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Introduction: Extensive trauma surgery evokes an immediate cellular immune response
including altered circulatory neutrophil numbers. The concurrent bone marrow (BM)
response however is currently unclear. We hypothesize that these BM changes include
(1) a relative reduction of the bone marrow neutrophil fraction and (2) increasing
heterogeneity of the bone marrow neutrophil pool due to (3) the appearance of aged/
returning neutrophils from circulation into the BM-compartment.

Materials and Methods: Eight pigs were included in a standardized extensive trauma
surgery model. Blood and bone marrow samples were collected at baseline and after 3
hours of ongoing trauma surgery. Leukocyte and subtype counts and cell surface
receptor expression levels were studied by flow cytometry.

Results: All animals survived the interventions. A significant drop in circulating neutrophil
counts from 9.3 to 3.2x106 cells/ml (P=0.001) occurred after intervention, whereas
circulatory neutrophil cell surface expression of CD11b increased. The concurrent bone
marrow response included an increase of the BM neutrophil fraction from 63 ± 3 to 71 ± 3
percent (P<0.05). Simultaneously, the BM neutrophil pool became increasingly mature with
a relative increase of a CXCR4high-neutrophil subtype that was virtually absent at baseline.

Conclusion: The current study shows a shift in composition of the BM neutrophil pool
during extensive trauma surgery that was associated with a relatively circulatory
neutropenia. More specifically, under these conditions BM neutrophils were more
mature than under homeostatic conditions and a CXCR4high-neutrophil subset became
overrepresented possibly reflecting remigration of aged neutrophils to the BM. These
findings may contribute to the development of novel interventions aimed to modify the
trauma-induced immune response in the BM.
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INTRODUCTION

Trauma and subsequent surgery induce acute systemic
inflammation and trigger activation of innate immune cells (1–3).
Extensive ongoing trauma surgery is associated with an increased
activation state of circulatory neutrophils and enhanced neutrophil
migration to the tissue (4, 5). Furthermore, a prompt decline in
circulatory neutrophil numbers upon insult has been described in
specific cases (4–7) and linked to the development of inflammatory
complications (4, 5). To maintain homeostasis of circulatory
neutrophils, compensatory mobilization of cells originating from
the bone marrow (BM) occurs. Consequently, drastic shifts in the
constitution of the blood neutrophil pool during systemic
inflammation has been reported (8, 9).

Enhancedmobilization of BM-neutrophils is considered to alter
the content of the BM immune cell pool as well. To restore bone
marrow immune reserves, enhanced hematopoiesis is mandated
(10). Granulopoiesis is, however, considered a time-consuming
process as maturation in the post-mitotic pool takes >4 days (11,
12). The compensation mechanisms in the BM and kinetics in
response to increased cell demands are poorly understood (10, 13).

Profound inflammatory conditions have further been linked
to the ´empty bone-marrow´ phenomenon (14, 15). This BM-
condition is defined as a deficit of both post-mitotic neutrophils
and their progenitors. An empty bone marrow has been reported
at least 24 hours post-insult after trauma due to a mismatch
between circulatory demand and bone marrow synthesis
capacity (14–16). In addition to liberation of neutrophils from
the bone marrow, remigration of relatively aged neutrophils
from circulation into the bone marrow compartment has also
been suggested (17, 18). The role of this phenomenon during a
decrease in circulatory neutrophils during extensive surgery has
not been studied before. To date, the exact interplay between
changes of circulatory neutrophils after an acute trauma-induced
inflammatory insult and the early bone marrow neutrophil-
response has yet to be elucidated.

The hypothesis that is tested predicts that acute trauma-evoked
depletion of systemic neutrophils is associated with altered
composition of the bone marrow neutrophil pool. Such changes
are characterized by (1) relative enhancement of the bone marrow
neutrophil fraction and (2) increasing heterogeneity of the bone
marrow neutrophil pool due to (3) the appearance of aged/
returning neutrophils from circulation into the BM-compartment.

