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Abstract 
The treatment of major depressive disorder (MDD) is hampered by low chances of treatment 
response in each treatment step, which is partly due to a lack of firmly established outcome- 
predictive biomarkers. Here, we hypothesize that polygenic-informed EEG signatures may help 
predict antidepressant treatment response. Using a polygenic-informed electroencephalogra- 
phy (EEG) data-driven, data-reduction approach, we identify a brain network in a large cohort 
(N = 1,123), and discover it is sex-specifically (male patients, N = 617) associated with polygenic 
risk score (PRS) of antidepressant response. Subsequently, we demonstrate in three indepen- 
dent datasets the utility of the network in predicting response to antidepressant medication 
(male, N = 232) as well as repetitive transcranial magnetic stimulation (rTMS) and concurrent 
psychotherapy (male, N = 95). This network significantly improves a treatment response predic- 
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tion model with age and baseline severity data (area under the curve, AUC = 0.623 for medica- 
ton; AUC = 0.719 for rTMS). A predictive model for MDD patients, aimed at increasing the like- 
lihood of being a responder to antidepressants or rTMS and concurrent psychotherapy based 
on only this network, yields a positive predictive value (PPV) of 69% for medication and 77% 
for rTMS. Finally, blinded out-of-sample validation of the network as predictor for psychother- 
apy response in another independent dataset (male, N = 50) results in a within-subsample re- 
sponse rate of 50% (improvement of 56%). Overall, the findings provide a first proof-of-concept 
of a combined genetic and neurophysiological approach in the search for clinically-relevant 
biomarkers in psychiatric disorders, and should encourage researchers to incorporate genetic 
information, such as PRS, in their search for clinically relevant neuroimaging biomarkers. 
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY 
license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

ajor depressive disorder (MDD) is a common psychiatric 
isorder with a complex etiology that is generally explained 
rom a biopsychosocial model, in which multiple biological, 
sychological, and social factors are all considered impor- 
ant contributors ( Amare et al., 2017 ). Furthermore, ge- 
etic risk factors of MDD overlap with other psychiatric 
isorders and specific genetic variants are in turn associ- 
ted with a range of psychiatric disorders ( Smoller et al., 
013 ). It is assumed that the multifactorial model for MDD 

partly) underlies its heterogeneous symptomatology and 
ariable treatment efficacy ( Belmaker and Agam, 2008 ; 
ush, 2007 ). In line with the biological heterogeneity of 
DD that in turn may be related to this variable treat- 
ent outcome, pharmacogenomic studies have focused on 
enetic biomarkers of antidepressant treatment response 
n MDD. Genome wide association studies (GWASs) have 
dentified genetic variants associated with antidepressant 
fficacy and SNP-based heritability of antidepressant re- 
ponse significantly differs from zero ( Pain et al., 2020 ), but 
linically-relevant and converging loci have remained elu- 
ive ( Fabbri et al., 2018 ; Garriock et al., 2010 ; Ising et al.,
009 ; Ji et al., 2013 ; Li et al., 2016 , 2020a; Tansey et al.,
012 ; Uher et al., 2010 ). Thus, antidepressant treatment 
utcome is likely a complex trait and explained by sev- 
ral loci of small effect ( Hodgson et al., 2012 ), with recent 
vidence indeed suggesting that antidepressant response 
s polygenic ( Pain et al., 2020 ). Consequently, a polygenic 
nstead of single gene or locus approach, by calculation 
f the individual’s polygenic risk score (PRS), seems valu- 
ble to associate genetic risk with treatment (non)response 
 Fabbri et al., 2020 ). At present however, evidence for reli- 
ble out-of-sample prediction of MDD treatment response 
s limited ( Fanelli et al., 2021 , 2020 ; Foo et al., 2019 ;
arcía-Gonzáleza et al., 2017 ; Li et al., 2020 ; Pain et al., 
020 ; Ward et al., 2018 ). A proposed strategy to effec- 
ively predict therapeutic outcomes for clinically prognos- 
ic purposes, is to integrate PRS with other predictors, such 
s neuroimaging and clinical characteristics ( Amare et al., 
017 ). 
Electroencephalography (EEG) is a non-invasive neu- 

oimaging technique to quantitatively analyze oscillatory 
rain activity of neurons with high temporal resolution 
 Silva, 2013 ). EEG biomarker research for treatment pre- 
iction in MDD has shown that certain EEG patterns or ab- 
50 
ormalities are differentially associated with drug-specific 
r drug-class specific antidepressant treatment effects 
 Arns et al., 2017 , 2016 ; Olbrich and Arns, 2013 ) as well
s rTMS outcome ( Arns et al., 2014 ; Erguzel et al., 2014 ;
asanzadeh et al., 2019 ; Roelofs et al., 2020 ). Such studies 
ave also demonstrated qualitative sex differences in topo- 
raphic distribution of EEG activity and sex-specific predic- 
ors of treatment response of alpha asymmetry ( Arns et al., 
016 ), EEG connectivity ( Iseger et al., 2017 ) and event- 
elated potentials ( Dinteren et al., 2015 ). Until recently, 
onsensus was that the use of EEG for clinical decision mak- 
ng is not justified ( Widge et al., 2019 ). However, two re-
ent studies using machine-learning approaches applied to 
esting-state EEG features identified predictive signatures 
or sertraline, a selective serotonin-reuptake inhibitor, that 
elated differentially to rTMS response ( Wu et al., 2020 ; 
hang et al., 2020 ). This finding is of clinical relevance as it
uggests that EEG signatures may be useful as a clinical tool 
o stratify patients to one of two evidence-based antide- 
ressant treatments (rTMS vs. antidepressant medication), 
mpowering initial treatment response rates ( Michel and 
ascual-Leone, 2020 ). 
Our primary aim was to demonstrate proof-of-principle 

