, and dose (Gy) to the 1 and 5 cm3 receiving the high-
est dose (D1cm3 and D5cm3).
Urinary toxicity and patient-reported outcome measurements

In the UPC study, toxicity was prospectively registered using
both physician-reported outcome measurements and PROMs at
baseline and during follow-up, including at one (1M) and three
months (3M) post-treatment. Patients filled out several general
and domain-specific health-related quality-of-life questionnaires.
For this study, we focused on the IPSS. The primary outcome, acute
urinary toxicity, was defined as an IPSS increase of � 10 points
(IPSS + 10) from baseline on more than one occasion within three
184
months after treatment, as frequently used in other studies [16,24].
Since patients sometimes start with alpha-blocking medication
(e.g., tamsulosin) shortly after treatment in case of significant uri-
nary complaints, this might mask an increase in IPSS. Therefore, we
assessed a combined outcome: an increase in IPSS of � 10 points
from baseline and/or start of alpha-blocking medication within
3 months post-treatment.
Statistical analysis

Descriptive statistics were reported for baseline patient-,
tumor-, and treatment characteristics. Categorical variables were
summarized using absolute numbers and percentages. For contin-
uous variables mean and standard deviation or median and
interquartile range (IQR) were used, for normally distributed and
skewed data, respectively. Significant differences in baseline char-
acteristics between those with and without toxicity were reported.
Differences in IPSS between baseline and 1M and 3M were
assessed using the Wilcoxon signed rank test. p-values < 0.05 were
considered statistically significant.

To show the crude effect, correlations between dosimetry
parameters and the combined outcome were assessed using uni-
variable logistic regression analysis. Additionally, area under the
receiver-operating-characteristic (ROC) curve (AUC) was calcu-
lated for each dose parameter and Pearson’s correlation coeffi-
cients were calculated between dose parameters. Multivariable
logistic regression analysis was performed, providing odds ratios
(OR) corrected for the following available baseline characteristics:
age (continuous), diabetes, cardiovascular disease, baseline IPSS
(continuous), and alpha-blocker usage at baseline.

Dose-effect curves were plotted for a selection of dose parame-
ters that showed the highest correlation with the outcome (blad-
der Dmean and bladder wall Dmean and V25Gy in cm3) using the
corrected OR. Finally, preliminary dose cut-off values for these
dose parameters were determined using the ROC-curve, with the



Table 2
Univariable logistic regression analysis (odds ratios [OR]) with 95% confidence
intervals (CI) and area under the receiver-operating-characteristic curve (AUC) for
IPSS + 10 and/or start of alpha-blockers within 3 months post-treatment. Findings
with a p-value < 0.05 are indicated in bold.

Odds ratio 95% CI OR p-value AUC 95% CI AUC
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optimal constraint – that best discriminates between those with
and without the outcome – determined by the Youden index [25].

All statistical analyses were performed using SPSS version 26
(IBM� SPSS Statistics, Armonk, New York, United States of America)
and R Studio (version 4.1.2, R Foundation for Statistical Computing,
Vienna, Austria, https://rstudio.com).
Bladder
V10Gy (cm3) 1.01 0.99–1.02 0.29 0.59 0.49–0.70
V15Gy (cm3) 1.01 0.99–1.03 0.28 0.58 0.48–0.69
V20Gy (cm3) 1.01 0.99–1.04 0.29 0.59 0.49–0.69
V25Gy (cm3) 1.02 0.98–1.05 0.29 0.59 0.49–0.69
V30Gy (cm3) 1.03 0.98–1.08 0.28 0.60 0.50–0.70
V35Gy (cm3) 1.05 0.96–1.16 0.27 0.60 0.50–0.70
V37Gy (cm3) 1.05 0.89–1.23 0.55 0.57 0.47–0.68
V10Gy (%) 1.04 1.02–1.07 0.002 0.67 0.58–0.77
V15Gy (%) 1.05 1.01–1.08 0.004 0.66 0.57–0.76
V20Gy (%) 1.06 1.02–1.10 0.007 0.66 0.56–0.75
V25Gy (%) 1.08 1.02–1.13 0.008 0.66 0.56–0.75
V30Gy (%) 1.11 1.02–1.12 0.011 0.66 0.56–0.75
V35Gy (%) 1.18 1.02–1.37 0.024 0.66 0.56–0.75
V37Gy (%) 1.13 0.88–1.45 0.33 0.59 0.49–0.69
Dmean 1.19 1.07–1.33 0.002 0.67 0.58–0.76
D1cm3 1.68 0.91–3.09 0.095 0.58 0.48–0.68
D5cm3 1.33 1.01–1.74 0.044 0.61 0.51–0.71