In order to test this hypothesis, a standardized porcine trauma
model of extensive trauma surgery was utilized. The porcinemodel
was chosen as this model allows for standardization of severe
trauma and subsequent surgical interventions. Furthermore,
porcine models have superior translational properties, as pigs are
more closely related to humans in terms of their dimensions,
anatomy, genetics, physiology and immunology compared to
alternative non-primate animal models (19, 20).
MATERIALS AND METHODS

All experiments were performed in accordance with the
guidelines of the Institutional Animal Care and Use. The study
Frontiers in Immunology | www.frontiersin.org 2
protocol was approved by the Saarland University Hospital
Animal Care Committee.

Experimental Animals
All experiments were performed as described in the application
and Female Landrace pigs were utilized (50-60 kilograms).

Experimental Procedure
Premedication included intramuscular midazolam (1mg/kg),
ketamin (20mg/kg) and atropine (50ug/kg). Intubation was
performed following 2 minutes of pre-oxygenation with 100
percent Oxygen at 10L/min. A volume-controlled ventilation
protocol was utilized. Maintenance of anesthesia was achieved
by Isoflurane 0,25-0,50%, continuous midazolam infusion (0,6
mg/kg/hour), and sufentanil infusion (15ug/kg/hour). Ventilation
rates were guided by end tidal CO2-values and FiO2 of 0.3, Positive
end-expiratory pressure of 0cm H2O and an I:E-ratio of 1:2 was
preferred and aimed for in all animals. Frequent arterial blood gas
analyses were performed to check ventilator and metabolic status.
Antibiotics were not applied and hypothermia was prevented by
altering room temperature. In accordance with the treatment
concepts of the Definitive Surgical Trauma Care (DSTC™)-
course (21), hypovolemia was corrected by additional sodium
chloride 0.9% fluid resuscitation. Continuous arterial line blood
pressure measurements were available. All animals were exposed
to standardized extensive trauma surgery. The protocol has been
described previously (22). In short, the following injuries were
induced: liver laceration, 5 small bowel injuries, diaphragm injury,
stomach, spleen, pancreas, left kidney. Furthermore, a
thoracotomy was performed, and a cardiac injury was induced.
Additionally, the left lung was injured and treated through hilar
clamping and resection. Finally, the infrarenal inferior vena cava
and right kidney were lacerated. All standardized injuries were
treated by experienced trauma surgeons and anaesthetists and in
line with treatment concepts of the DSTC™-protocols for trauma
care (21). The sequence and execution of injury induction and
surgical care were standardized and performed according to a
standardized time-schedule. Animals were euthanized after
3 hours of ongoing surgery by pentobarbital infusion.

Sampling
Blood and bone marrow samples were obtained at baseline and
after 3 hours (immediately prior to euthanization). For blood
neutrophil analysis, 9 mL of peripheral blood were collected from
a central venous catheter in ethylenediaminetetraacetic acid
(EDTA)-anticoagulated Vacutainers at baseline and directly after
the animals were exposed to the final injury and subsequent
therapy. An ice-cold isotonic NH4CL-lysis buffer was utilized
twice for the lysis of erythrocytes and cells were washed in
between with FACS-buffer (Dulbecco phosphate buffered saline
supplemented with 2% heat inactivated fetal calf serum, 5mM
EDTA). White blood cell numbers for staining have been
standardized by the utilization of a Neubauer Chamber to
calculate the appropriate dilution factor. Antibody mixes were
added, and samples were incubated in dark conditions for 45
minutes on 4°C. Then, samples were washed twice with PBS2+
(phosphate-buffered saline with added sodium citrate [0.38% wt/
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vol] and pasteurized plasma proteins [10% vol/vol; Sanquin,
Amsterdam, The Netherlands]. Following the final wash steps,
cells were fixed with BD Cellfix (BD, Mountain View, CA, USA), a
premixed fixing concentrate containing 1% formaldehyde and
0,1% sodium azide. Prior to the experiments the stability of all
antibodies was tested and validated. All fixed samples were
analyzed within 24 hours with a FACS Canto II flowcytometer
(BD, Mountain View, CA, USA). Data from individual
experiments are depicted as fluorescence intensity as the median
fluorescence intensity (MFI). A minimum of 20,000 neutrophils
per sample was analyzed. Populations not expressing the used
markers were used to set background fluorescence levels and
compensation matrixes were composed by using beads and the
automated setup system for compensation in BD FACSDiva
software version 6.1.3 (BD, Mountain View, CA, USA).