or the use of a polygenic-informed EEG data-driven, 
ata-reduction approach to predict treatment outcome in 
DD. To that end, we conducted a functional independent 
omponent analysis (fICA) using LORETA (Low Resolution 
rain Electromagnetic Tomography), producing indepen- 
ent spectral-spatial components (i.e. functional brain net- 
orks), in a large dataset. In a prior study, this fICA method 
as tested and validated ( Aoki et al., 2015 ; Gerrits et al.,
019 ) and demonstrated to reliably identify the default 
ode network (DMN) and task-positive network (TP) in a 
ample of 1,397 subjects, which was also replicated in an 
ndependent ADHD sample ( Gerrits et al., 2019 ). We used 
RS-AR ( Pain et al., 2020 ) to guide the selection of func-
ional brain networks for subsequent response prediction, 
hus combining genetics with neurophysiology approaches. 
he usefulness of PRS-AR was recently validated in an inde- 
endent dataset of pharmacotherapy response, that was not 
ncluded in the original GWAS ( Lin et al., 2022 ). Here, we
how one functional network that is significantly associated 
ith polygenic liability to antidepressant response in men. 
hen, in subsequent translational analyses, we demonstrate 
ow this EEG signature is associated with response to an- 
idepressant medication as well as rTMS and concurrent psy- 

http://creativecommons.org/licenses/by/4.0/


European Neuropsychopharmacology 62 (2022) 49–60 

c
F
r
s

2

2

T
n
f
A
T
W
o
(
a
c
f
c
w
p
v
1
t
f
o
M
B
e
s

t
s
(
1  

a
(
r
S

2

T
u
r
i
m
n
p
i
r
i
a
o
w
p
b

2

T
p
1

B
l
p
P
p
a  

c
I  

t  

K

2

T
a
m
t  

c
w
f
a
v

2

R
r
G
f
s
d

p
a
(  

r
l
b  

e
(
r

2

T
t
d
T
t
d

o
fi
d
m
(
l
i  

t  

o
f
t  

t
c

hotherapy in male MDD patients in an independent dataset. 
inally, we analysed the prediction accuracy of treatment 
esponse in male MDD patients based on the discovered EEG 

ignature. 

. Materials and Methods 

.1. Participants and PRS calculation, dataset 1 

he first dataset was used for functional independent compo- 
ent analysis (fICA). EEG recordings of participants were collected 
rom September 2013 until September 2018 at Ziekenhuis Netwerk 
ntwerpen (ZNA), a large community hospital in Antwerp, Belgium. 
he study was approved by the Institutional Review Board of ZNA. 
e abided by the principles of the Declaration of Helsinki. A total 
f 1,195 adult participants – 1,132 psychiatric patients with various 
predominantly mood, psychotic and/or substance use) disorders 
nd 63 healthy controls to obtain a heterogenous sample – were in- 
luded and provided written informed consent. Exclusion criteria 
or all participants were age < 18 years, inability to give informed 
onsent for whatever reason, and restlessness that could interfere 
ith the EEG. Healthy controls were defined as having no current 
sychiatric episode and never been treated by a mental health ser- 
ice. After preprocessing, the total sample for fICA consisted of 
,123 (1,061 patients and 62 healthy controls). We aimed to use 
he largest sample possible to use a data-driven-data-reduction into 
ICA components that would be transdiagnostic and explain most 
f the variance, rather then relying on a too narrow dataset of 
DD patients only. In earlier work we also demonstrated this for 
rainmarker-I. When we developed this Brainmarker on a large het- 
rogenous dataset, it translated better to a normative dataset, in- 
tead of the other way around ( Voetterl et al., 2022 ). 
Additionally, DNA was extracted from the 887 participants of the 

otal sample providing written informed consent for genetic analy- 
es. Standard stringent genotype and subject-level quality control 
QC) and principal component analysis were carried out with PLINK 
.9 ( Purcell et al., 2007 ) to obtain a genetic homogenous cohort,
nd PRSs were calculated as per standard procedures using PRSice2 
 Choi and O’Reilly, 2019 ). DNA QC and PRS calculation details, and 
eferences to the GWASs used for PRS generation can be found in 
upplementary Materials and Methods. 