Bladder wall
V10Gy (cm3) 1.10 1.03–1.18 0.006 0.65 0.54–0.75
V15Gy (cm3) 1.13 1.04–1.24 0.006 0.64 0.54–0.75
V20Gy (cm3) 1.16 1.04–1.30 0.007 0.64 0.54–0.75
V25Gy (cm3) 1.20 1.05–1.37 0.006 0.65 0.55–0.76
V30Gy (cm3) 1.24 1.06–1.46 0.007 0.65 0.55–0.75
V35Gy (cm3) 1.29 1.05–1.59 0.016 0.64 0.54–0.74
V37Gy (cm3) 1.45 0.90–1.45 0.26 0.58 0.48–0.68
V10Gy (%) 1.06 1.02–1.10 0.002 0.69 0.60–0.78
V15Gy (%) 1.07 1.02–1.13 0.003 0.67 0.58–0.77
V20Gy (%) 1.09 1.03–1.16 0.003 0.68 0.58–0.77
V25Gy (%) 1.11 1.04–1.19 0.003 0.68 0.58–0.77
Results

One-hundred-and-thirty patients were included, of whom 39
patients (30%) experienced acute urinary toxicity (Table 1). Of
these 39 patients, 20 patients reported an increase in IPSS of �
10 points during the first three months of follow-up, of whom 10
also started with alpha-blocking medication. The remaining 19
patients reported no increase in IPSS of > 10 points but did start
with alpha-blocking medication. Patients with and without acute
urinary toxicity were comparable at baseline except for PTV vol-
ume (p < 0.001) and alpha-blocker usage at baseline (p = 0.048).
Median IPSS for the entire cohort was significantly higher at 1M
(p < 0.001) and 3M (p = 0.001) compared to baseline, with a larger
proportion of patients experiencing moderate (59.5%) or severe
(11.9%) urinary symptoms at 1M (Fig. 2). Most patients reported
an increase in score for the ‘frequency’, ‘urgency’, and ‘weak
stream’ sub-items (results not presented).

Median (IQR) DSCmean was 0.99 (0.98–0.99) for the bladder and
0.84 (0.80–0.87) for the bladder wall. Median (IQR) HDmean was
0.05 mm (0.03–0.10) for the bladder and 0.57 mm (0.42–0.83)
for the bladder wall. For two cases (1.5%), bladder DSCmean was <
0.95 (0.92 and 0.94), due to large bladder volume differences that
caused (small) registration errors in the cranial part of the bladder
Fig. 2. (A) Boxplots of IPSS at baseline, 1 month, and 3 months post-treatment.
Black horizontal bars indicate the median, the boxes indicate the 25-75th
percentiles. Error bars indicate the 95% confidence intervals. Outliers (< 25th
percentile – 1.5*interquartile range or > 75th percentile + 1.5*interquartile range)
are indicated as separate dots. (B) Distribution of IPSS severity groups (mild,
moderate, severe) at baseline, 1 month, and 3 months post-treatment.

V30Gy (%) 1.12 1.04–1.21 0.004 0.67 0.57–0.76
V35Gy (%) 1.12 1.02–1.22 0.016 0.65 0.55–0.75
V37Gy (%) 1.06 0.96–1.16 0.26 0.58 0.48–0.68
Dmean 1.28 1.10–1.48 0.001 0.69 0.60–0.78
D1cm3 1.75 0.95–3.21 0.071 0.59 0.49–0.70
D5cm3 1.11 1.00–1.24 0.058 0.62 0.52–0.73
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for � 1 registration. Because this was outside the medium–high
dose area, these cases were included.