Bone marrow material was harvested in accordance with
recommendations for humans (23, 24). In short, the pig was
placed in the supine position with both legs fixed. The appropriate
extremity was prepared with antiseptic, scrubbed and draped, only
exposing the site to be sampled. A 1.5cm longitudinal skin incision
was made and bone-covering soft tissue was removed. Thereafter a
2 mm unicortical entry point was drilled with a sterile hand drill at
the anterior-medial aspect of the proximal tibial metaphysis (10cm
distal from the knee joint). Thereafter, an EDTA-coated 50
milliliter syringe with 1ml and a 25-Gauge needle were used to
aspirate BM-content from the cavity.

After collection, BM-samples were directly and simultaneously
processed with corresponding blood samples. At baseline, material
was collected from the left tibia, whereas after intervention cells were
gathered from the right tibia. In our model no extremity trauma
was applied.

Flowcytometry Analysis of Porcine
Peripheral Blood Samples
A previously validated gating strategy was applied to distinguish
between circulatory leukocyte subtypes. First, nucleated, viable
singlet leukocytes (CD45+-cells) were included (see Figures 1A–C).
Thereafter, forward/sideward scatter (FSC/SSC) profiles were
utilized to identify different leukocyte subtypes, as previously
described (25, 26). Neutrophils were identified through typical
high sideward scatter profiles as observed both in human and
porcine blood samples (25–29). Furthermore, SWC 1 negative cells
were excluded as this marker is expressed on porcine neutrophils
and not on porcine eosinophils (29). A representative example of
the gating strategy of blood leukocytes is shown in Figure 1. To
obtain leukocyte populations for determination of reference values,
monocytes as well as lymphocytes and blasts (pooled) were gated as
well. CountBright counting beads (Invitrogen, Waltham,
Massachusetts, USA) were utilized to count and compare absolute
cell numbers over time.

Determination of Bone Marrow Leukocyte
Subtypes and the Neutrophil Fraction
The bone marrow neutrophil fraction was defined as the proportion
of marrow immune cells (CD45+) belonging to the neutrophil
category, which was determined with flow studies (27–29).
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More specifically, bone marrow immune cells were identified by a
multistep gating protocol. A representative example of this gating
strategy is shown in Figure 2. First, vital BM-CD45+-cells
were selected, and debris and doublets were excluded (see
Figures 2A–C). Thereafter, a SSC/CD45 gate was used to
select bone marrow granulocytes (see Figure 2D). Basophils were
gated out based on their lower SSC signal. This is an established
gating strategy for both porcine and human bone marrow analysis
(27–29). Thereafter, SWC 1-positive cells were selected as this
marker is exclusively expressed on porcine neutrophils and not
on eosinophils (see Figure 2E) (29). This gating strategy has been
validated by co-expression analysis of different leukocyte subtypes.
Furthermore, validation experiments including cell sorting studies
with morphologic analysis demonstrated a neutrophil purity over
99%. The BM-neutrophil fraction was determined by calculating the
percentage of BM-neutrophils among all BM-immune cells.

Monoclonal Antibodies and Flow
Cytometry Measurements
For the flow cytometry analysis of neutrophil receptor
expression, the following commercially available anti-pig
monoclonal antibodies were obtained and when indicated
conjugated by validated and commercially available antibody
conjugation kits: SWC 1 (clone K263.3d7, Novus Biol,
Centennial, Colorado, USA), SWC 3 (clone 74-22-15, Accurate
Chemical, Westbury, New York, USA), SWC 8 (MIL-1, Abd
Serotec, Kidlington, UK), CD11b (clone 2F4/11, Abd Serotec,
Kidlington, UK), CD16 (clone G7, Abd Serotec, Kidlington, UK),
CD29 (clone NaM160-1A3, BD, Mountain View, CA, USA),
CD45 (clone K252.1E4, Abd Serotec, Kidlington, UK), CD45Ra
(clone MIL-13, GenWay Biotech, San Diego, CA, USA), CD49D
(clone L25, BD, Mountain View, CA, USA), CD184 (clone H-
118, Santa Cruz Biotechnol, Santa Cruz, CA, USA). Lightning
Link conjugation kits (Novus Biol, Centennial, Colorado, USA).
A viability staining Vivid (Invitrogen, Waltham, USA) was
added to exclude dead cells.