.2. Participants of the medication study, dataset 2 

he second dataset used for translational purposes and the eval- 
ation of treatment effects was an international multi-center, 
andomized, prospective open-label trial (phase-IV clinical trial): 
SPOT-D sample (International Study to Predict Optimized Treat- 
ent in Depression). This study consisted of 1,008 patients diag- 
osed with non-psychotic MDD who were randomized to escitalo- 
ram, sertraline, or venlafaxine. All participants provided written 
nformed consent and this study was approved by the institutional 
eview boards at all of the participating sites and this trial was reg- 
stered with ClinicalTrials.gov under id NCT00693849. At baseline 
nd after 8 weeks of treatment patients filled in the Quick Inventory 
f Depressive Symptomatology (QIDS). Only data from participants 
ho completed 8 weeks of randomized medication treatment (‘per 
rotocol’ sample) were included. Details about this sample have 
een published elsewhere ( Arns et al., 2016 , 2015 ). 

.3. Participants of the rTMS study, dataset 3 

he third dataset was used for translational and discovery pur- 
oses and the evaluation of treatment effects. It consisted of 
96 patients, diagnosed with non-psychotic MDD or dysthymia and 
51 
eck Depression Inventory version 2 (BDI-II) score ≥14 at base- 
ine, who underwent protocolized rTMS treatment concurrent with 
sychotherapy. All participants provided written informed consent. 
articipants received high-frequency TMS (10 Hz left dorsolateral 
refrontal cortex, DLPFC) or low-frequency TMS (1 Hz right DLPFC); 
 minority received both 1 Hz and 10 Hz sequentially. All patients
ompleted at least 10 sessions of treatment, and filled in the BDI- 
I at baseline and at the last session (on average session 21). De-
ails about this sample are described elsewhere ( Donse et al., 2017 ;
repel et al., 2019 ). 

.4. Participants of the psychotherapy study, dataset 4 

he fourth dataset, used to investigate if the EEG component was 
lso predictive for psychotherapy without concurrent rTMS treat- 
ent, included patients diagnosed with non-psychotic MDD or dys- 
hymia and BDI-II ≥14 at baseline who received any form of psy-
hotherapy as monotherapy (n = 175). Of these patients, 94 under- 
ent cognitive behavior therapy (CBT) and 81 underwent another 
orm of psychotherapy. BDI-II baseline was recorded at intake, and 
gain at the end of psychotherapy treatment. All participants pro- 
ided written informed consent. 

.5. EEG recordings and preprocessing 

esting-state eyes closed EEG recordings (see Supplementary Mate- 
ials and Methods) were acquired from 65 channels of the Electrical 
eodesics Incorporated (EGI; Magstim, UK) system (dataset 1) and 
rom 26 channels (dataset 2, 3 and 4; 10-20 electrode international 
ystem of the Neuroscan NuAmps (Compumedics, Australia; other 
atasets). 
Subsequently, the following steps were taken in the EEG pre- 

rocessing and artefact rejection procedure using Brain Vision An- 
lyzer 2.0 (Brain Products, Germany): 1) data filtering: 0.5-90 Hz 
dataset 1) or 0.3-100 Hz (dataset 2, 3 and 4), and notch filter; 2)
emoval and spherical spline interpolation of noisy signals or flat 
ines; 3) electro-oculography (EOG) correction, using a regression- 
ased technique ( Gratton et al., 1983 ); 4) segmentation in 4-second
pochs; and 5) artefact-rejection using an automatic procedure 
criteria: maximal allowed difference of 150 μV peak-to-peak). This 
esulted in a minimum of one-minute data per subject. 

.6. LORETA-fICA model 

he EEG was used for estimating the cortical source distribu- 
ion of electric neuronal activity by means of LORETA (free aca- 
emic software available at https://www.uzh.ch/keyinst/loreta ). 
his method weights minimum norm inverse solution, and localiza- 
ion inference is based on the standardized estimates of the current 
ensity ( Pascual-Marqui et al., 2011 ). 
The following analysis steps were performed using the collection 

f 4-second artefact-free epochs obtained from dataset 1. In the 
rst step, each EEG recording was transformed to the frequency 
omain, using the discrete Fourier transform. The cross-spectral 
atrices were obtained for six frequency bands, defined as: delta 
1.5-3.5 Hz), theta (4-7.5 Hz), alpha (8-13 Hz), beta (14.5-30 Hz), 
ow-gamma (31-47 Hz), and high-gamma ( > 70 Hz). Aiming to elim- 
nate the notch bands used at different sites in the EU and US,
he 48-69 Hz range was excluded. In the second step, from data
f each cross-spectrum matrix, the spectral density was computed 
or each cortical voxel, sampled at 5 mm resolution in a realis- 
ic head model, using the MNI152 template ( Aoki et al., 2015 ). In
he third step, the spectral-spatial data of all subjects was con- 
atenated, and ICA (see Supplementary Materials and Methods) was 

https://www.uzh.ch/keyinst/loreta
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erformed on these data, aiming to identify independent spectral- 
patial components (i.e. functional networks). This method was re- 
ently validated in Aoki et al. and Gerrits et al. and reliably iden- 
ified DMN (default mode network) and TP (task-positive) networks 
 Aoki et al., 2015 ; Gerrits et al., 2019 ). 