Collinearity statistics showed high correlations over the entire
range of bladder (wall) dose parameters (Supplementary Data C).
In univariable analysis (Table 2), Bladder D5cm3, V10–35Gy (in %),
and Dmean and Bladder wall V10–35Gy (cm3 and %) and Dmean were
correlated with the outcome (odds ratios 1.04–1.33, p-values
0.001–0.044). Except for relative V35–37Gy (%), bladder wall dose
parameters showed larger AUC values compared to their bladder
equivalent (Table 2). Corrected for age, diabetes, cardiovascular
disease, baseline IPSS, and alpha-blocker usage at baseline
(Table 3), bladder V10–35Gy (in %) and Dmean and bladder wall V10–

35Gy (cm3 and %) and Dmean were still correlated with the outcome
(odds ratios 1.04–1.30, p-values 0.001–0.028).

Preliminary cut-off points for the dose parameters based on the
Youden index were 11.2 Gy and 11.7 Gy for the bladder and blad-
der wall Dmean, respectively, and 9.0 cm3 for bladder wall V25Gy

(Fig. 3 and Supplementary Data D). In our cohort, of all patients
with bladder wall V25Gy � 9.0 cm3 (n = 70), 16.6% reported urinary
toxicity. For bladder wall Dmean � 11.7 Gy (n = 47) this was 10.6%.
Discussion

Our study suggests a strong relationship between Dmean as well
as low-medium doses (V10–35Gy) to the bladder and bladder wall
and patient-reported acute urinary toxicity in PCa patients treated

https://rstudio.com/


Table 3
Corrected* odds ratios (OR) in multivariable logistic regression analysis for IPSS + 10
and/or start of alpha-blockers within 3 months post-treatment. Findings with a p-
value < 0.05 are indicated in bold.

Corrected OR* 95% CI p-value

Bladder
V10Gy (cm3) 1.01 0.99–1.02 0.46
V15Gy (cm3) 1.01 0.99–1.03 0.43
V20Gy (cm3) 1.01 0.98–1.04 0.43
V25Gy (cm3) 1.02 0.98–1.06 0.42
V30Gy (cm3) 1.02 0.97–1.08 0.41
V35Gy (cm3) 1.05 0.95–1.16 0.36
V37Gy (cm3) 1.05 0.89–1.25 0.57
V10Gy (%) 1.04 1.02–1.07 0.002
V15Gy (%) 1.05 1.02–1.08 0.004
V20Gy (%) 1.06 1.02–1.11 0.007
V25Gy (%) 1.08 1.02–1.15 0.009
V30Gy (%) 1.12 1.02–1.21 0.012
V35Gy (%) 1.19 1.02–1.39 0.025
V37Gy (%) 1.14 0.88–1.47 0.33
Dmean 1.20 1.07–1.35 0.002
D1cm3 1.67 0.87–3.20 0.12
D5cm3 1.34 0.99–1.81 0.06

Bladder wall
V10Gy (cm3) 1.11 1.03–1.20 0.008
V15Gy (cm3) 1.14 1.03–1.25 0.011
V20Gy (cm3) 1.17 1.03–1.32 0.013
V25Gy (cm3) 1.21 1.04–1.41 0.013
V30Gy (cm3) 1.25 1.04–1.50 0.015
V35Gy (cm3) 1.30 1.03–1.64 0.027
V37Gy (cm3) 1.15 0.89–1.47 0.29
V10Gy (%) 1.06 1.02–1.10 0.003
V15Gy (%) 1.08 1.02–1.13 0.004
V20Gy (%) 1.09 1.03–1.16 0.005
V25Gy (%) 1.11 1.03–1.19 0.005
V30Gy (%) 1.12 1.03–1.22 0.008
V35Gy (%) 1.11 1.01–1.22 0.028
V37Gy (%) 1.05 0.95–1.16 0.31
Dmean 1.29 1.10–1.51 0.001
D1cm3 1.72 0.90–3.31 0.10
D5cm3 1.10 0.98–1.25 0.11

*Corrected for: age (years), diabetes (yes/no), cardiovascular disease (yes/no),
baseline IPSS, and alpha-blocker usage at baseline (yes/no).