Data Analysis and Statistics
Data was analyzed using software programs SPSS version 21.0
(SPSS Inc., Chicago, IL, USA), GraphPad Prism 8.0 (GraphPad
Software Inc., La Jolla, CA, USA) and FlowJo Version 10 (De Novo
Software, Glendale, CA, USA). Results were expressed as means
(SEM) unless otherwise mentioned. For comparisons, Student’s T-
tests, Paired T-testing or Mann Whitney U-tests were applied as
appropriate. Equality of variance was tested using Lavene’s test. A
p-value < 0.05 was considered statistically significant.
RESULTS

All subjects survived the interventions, and respiratory
complications were not diagnosed. Bone marrow sampling was
not successful in one experimental animal and, therefore, bone
marrow analysis was not performed on cells from this animal. All
other samples provided sufficient material for analysis.
May 2022 | Volume 13 | Article 883863
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A B

D
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C

FIGURE 1 | Stepwise neutrophil gating protocol as utilized for identification of circulatory leukocyte subtypes and neutrophils. (A) Selection of CD45 positive cells
and thereby the exclusion of debris and non-immune cells. (B) Exclusion of doublets. (C) Life/death-stain and selection of viable immune cells. (D) Identification of
different leukocyte subtypes and subsequent selection of granulocytes using FSC/SSC-plots. (E) Selection of SWC 1+ cells, and thereby exclusion of eosinophils.
SSC, sideward scatter signal; FSC, forward scatter signal.
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FIGURE 2 | Stepwise neutrophil gating protocol as utilized for identification of the bone marrow neutrophil fraction. (A) Selection of CD45 positive cells and thereby
the exclusion of debris and non-immune cells. (B) Exclusion of doublets. (C) Life/death-stain and selection of viable immune cells. (D) Identification of different
leukocyte subtypes and subsequent selection of granulocytes (of note: basophils are not included in the granulocyte gate due to distinct side scatter signal).
(E) Selection of SWC 1+ cells, and thereby exclusion of potential contamination by eosinophils. SSC, sideward scatter signal; FSC, forward scatter signal.
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Decreased Circulatory Leukocyte
Numbers and Altered Relative
Presence of Leukocyte Subtypes
Following Extensive Trauma Surgery
As shown in Figure 3 extensive trauma-surgery is associated
with a marked and statistically significant drop in leukocyte
numbers in peripheral blood. At baseline ameanwhite blood cell
count of 21.3 ± 1.7 x106 cells/ml was measured, and after
intervention leukocyte numbers reduced to 9.6 ± 1.6 x106 cells/
ml (P<0.001). The identification of specific white blood cell
subtypes is displayed in Figure 1. Absolute lymphocyte and
neutrophil numbers both dropped significantly over time from
10.3 to 5.9 x106 cells/ml (P=0.01), and 9.3 to 3.2 x106 cells/ml
(P=0.001), respectively. The monocyte population decreased
from 1.7 to 0.5 x106 cells/ml (P=0.01; see Figure 3). The mean
percentage of blood neutrophils as part of all leukocytes
decreased from 43% to 33% (P=0.07), whereas the percentage
Frontiers in Immunology | www.frontiersin.org 6
of blood lymphocytes increased significantly (P=0.02). This
shows that extensive trauma surgery causes a shift in the
constitution of the blood leukocyte pools characterized by
decreased numbers of circulating immune cells and
diminished neutrophil presence.
Increase of the Bone Marrow Neutrophil
Fraction During Trauma was Associated
With a Relative Circulatory Neutropenia
The composition of the bone marrow neutrophil fraction changed
strikingly after extensive trauma surgery. Porcine bone marrow
neutrophils have been identified according to a multistep gating
protocol as described in Figure 2. The neutrophil bone marrow
fraction increased in 6 out of 7 experimental animals upon insult.
Under homeostatic conditions, 63 ± 3 percent of CD45+ nucleated
bone marrow cells were identified as neutrophils. However,
A B