.6.1. Independent components 
ach independent cross-frequency spectral-spatial functional net- 
ork (fICA network or EEG component) represents sets of brain 
egions that are consistently activated or deactivated together 
ithin and across a given frequency band. The number of EEG 
ig. 1 Chart depicting the study set-up and analysis pipeline. 
he LORETA-fICA method was used in the discovery analysis. Data f
nd 6239 voxels (6 × 6239) per subject (dataset 1). This resulted in 2
ale participants, only fICA EEG components 4 was found to be robu
ssociation was found in women. EEG component 4 was used for tran
DD patients randomly prescribed antidepressants (escitalopram, se
oncurrent psychotherapy (dataset 3). Network activity of fICA EEG
ponse in male, and – in the other direction (but not significant) – in 
), consisting of patients who underwent psychotherapy, the networ

52 
omponents here was estimated from a dimensionality mea- 
ure related to Wackermann’s Omega Complexity ( Wackermann, 
996 ). 
To visualize the functional networks (i.e. correlation of brain re- 

ions that are consistently activated or deactivated), a threshold 
t 3 z-values was set. Individual scores per fICA network were ob-
ained for each subject, corresponding to the strength of that net- 
ork for a given individual subject. 
The functional networks that were established based on the first 

ataset, were prospectively applied to dataset 2, 3 and 4. Like- 
ise, for each subject in each dataset, EEG component scores 
or this method consisted of 6 a priori defined frequency bands 
9 independent cross-frequency spectral-spatial components. In 
stly associated with PRS-antidepressant response (PRS-AR). No 
slational and discovery purposes in two independent datasets: 
rtraline or venlafaxine; dataset 2) and treated with rTMS and 
 component 4 was significantly associated with treatment re- 
female MDD patients. In another independent dataset (dataset 
k is found to be predictive of treatment response. 
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ere obtained per network. These were used in the statistical 
nalysis. 

.7. Outcome measures 

or component selection (discovery, Fig. 1 ), the independent EEG 

omponents were regressed on PRS-AR (dataset 1, see section 
Statistics’ below). For the prediction analysis, first we focused 
n dimensional improvement of depressive symptoms, and then on 
ategorical improvement (response, defined as ≥50% reduction of 
aseline score) to confirm the robustness of previous findings (trans- 
ation, Fig. 1 ). Outcomes were based on the QIDS or BDI-II (dataset
 and 3). 

.8. Statistics 

PSS version 27 was used for statistical analyses. Effects sizes (ES) 
f significant main effects are reported as explained variance (R 2 ) 
nd/or standardized beta ( β) for continuous measures or as Cohen’s 
 ( d ) for binary measures. Two-sided tests were performed for sta-
istical significance testing. 
In order to accommodate potential sex-specific interaction ef- 

ects, sex was included as main factor, or – in case the analysis 
ould not accommodate sex as main factor – women and men were 
nalyzed separetaly, rather than handled as covariate since co- 
ariation can only resolve quantitative (not qualitative) sex differ- 
nces. Previous iSPOT-D studies reported sex-specific predictors of 
reatment outcome ( Arns et al., 2016 , 2015 ; Dinteren et al., 2015 ;
seger et al., 2017 ), so this would enable us to identify potential
iomarkers. If no sex interaction was found, or the effect for both 
exes was in the same direction (and for PRS analysis at p < 0.01),
nalyses were performed on men and women combined, otherwise 
eparately. 
The analysis procedure that was performed in this study is visu- 

lized in Fig. 1 . First, a discovery analysis examined if there was
n association between one or more fICA components and PRS-AR 
dataset 1). To that end, a linear regression analysis, controlling 
or age and the first five genetic ancestry principal components 
PCs), was run between individual EEG component strength (mea- 
ured by individual scores that present how active the network is in 
n individual) and 11 PRS-AR p-value thresholds (P T = 5.0 × 10 −6 

o P T = 1) in order to choose the optimal P T , which is unknown
 priori ( Choi et al., 2020 ). The significance level was conser- 
atively corrected for multiple outcomes and sex-specific sub- 
roup analysis: α= 0.05/(29 [EEG components] × 2 [male vs female 
articipants]) = 0.00086. The EEG component that showed signifi- 
ant associations with PRS-AR was selected for subsequent analy- 
es. 
Second, a translational analysis was performed (dataset 2 and 

) to examine if the selected EEG component was predictive of 
reatment outcome. The significance level for these translational 
ollow-up analyses was set at conventional α= 0.05 as these anal- 
ses were intended for translation of the findings in the discovery 
nalysis. We investigated possible associations between individual 
EG component strenght and absolute changes in BDI-II and QIDS 
core. The absolute change ( �) was defined as the symptom sever- 
ty score difference between baseline and treatment completion. 
herefore, �BDI-II and �QIDS were regressed on the individuals 
EG component strength, adding age as covariate. Factorial ANCO- 
As were run to investigate if the individual EEG component scores 
ere significantly different in responsive patients compared to non- 
esponders. Response and sex were added as fixed factors; age was 
dded as covariate in all models. For both categorical as well as 
ontinuous outcome analyses an additional analysis with baseline 
everity score as covariate was done. 
53 
Subsequently, to assess the predictive value of the EEG com- 
onent, a discriminant analysis on treatment outcome was per- 
ormed. Prior studies had already tested several psychological (per- 
onality, anxiety etc.), demographic and behavioral measures and 
heir ability to predict remission or response in these samples, and 
ailed to find robust and clinically relevant predictors ( Arns et al., 
016 ; Krepel et al., 2019 ; Saveanu et al., 2015 ). The basic predic-
ive model consisted of age and baseline severity. Then we tested 
hether the model performance improved when the EEG compo- 
ent, detected in the discovery analysis, was added as predictor 
‘improved model’). The positive predictive value (PPV) was calcu- 
ated for the improved model. Also, a receiver operating character- 
stic (ROC) curve was plotted. 
The optimal network score cut-off points for medication and 