Accumulated bladder wall dose is correlated with patient-reported acute urinary toxicity in prostate cancer
with MR-guided SBRT. These correlations persisted after correction
for multiple baseline characteristics. This is the first study to iden-
tify such a relationship for the bladder wall using the accumulated
dose over the five treatment fractions. Based on our results, we
suggest the use of constraints for bladder wall V25Gy (cm3) and
bladder (wall) Dmean for treatment planning for MR-guided PCa
SBRT. Prospective validation of the suggested (soft) constraints is
warranted. Furthermore, future research should focus on determi-
nation of the optimal constraints, feasibility of these constraints in
treatment planning, and finally the clinical effects with respect to
acute urinary toxicity.

While some of the bladder dose parameters were associated
with the outcome, these associations seemed generally weaker
(lower AUC values) compared to those for the bladder wall. This
suggests higher accuracy of the bladder wall dose in predicting
toxicity and is in line with the hypothesis that irradiation of the
bladder wall – and not bladder content – induces toxicity. For
the relative dose parameters (V10–37Gy in % and Dmean), correlations
between the bladder and bladder wall were high, whereas for
absolute V10–30Gy (cm3), correlations between the bladder and
bladder wall dose were generally weaker except for the highest
dose-volumes (Supplementary Data C). This probably is caused
by the fact that the lower absolute bladder dose volumes also
include large parts of bladder content. Together with the lack of
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significant correlations for the absolute bladder dose parameters,
this suggests that the absolute bladder volume receiving X Gy is
not a sufficient proxy for the bladder wall. Although the bladder
wall parameters showed higher predictive value (based on AUC),
the relative bladder dose parameters might be a sufficient proxy,
especially for Dmean. Absolute volumetric constraints are more
practical because they do not require (online) delineation of the
entire organ. However, concerning absolute dose parameters, we
only found significant correlations for the bladder wall, and there-
fore we suggest delineating the bladder wall to be able to use for
example V25Gy (cm3) in treatment planning. Especially for the blad-
der wall, absolute volumetric constraints can be used, since blad-
der wall volume does not change over the course of treatment.

Since Dmean seems important in the prediction of acute urinary
toxicity, the bladder size during treatment could contribute to the
risk of toxicity. Mean bladder volume was larger (but not statisti-
cally significant) in the non-toxicity group compared to the group
of patients with toxicity (Table 1). No strict bladder filling protocol
was applied and therefore bladder size varied significantly
between fractions and patients. A bladder filling protocol aimed
at a stable, (comfortably) filled bladder could potentially reduce
the mean dose and thereby reduce the risk of toxicity [26]. In addi-
tion, improvements in delivery accuracy, i.e., smaller PTV margins,
are warranted to significantly reduce the dose to the entire bladder
(wall) while providing adequate target coverage. To achieve this,
fast, online-adaptive techniques are needed to counteract intra-
fraction motion [27,28].

Acute patient-reported urinary toxicity was observed in 30% of
our cohort in the first three months following treatment. While
these numbers seem a bit high compared to other reports, we used
a different definition of ‘patient-reported acute urinary toxicity’
compared to IPSS + 10 only [16,29,30]. In our study, only 15.4%
(20/130) reported an increase in IPSS of � 10 points. However,
many patients started with alpha-blocking medication during or
shortly after treatment, in case of (severe) irritative urinary com-
plaints. Our pre-defined hypothesis was that the use of alpha-
blocking medication might therefore mask an increase in IPSS dur-
ing follow-up and thus dilute the correlation if not considered. As a
sensitivity analysis (data not shown), we performed univariable
logistic regression analysis for IPSS + 10 as the only outcome.
Although the trends of the OR were consistent with the presented
results, this yielded no significant correlations. This may partly be
attributed to a lack of power with only 20 cases. Nevertheless, sig-
nificant correlations between dosimetry and IPSS + 10 have been
reported previously [16,24]. This discrepancy might be caused by
using different assessment time-points during follow-up; Bohoudi
et al. measured IPSS also at the end of treatment and Henderson
et al. measured IPSS two weeks after the end of treatment com-
pared to our first measurement at 1M post-treatment [16,24]. This
leads to a difference in the sensitivity, as it is likely that a larger
proportion will report significant urinary toxicity shortly after
treatment. This is also reflected in the differences in incidence of
IPSS + 10. Furthermore, differences in prescription of alpha-
blockingmedication could also attribute to this effect. Additionally,
a sensitivity analysis was performed in those without alpha-
blocking medication at baseline (n = 116, data not shown). This
did not alter the results (OR) in a meaningful way, besides resulting
in slightly higher p-values due to a smaller sample size.