C

FIGURE 3 | Systemic leukocyte alterations after trauma surgery. (A) Difference in white blood cell count between both conditions (baseline vs. termination). Relative
(B) and absolute (C) differences in lymphocyte, monocyte and neutrophil numbers between baseline and termination, reflecting shifts in leukocyte fractions after
trauma surgery. S/FSC, sideward/forward scatter signal; N, neutrophils; M, monocytes; L, lymphocytes *P < 0.05, **P < 0.01, ***P < 0.001. Baseline samples were
taken prior to intervention and termination sampling was performed directly after the final procedure.
May 2022 | Volume 13 | Article 883863
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FIGURE 4 | Difference in the bone marrow neutrophil fraction between baseline and termination. The BM-neutrophil pool/fraction has been identified as
described in Figure 2.
A B

C

FIGURE 5 | Cell surface expression on circulating and bone marrow neutrophils at baseline and after extensive surgery. (A) BM-maturation markers, (B) activation
markers, (C) BM retention receptors. Black bars represent bone marrow samples, white bars represent blood samples. Baseline samples were taken prior to
intervention and termination sampling was performed directly after the final procedure. Data are presented as mean ± SEM, MFI, median fluorescence intensity in
arbitrary units. *P < 0.05; **P < 0.01; ****P < 0.001.
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following extensive surgery, this percentage increased up to 71 ± 3
percent (P<0.05, Figure 4).
Dynamics in Expression of Cell Surface
Receptors Reflect an Instantaneous Shift
of Neutrophil Populations From Blood to
Bone Marrow After Trauma Surgery
Next to a change in cell numbers of circulatory and bone
marrow neutrophils, receptor expression profi les of
neutrophils in both compartments changed as well. Changes
were homogeneous across the different experimental animals
as described in detail hereafter. Relevant receptors involved in
porcine neutrophil maturation (Figure 5A), activation
(Figure 5B) and bone marrow retention and homing
(Figure 5C) were analyzed, using the previously described
gating strategy (Figure 1) (blood samples) and 2 (bone
marrow samples).

At baseline, the population of peripheral blood neutrophils
had significantly higher neutrophil surface expression levels of
both SWC 3 (P<0.01) and CD16 (P<0.01) compared with bone
marrow neutrophils. After trauma, a statistically significant
increase of both neutrophil SWC 3 (P<0.001) and CD16
(P<0.001) expression was found on circulatory neutrophils,
whereas a less prominent increase of SWC 3 (statistically non-
Frontiers in Immunology | www.frontiersin.org 8
significant) and CD16-expression levels (P<0.05) was measured
on BM-cells. As anticipated, levels of cell surface expression of
CD29 (integrin b1-chain) were significantly higher on bone
marrow neutrophils than on circulatory neutrophils. No
differences were seen between homeostatic and post-insult
conditions (Figure 5A).

As shown in Figure 5B, no statistically significant differences
in cell surface expression levels of activation marker CD11b were
seen between neutrophils from blood and BM. After extensive
surgery, CD11b-expression on circulatory neutrophils
significantly increased after insult (P<0.05).

In addition, in homeostasis expression levels of CD184
(CXCR4) and CD49d (VLA4) involved in neutrophil
retention in the bone marrow were statistically significantly
lower on circulatory neutrophils compared to bone marrow
(P<0.001 and P<0.05, respectively). Following intervention, cell
surface expression levels of CD184 (P<0.05) and CD49d
(P<0.001) rose on bone marrow neutrophils. CD49d-
expression on systemic neutrophils did not change after
insult, whereas CD184-expression on circulatory neutrophils
increased significantly (P<0.01) and VLA-4 on bone marrow
neutrophils increased significantly after intervention. Cell
surface receptor expression levels of CD49d and CXCR4 on
blood and bone marrow neutrophils under different conditions
are shown in Figure 5C.
A B