TMS during psychotherapy were determined by calculating the 
aximum Youden Index ( J ), which measures the accuracy of a di-
hotomous diagnostic test, for the prediction of response to in- 
rease effectiveness of the EEG component (as single predictor) as 
 potential biomarker. Based on these cut-offs, prediction models 
ere built to evaluate the clinical utility of the EEG component for
rediction purposes, by calculating the PPV (i.e. within-subsample 
esponse rate) and improvement of the response rate relative to 
he observed response rate in a crosstabulation. 
Finally, a blinded out-of-sample validation was performed in 
ale MDD patients receiving psychotherapy (dataset 4); response 
tatus was predicted based on the previously determined cuf-off
or rTMS with concurrent psychotherapy. Subsequently, the PPV and 
PV were calculated in a crosstabulation including all male pa- 
ients. A sensitivity analysis consisting of the subgroups CBT versus 
ther psychotherapy was also performed. 

. Results 

n overview of the baseline demographic characteristics 
nd response and remission rates per dataset after EEG pre- 
rocessing can be found in Table 1 . 

.1. Discovery analysis identifies 29 components 
sing LORETA-fICA (dataset 1) 

f the 1,195 participants enrolled in dataset 1, the final 
ample for the LORETA-fICA analysis after quality control 
see Materials and Methods) consisted of 1,061 hospital- 
dmitted psychiatric patients (most were diagnozed with 
DD, schizophrenia and/or substance use disorder) and 62 
ontrols (N = 1,123; dataset 1). The appropriate dimension- 
lity of the data was established using sphericity test which 
ndicated 29.0 dimensions; hence the LORETA-fICA analysis 
as constrained to 29 components, accumulatively explain- 
ng 97.0% of the total variance in EEG power (see Fig. 1: dis-
overy). 

.1.1. Relating components to polygenic risk 

f the 1,123 participants, PRS association analysis was per- 
ormed using the data of 722 participants remaining after 
EG pre-processing and genetic quality control (QC; see Ta- 
le S1 for all QC steps). Among 29 outcomes and two sex- 
pecific datasets, PRS-AR was associated with the individual 
ICA EEG component 4 score, after controlling for age and 
he first five PCs ( β= 0.172; R 2 = 2.91%; optimal P T < 0.3) at
 = 0.000567 in male participants. This EEG component was 
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Table 1 Baseline characteristics. 

Dataset 1:“discovery” Dataset 3:medication Dataset 2:rTMS + PT Dataset 
3:psychotherapy 

Total number 
participants 

1,195 1,008 196 175 

N included in study 1,123 1 535 193 141 
Ratio men/women 617/506 245/290 95/98 50/91 
Mean age (SD), years 40.3 (13.2) 38.5 (12.6) 43.3 (12.8) 37.2 (13.8) 
Mean baseline score 
(SD) 

BDI-II; 31.1 (12.1) QIDS; 14.5 (3.7) BDI-II; 31.2 (10.1) BDI-II; 31.5 (9.3) 

Response rate (%) N/A 2 48.8 66.3 32.6 

Abbreviations: rTMS = repetitive transcranial magnetic stimulation; PT = psychotherapy; QIDS = Quick Inventory of Depressive Symptomatol- 
ogy; BDI-II = Beck Inventory Index, version 2. 
1 N = 1,123 subjects included in EEG statistical analyses (cleaned EEG data available), with N = 722 (also cleaned DNA data available) 

included in subsequent PRS (polygenic risk score) analyses. 
2 N/A as this was a non-intervention study no treatment effects were assessed. 

Fig. 2 Polygenic risk regression model of antidepressant response in men using different p-value thresholds. 
The graphs show the explained variance (R 2 as %) of EEG component 4 in men by PRS-AR (polygenic risk score of antidepressant 
response [improvement]; blue bars), and the corresponding p-value (presented as -log; orange dot) on the x-axis per p-value 
threshold (P T ) on the y-axis. The Bonferroni-corrected significance level is also presented ( α, grey dotted line). Note that, in 
general, the more lenient the P T is, the more variance is explained by the PRS (and the closer to significance its p-value is), 
indicating the EEG component is highly polygenic. 
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sed for translational analysis. The PRS model fit of the as- 
ociation between fICA EEG component 4 and PRS-AR was 
ndicative of high polygenicity (see Fig. 2 ). 
Fig. 3 shows fICA EEG component 4 (this component ex- 

laines 0.78% of the total EEG variance), representing joint 
eactivation and activation of neural activities coming from 

ets of regions that form functional spatial-spectral net- 
orks. Most prominent are delta and theta power seen at 
he left dorsolateral prefrontal cortex (DLPFC), inversely 
orrelated with delta power in the right anterior PFC. Also, 
elta – and to a lesser extent theta – activity is evident in 
omatosensory-motor cortices. Occipital activity is present 
F

54 
ithin frequencies ranging from the delta (most prominent) 
o beta band. 
The individueal EEG component 4 scores only corre- 

ated with some non-EEG related baseline characteristics in 
omen, not in men. 