To our knowledge, only Bohoudi et al. investigated the relation-
ship between the accumulated dose to the bladder and urinary tox-
icity in PCa patients treated with adaptive MR-guided SBRT on a
0.35 T MR-Linac [16]. Considering only the dose to the entire blad-
der, similar medium–high accumulated dose levels (V20–32Gy in



Fig. 3. Predicted probabilities of IPSS + 10 and/or start of alpha-blocking medication
within 3 months post-treatment at various levels of bladder Dmean (A), bladder wall
Dmean (B), and bladder wall V25Gy in cm3 (C), based on the corrected odds ratio.
Modelled marginal means and their 95% confidence intervals are shown. The black
vertical bars represent the values of the dose parameters for the individual patients
in the cohort.
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cm3) were correlated with IPSS + 10. No correlations were found
for the pretreatment plan. No relative dose parameters were
assessed. Our results do not confirm the significant correlations
found for absolute bladder dose parameters. This might have sev-
eral explanations, besides the difference in primary outcome defi-
nition. First, as previously mentioned, the outcome was measured
at different follow-up moments, leading to differences in toxicity
rates. This could lead to differences in the sensitivity of the analy-
ses that were performed. Finally, no multivariable analysis was
performed, and therefore it is unclear if the observed correlations
would persist when corrected for other (potentially) important
clinical variables. Still, this study clearly indicates that the pre-
treatment dose cannot necessarily be used as a substitute for the
actual delivered dose. Therefore, the accumulated dose should be
considered.

Our study has some limitations. First, the exploratory aspects of
the study should be interpreted with caution since no independent
validation has yet been performed. For the bladder wall, however,
the results were significant for almost the entire range of dose
parameters, even after correction for baseline characteristics that
are potentially related to the outcome, thus strongly suggesting
the important role of bladder wall dose in the development of
acute urinary toxicity. Although we did correct for several baseline
characteristics, we cannot conclude that the found correlations are
entirely causal, since residual confounding due other to unmea-
sured and/or unknown variables could be present.

Second, manual delineation of the bladder wall is labor-
intensive. This makes it less practical for an online workflow, in
which contours are generated while the patient is on the treatment
couch. Improved automatic segmentation could make use of the
bladder wall in clinical online planning feasible. Furthermore, the
use of bladder surface histograms might be an easier alternative
to delineating the entire bladder wall. However, this does not take
into account bladder wall thickness differences within the bladder
and variation in thickness with bladder filling status, which
impacts its accuracy [31,32].

Third, the inter-fraction dose accumulation pipeline we applied
does not consider intra-fraction motion that occurs between MRPV

acquisition and end of beam-on. We have previously shown that
significant intra-fraction motion can occur, and this might affect
the delivered dose [10,13]. Intra-fraction dose accumulation, in
addition to inter-fraction dose accumulation, will probably yield
an even better approximation of the actual dose compared to
inter-fraction dose accumulation only. Nevertheless, we tried to
minimize the effect of intra-fraction motion in the current study
by using the MRPV that is acquired shortly before beam-on time.

Concluding, we have shown that the accumulated dose to the
bladder (wall) is highly correlated with patient-reported acute uri-
nary toxicity in PCa patients treated with daily adaptive MR-
guidedSBRT. These correlationspersistedafter correction for several
baseline characteristics. Our results suggests that bladder wall
dosimetry is preferred over whole bladder dosimetry in case one
wishes to predict acute urinary toxicity as accurately as possible,
although further research should validate these findings. The pre-
liminary dose constraints could be used as a starting point for defin-
ing stricter dose constraints for prostate SBRT, with the aim of
reducing clinically relevant acute urinary toxicity in these patients.
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