C

FIGURE 6 | Gating protocol for the identification of BM-neutrophil subsets after intervention. Initial gating steps have been displayed in Figure 2. (A, B)
Representative example of FACS analysis of porcine bone marrow samples after intervention. (C) Histograms showing regular neutrophils (BM-Neu1, black line),
novel FSChigh neutrophils (BM-Neu2, grey line) and reference blood neutrophils at termination (grey filled curve). MFI, median fluorescence intensity.
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Increased Heterogeneity of the Bone
Marrow Neutrophil Pool and
Overrepresentation of an FCShigh/
CXCR4high-Neutrophil Subset Upon
Extensive Porcine Trauma Surgery
As described previously, extensive trauma surgery is associated with
striking changes in the cell-surface receptor expression profiles of
the BM neutrophil pool (Figures 5A–C). Furthermore, the amount
of variability of cell surface expression levels of relevant markers
(Figures 5A–C) on BM neutrophils also increased after
intervention, (Figures 5A–C), reflecting increased heterogeneity
of the bone marrow neutrophil population after trauma.

Additionally, overrepresentation of a specific neutrophil subset
of FSChigh-neutrophils (BM-Neu2) after insult was demonstrated
(Figures 6A, B). Forward and side scatter density plots of CD45+/
SSChigh/SWC 1+- cells (neutrophils) allow for identifying this
specific subset (see Figure 6B). Under homeostatic conditions this
subset (BM-Neu2) is virtually absent in bone marrow and
represents 2.7 ± 0.2 percent of bone marrow neutrophils.
However, after extensive trauma surgery, BM2-Neu-cells comprise
9.2 ± 1.0 percent of BM-neutrophils (Figure 6B). The relative
increase of the size of the BM-Neu2 population as fraction of all
BM-neutrophils after trauma was statistically significant (P<0.001).
BM2-Neu cells were further characterized by a statistically
significant higher co-expression of CXCR4/CD184 (P<0.01). A
representative example of a histogram of CXCR4 expression on
BM-Neu1 (regular neutrophils in BM), BM-Neu2 and a
corresponding blood sample is displayed in Figure 6C. Table 1
provides an overview of additional co-expression receptor analyses
of both neutrophil subsets.
DISCUSSION

The key findings of the current study can be summarized
as follows:

1. Extensive trauma-surgery in a standardized setting in pigs is
associated with a prompt (<3hrs) decrease in circulating
leukocyte numbers, including neutrophils.
Frontiers in Immunology | www.frontiersin.org 9
2. Extensive trauma-surgery is associated with shifts in the
composition of the bone marrow immune cell pools with an
instantaneous relative increase of the BM-neutrophil fraction
and an increased expression of neutrophil maturation markers
on bone marrow neutrophils.

3. The post-traumatic BM-neutrophil pool is characterized by
increased heterogeneity and overrepresentation of a unique
CXCR4high neutrophil subset.

Our study provides essential novel insights into the early cellular
immune response to severe trauma surgery within the BM
compartment. In line with other studies on extensive trauma
surgery, an early increase of activation status (e.g. enhanced
neutrophil CD11b/Mac-1 expression) and a systemic neutropenia
were demonstrated following insult (30).

It has previously been demonstrated in clinical studies on
surgical patients that aberrant circulatory neutrophil/leukocyte
numbers after insult are linked to impaired clinical outcome (4,
5, 31–35). Both situations of early decreased circulatory neutrophil
numbers (4, 5, 31) as reported in the current study, but also
situations of early elevated systemic immune cell numbers (32–35),
are associated with inferior clinical outcome. These observations
imply that specific patterns of (divergent) circulatory neutrophil
kinetics, with either reduced or increased cell numbers, may
represent an abnormal cellular immune response. A large
number of neutrophils and their progenitors are present in the
bone marrow under tight control of their production,
differentiation and eventually mobilization (8–10, 17). Therefore,
it is key to understand the interplay between the bone marrow,
peripheral blood and distant tissues. To our knowledge this is the
first study that has investigated the bone marrow’s response to
extensive trauma surgery and the related relative circulatory
neutropenia in a controlled setting. Interestingly, and in contrast
to the consensus (13, 14, 16), in the current study a relative increase
of the BM-neutrophil fraction upon extensive surgical intervention
was demonstrated, rather than depletion of the neutrophil bone
marrow population (13, 14, 16).