.2. Translation and discovery analysis in an 

ndependent treatment reponse dataset (dataset 2 

nd 3) 

he primary outcome for translational analysis (see 
ig. 1: translation) was dimensional improvement of depres- 
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Fig. 3 Functional network of the component obtained with 
LORETA-ICA. 
Map of the EEG functional network obtained in this study using 
LORETA-ICA (independent component 4). The colors represent 
correlated and inversely correlated EEG power changes of brain 
regions (when neural activity in red colored regions inceases, 
activity in blue colored regions decreases). The component cov- 
ers activity in different parts of the brain, predominantly within 
the delta and theta frequency bands, and minimally within the 
alpha and beta frequency bands. Delta band: frontally (mainly 
Brodmann area [BA] 6 and 8 to 10), occipitally (mainly BA 17 to 
19), parietally (mainly BA 7 and 40), and temporally (mainly BA 
21 and 37). Theta band: frontally (mainly BA 6 and 9), occipi- 
tally (BA 17 to 19), and parietally (BA 7 and 19). Alpha band: 
occipitally (BA 17 to 19) and partietally (mainly BA 7 and 19). 
Beta band: occipitally (BA 19). 
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55 
ive symptoms and secondary was categorical response (de- 
ned as ≥50% reduction of baseline score), based on the 
DI-II at baseline and after rTMS. Data were normally dis- 
ributed. 

.3. Relating the PRS-informed EEG components 
o antidepressant medication outcome (dataset 2) 

f the 1,008 (dataset 3) participants, data of 535 were in- 
luded for translational analysis (treated per protocol, suf- 
cient clean EEG and all channels available). 
First, linear regression analysis of �QIDS on individual 

EG component score with age as covariate yielded an R 2 

f 2.3% ( β= -0.153; p = 0.019) in men, and R 2 of 1.7 % ( β= -
.131; p = 0.021) when baseline QIDS score was added as co- 
ariate. The association in women (with age as covariate) 
as found to be in the other direction, but was not signifi- 
ant (R 2 = 0.125%; β= 0.035; p = 0.563). 
Second, to examine categorical outcomes, an ANCOVA 
ith EEG component score as dependent variable and 
esponse, sex and treatment arm as fixed factors, and 
ge as covariate yielded a significant (p < 0.05) interac- 
ion of response ✕ sex, but no interactions with treatment 
rm. Repeating this analysis in men and women separately 
ielded a main effect for male patients ( d = 0.358, F = 7.168,
 = 0.008), but no effect for women. Adding baseline QIDS 
F = 6.795; p = 0.010) as additional covariate confirmed these 
esults. 
Based on the results of the previous analyses, a dis- 

riminant analysis was performed on men only and an 
OC curve plotted (see Fig. 4 A). This showed that age 
nd baseline QIDS did not significantly predict medi- 
ation response (Wilk’s Lambda, �= 0.981; Chi-Square, 
2 = 4.320; p = 0.115), but adding the EEG component 
o the model significantly improved response prediction 
 �= 0.953; χ2 = 11.021; p = 0.012) with a PPV of 63% and area
nder the curve (AUC) of 0.623 (p = 0.001; 95%-confidence 
nterval, CI = [0.551-0.694]). A sensitivity analysis with the 
EG component as the only predictor confirmed that the 
omponent significantly contributed to medication response 
rediction ( �= 0.969; χ2 = 7.178; p = 0.007). 

.4. Relating the PRS-informed EEG components 
o rTMS and concurrent psychotherapy outcome 

dataset 3) 

f the 196 participants, data of 193 were included for trans- 
ational analysis (sufficient clean EEG and all channels avail- 
ble). No significant correlations between the EEG compo- 
ent and baseline measures (e.g. age, depression severity, 
nxiety etc.) were found in men (see Table S2). 
First, linear regression analysis of �BDI-II on individual 

EG component score with age as covariate yielded an R 2 

f 5.3% ( β= -0.230; p = 0.022) in men, and R 2 of 4.6% ( β= -
.215; p = 0.022) when baseline BDI-II score was also added 
s covariate. The association in women (with age as covari- 
te) was found to be in the other direction, but was not 
ignificant (R 2 = 3.4%; β= 0.185; p = 0.068). 
Second, to examine categorical outcomes, we performed 

n ANCOVA with EEG component score as dependent vari- 
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Fig. 4 ROC curve of the improved treatment prediction model for response. 
ROC (receiver operating characteristic) curve for the prediction of medication response (A) and rTMS and concurrent psychotherapy 
response (B) by the EEG component, age and baseline symptom severity as predictors (improved model), in men. 
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ble and response, sex and rTMS treatment site as fixed 
actors, and age as covariate yielded a significant (p < 0.05) 
esponse ✕ sex interaction. Repeating the analysis with re- 
ponse as fixed factor for men and women separately re- 
ulted in a main effect of response for men ( d = 0.576; 
 = 7.211; p = 0.009), but not women. Adding baseline BDI-II 
F = 7.462; p = 0.008) as additional covariate confirmed these 
esults. 
A discriminant analysis revealed that age and baseline 

DI-II did signifincantly predict treatment response in men 
 �= 0.929; χ2 = 6.739; p = 0.034), but adding EEG component 
 improved the model ( �= 0.859; χ2 = 13.914; p = 0.003) with 
 PPV of 76% and the ROC for this analysis (see Fig. 4 B)
ielded an AUC of 0.719 (p = 0.0004; 95%-CI = [0.614-0.824]). 
 sensitivity analysis with the EEG component alone con- 
rmed significant contribution of the component to rTMS 
esponse prediction ( �= 0.930, χ2 = 6.698, p = 0.010). 

.5. Utility of the EEG component as response 

redictor 

he optimal network cut-off point was determined by cal- 
ulating the maximum Youden index ( J ) of the ROC curves 
f EEG as single predictor. The maximum Youden’s J was 
t score 1491.055 ( J = 0.188) for antidepressant medica- 
ion and 1577.460 ( J = 0.258) for rTMS (and concurrent psy- 
hotherapy) in men, both cut-offs reached a sensitivity of 
5%. Response status was predicted based on these cut- 
ff points, which resulted in significantly better within- 
ubsample response rates than expected based on the to- 
al observed response rates: PPV = 69% (improvement + 26%) 
nd NPV = 52% (p = 0.003) for medication, and PPV = 77% 

 + 24%) and NPV = 48% (p = 0.018) for rTMS (see Table S3 for
ll results, including sensitivity and specificity). 
s

56 
.6. Application of the EEG component as 
esponse predictor (dataset 4) 

f the 175 patients, 141 were included (receiving CBT or 
nother form of psychotherapy, sufficient clean EEG and 
ll channels available), of whom 50 were male patients 
ith a response rate of 32%. Then, the response status 
f these male patients was predicted based on the cut- 
ff for rTMS and concurrent psychotherapy. The primary 
nalysis yielded the following results: PPV = 50% ( + 56%) and 
PV = 73% (see Table S4 for all results). A planned sensitiv- 
ty analysis showed no differences between CBT and other 
sychotherapies (both PPV = 50%). 

. Discussion 

iven psychological measures mapping poorly on neurobi- 
logy and cognizant of the scarce diagnostic and prognos- 
ic biomarkers in MDD ( Krepel et al., 2019 ; Saveanu et al.,
015 ; Vinne et al., 2017 ), we have here taken a 
ovel, genetics-informed approach to elucidate whether a 
olygenic-informed EEG signature may help predict differ- 
ntial antidepressant treatment response. This proof-of- 
oncept demonstrates that using a polygenic risk score- 
nformed data-driven, data-reduction approach applied to 
esting-state EEG in a large set of hospital-admitted psy- 
hiatric patients and healthy controls (dataset 1), we were 
ble to identify one spectral-spatial independent compo- 
ent (‘functional network’). We thus uncovered a functional 
etwork that in turn was associated with antidepressant 
edication, as well as rTMS and (concurrent) psychother- 
py in independent datasets consisting of MDD patients. 
his network was found to be a sex-specific, nontreatment- 
pecific, one-directional predictor for antidepressant re- 
ponse in male MDD patients. 
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Visualizing our functional network ( Fig. 3 ), we found pre- 
ominantly slow-wave activity 1) prefrontal jointly left- 
ided delta power (mainly DLPFC) that was inversely asso- 
iated with right-sided delta (and theta) power (mainly in 
he anterior portion of the PFC); 2) slow wave (delta and 
heta) power in the somatosensory-motor cortex; 3) both 
low as well as fast wave power within the visual cortex. 
his slow-wave network might be difficult to interpret, and 
oes not overlap with prior imaging studies (to our knowl- 
dge). Future research should further investigate the exact 
unctional implications of this network and/or validate this 
gainst other imaging modalities. 
The individual strength of the network was associated 
ith treatment outcome in a sex-specific manner. Several 
ypotheses might explain the predictive value of the net- 
ork for antidepressant treatment outcomes in MDD. Abnor- 
alities of the PFC as a network node are known to be impli- 
ated in the etiology of MDD and have previously been asso- 
iated with treatment outcome ( Fonseka et al., 2018 ). TMS 
pplied to the PFC, however, results in transsynaptic acti- 
ation of deeper areas such as the sgACC ( Fox et al., 2012 )
nd the frontal-vagal pathway ( Iseger et al., 2020 ). It is 
lausible that, by modulating neural activity at the stimula- 
ion site, TMS synchronically activates remote cortical areas 
nd thereby modulates dysfunctional functional connectiv- 
ty between areas of the network in a cross-frequency man- 
er. Also, TMS induces anticorrelations between the DLPFC 

nd medial prefrontal areas of the default mode network 
 Liston et al., 2014 ). 
The predictive value of the network with regards to treat- 
ent outcome was tested in MDD patients prescribed to ran- 
omized antidepressant treatment (dataset 2) and treated 
y rTMS and concurrent psychotherapy (dataset 3). Primary 
nd secondary analyses showed that the network was cat- 
gorically and dimensionally associated with response to 
ntidepressant medication and rTMS in a sex-specific man- 
er, namely in men only. Two clinical cut-offs (one for 
sychopharmacotherapy, one for rTMS and concurrent psy- 
hotherapy) were established for prediction purposes in 
ale MDD patients. The reponse rate improved for medi- 
ation ( + 26%) as well as rTMS during psychotherapy ( + 24%) 
ased on these cut-offs. To investigate if the effect was at- 
ributed to rTMS or psychotherapy, we blindly and prospec- 
ively applied the EEG component and earlier determined 
linical cut-off to another independent dataset of MDD pa- 
ients treated with psychotherapy without rTMS (dataset 
). The reponse rate improved with 56% in male patients 
reated with psychotherapy, which could suggest that the 
ormer results for rTMS during psychotherapy were driven 
y psychotherapy. 
Unfortunately, based on the results of this study we could 

ot predict treatment outcome in female patients; pre- 
iction accuracy measures were restricted to men only. 
e aimed at performing the latter analysis in two inde- 
endent datasets consisting of MDD patients treated with 
TMS (and sham), but by having to restrict the datasets to 
ale (non)responders, both samples were too small and un- 
erpowered, which yielded unreliable and therefore incon- 
lusive results. We suggest replicating this study in larger 
ample sizes, with a sufficient number of observed respon- 
ers. Furthermore, the strength of the EEG component 
ies in predicting the likelihood that the patient is a re- 
57 
ponder given that the component has identified the pa- 
ient as a responder. A limitation here, is that the EEG 

omponent has no stratification potential, so no alterna- 
ive treatment strategy – other than the antidepressant 
reatments studied here – which increases the chance of 
esponse, could be determined. Better prediction perfor- 
ance with both high PPV and NPV or/and with stratifica- 
ion potential is desired for clinical purposes. Future re- 
earch that includes other antidepressant treaments, such 
s electroconvulsive therapy (ECT), may provide additional 
nsights on predicting beneficial treatment for all MDD pa- 
ients. 
Rest-EEG recordings and subsequent calculation of net- 
ork score in treatment-naive MDD patients before treat- 
ent inception is likely relatively economical and non- 

nvasive. An EEG signature may thus in future provide a use- 
ul construct for treatment stratification, thereby enhanc- 
ng chances of initial response, thus limiting the relative in- 
fficiency of the current stepped-care, ‘trial-and-error’ ap- 
roach. Given that efficacy of antidepressant treatment in 
he general MDD population is moderate ( Barth et al., 2016 ; 
imon, 2002 ; Voigt et al., 2019 ), and antidepressant discon- 
inuation and switching rates are high ( Demyttenaere et al., 
001 ; Goethe et al., 2007 ; Mullins et al., 2005 ), only slightly
ncreased response rates may reduce disease burden and du- 
ation. 
External validation using two large, independent 

atasets, and especially the blinded-out-of-sample val- 
dation are important strengths of this study. High-density 
EG was used for LORETA-fICA, which improves the low 

patial resolution compared to low-density EEG, but was 
nly available for the independent datasets used for trans- 
ational purposes. However, the fICA-LORETA method is 
pplicable to all EEGs independently of apparatus, elec- 
rode configuration or number of electrodes since it is 
erived from the voxel-level rather than the electrode 
evel. 
Furthermore, to allow for future clinical translation of 

ur findings we have highlighted several clinically intuitive 
utcome measures that indicate clinical relevance of the 
EG component we retrieve. Nonetheless, limitations of our 
tudy include the lack of a placebo-controlled arm, preclud- 
ng analyses that parse placebo effects. In addition, the net- 
ork was able to improve the response rates of rTMS with 
oncurrent psychotherapy, but we could not rule out that 
t was also predictive for rTMS alone. Furthermore, for vi- 
ualization of neural activity, the fICA-LORETA method cal- 
ulates power on a categorical scale (i.e. frequency bands) 
nstead of a continuous scale (i.e. power spectrum), thereby 
imiting the interpretation of the functional networks that 
re obtained by fICA. Finally, while for our prediction model 
e relied on the EEG signature, future studies should aim to 
urther optimize prediction by also including other baseline 
ariables, which are likely to further improve the clinical 
esponse. 
In conclusion, in this proof-of-concept study we show for 

he first time how a genetics-informed data-driven, data- 
eduction approach identifies an EEG functional brain net- 
ork that is of predictive value to MDD treatment. Our 
ethod highlights the clinical applicability of such an ap- 
roach and sets the stage for future stratified psychiatry 
esearch. 
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