The production and differentiation of granulocytes
(granulopoiesis) mainly takes place in the bone marrow.
Granulocytes and precursors make up 60% of BM-leukocytes
(12). It is estimated that bone marrow produces approximately
0.5-1.0x 1011 neutrophils a day and that there are approximately
50-100 times more neutrophils in the bone marrow than in
circulation (12, 36), but these issues are under current debate
(37, 38). The bone marrow neutrophil population comprises of
cells at different developmental stages. Three specific pools can be
distinguished: the stem cell pool with self-renewal cell divisions,
the mitotic pool (which includes cells (myeloblasts, (pro)
myelocytes) that differentiate during proliferation) and the post-
mitotic pool (with non-proliferating but maturing cells). The post-
mitotic pool includes differentiated neutrophils (metamyelocytes,
banded andmature cells) and forms a large bonemarrow pool (39,
40). Mature neutrophils are released into circulation. After
mobilization, neutrophils stay in circulation and may migrate
into the tissue compartment before cells return to the bone
marrow or other poorly defined tissue sites (17, 41). Under
TABLE 1 | Comparison of receptor co-expression profiles of BM-Neu1 and BM-
Neu2 cells.

BM-Neu1 (MFI) BM-Neu2 (MFI) P-value

SWC3 457 ± 68 356 ± 52 0.20

SWC8 2376 ± 205 2236 ± 806 0.07

FcgRIII/CD16 298 ± 45 385 ± 34 0.16

ITGB-1/CD29 1430 ± 164 902 ± 313 0.31

Mac-1/CD11b 859 ± 130 706 ± 70 0.52

VLA-4/CD49d 8497 ± 940 9777 ± 1156 0.70

CXCR4/CD184 5683 ± 530 14052 ± 1668 0.0074
Values in bold indicate statistically significant result. Data are presented as mean ± SEM.
MFI, median fluorescence intensity in arbitrary units.
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homeostatic conditions systemic neutrophil numbers remain
constant due to a balance in production, compartmentalization,
and cell death. However, in the case of acute systemic
inflammation, neutrophil numbers in different compartments
shift markedly (1–5, 42). Our research group has previously
shown early neutropenia in a study on experimental extreme
trauma surgery in pigs (22), which was reproduced in this study.
Interestingly, these novel experiments reveal a simultaneous
increase of the bone marrow neutrophil fraction. This is in
contrast with several human studies in which the occurrence of
an ´empty bone marrow phenomenon´ upon extensive surgery
has been suggested (13, 14, 16). In these latter studies a marked
decrease of the bone marrow neutrophil pool was seen after insult.
This bone marrow neutropenia was explained by a putative
exhaustion BM cell production. The differences between our
results and these findings may partly be explained by differences
in the timing of the different investigations. The current
experiment focuses on the acute response to extensive surgery
(first 3 hours) only, whereas other studies focus on later time-
points (> 24 hours) (13, 14, 16). A similar early relative
neutropenia followed by later neutrophilia has been described in
a model of human experimental endotoxemia (43).

Besides affecting neutrophil numbers, extensive trauma
surgery also led to profound changes in the characteristics of
both blood and BM neutrophils. Upon intervention, circulatory
neutrophil CD11b expression almost doubled. Similar effects
have been described in severe trauma and reflect the marked
effect of our extensive surgical model on systemic immune
homeostasis (30, 44). In parallel to the relative neutrophilia of
the bone marrow, characteristics of the BM-pool, determined by
analysis of neutrophil surface expression profiles, changed as well
after insult.

More specifically, cell surface expression levels of CD11b,
CD16, CD184, SWC 8 on BM-neutrophils increased significantly
after trauma-surgery. In addition, a non-statistically significant
trend towards increased SWC 3 expression was observed as well
after intervention. CD11b, CD16, CD184, SWC 3 and SWC 8
have been identified as maturation markers for bone marrow
neutrophils, whose expression levels on neutrophils rise during
maturation (29, 29, 45). Therefore, the findings from our study
indicate increased overall maturation of the bone marrow
neutrophil population (29, 46). Increased expression of CD184
on blood neutrophils after trauma may be secondary due to
massive selective tissue migration of young cells under extreme
inflammatory conditions. Alternatively, blood may function as a
transport medium for tissue neutrophil returning back to the
bone marrow. Of note, increased CD11b-expression on BM-
neutrophils is most likely mainly due to increased cell activation
(30, 44), rather than due to more progressed maturation.
Increased bone marrow maturation after surgery can be
explained by four processes that are not mutually exclusive:

Firstly, an increase in older neutrophils in the bone marrow
might be caused by selective release of young cells into the
circulation. This hypothesis is supported by the massive release
of banded neutrophils in the first hours after severe trauma
(22, 43).
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Secondly, selective acceleration of processes of neutrophil
proliferation, differentiation and maturation may occur upon
extreme conditions; a situation generally coined as emergency
granulopoiesis (47, 48). There are, however, no published
studies supporting this phenomenon in trauma patients. Also,
such emergency granulopoiesis after trauma would result in
more immature, rather than aged neutrophils (47, 48). Thirdly,
bone marrow neutrophil apoptosis may be affected or
postponed after extensive trauma. As mentioned before, aged,
but not necessarily apoptotic neutrophils are thought to be
cleared in the bone marrow (17, 41). While bone marrow is
thought to be involved in clearance of neutrophils, it is also
known for its capacity to optimize cell survival by specific BM
survival factors (49, 50). In cases of extensive trauma,
regulation of cell survival in the bone marrow compartment
may differ from regular conditions.

Lastly, enhanced selective influx of aged neutrophils into the
bone marrow compartment may occur after trauma. Bone
marrow homing of aged but not apoptotic neutrophils in
murine models is thought to be a CXCR4 (CD184)-
dependent process as cells can respond to stromal derived
factor (SDF)-1alpha/CXCL12, the ligand for CXCR4 (45, 51).
The bone marrow compartment constitutively expresses SDF-
1alpha/CXCL12, and the BM is considered as the preferred
homing compartment of CXCR4high-cells (18, 45). As such,
increased BM accumulation of aged neutrophils, which have
been trafficking back from circulation after extensive trauma
surgery likely contribute to overall aging of the BM neutrophil
population. Additionally, the current study is the first to
describe prominent increase of a specific CXCR4high-
neutrophil subset (termed BM-Neu2) in bone marrow after
trauma. This increased population likely reflects returning
neutrophils from circulation and has previously been
described in non-trauma conditions as well (51, 52). The role
and capacities of this subset are currently unclear.
Limitations
Humoral factors upon standardized porcine trauma have been
described in detail before and were not analyzed in the current
study (53, 54). According to literature, systemic leukocyte
neutrophil numbers in pigs range between 10 and 22 x109/L
and are higher than in humans (55). Baseline leukocyte
numbers in the current study were within ranges as described
in literature. Therefore, we do not believe that stress-induced
neutrophilia due to transportation or handling of the pigs
played a relevant role (56). Furthermore, as neutrophil
subsets were identified after interpretation of the experiments,
we were not able to perform in vitro studies on the novel BM-
subset. For the current study we decided to utilize female
subjects only. This should be considered when extrapolating
of our findings to male trauma. Female animals were utilized as
relevant hormonal fluctuations were unlikely to affect outcome
in an extensive trauma study with a short observation period.
Furthermore, it has been shown before in multiple species that
utilization of female animals is not associated with increased
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variability of findings (57, 58). Moreover, housing of female
animals is less challenging as they do not engage in hierarchy
fights and female animals are easier to handle in the pre-
operative phase than males. As a consequence, stress/cortisol-
induced `baseline` alterations and subsequent increased
variability were prevented (59, 60).
CONCLUSION

This study describes the early bone marrow response to extensive
trauma surgery in a controlled setting. The current study shows
for the first time that during trauma-induced neutropenia, a
parallel increase in neutrophil numbers in the bone marrow
occurs. This shift is characterized by relative enrichment of the
bone marrow neutrophil fraction, increased maturation-status of
the bone marrow neutrophils, and an increased number of a
specific CXCR4high-neutrophil subset in the bone marrow.
This study also reveals that in pre-lethal trauma, aberrant
neutrophil responses in blood and bone marrow go hand in
hand. Hence, in order to design future immunomodulatory
interventions for critically ill trauma patients it is important
to acquire a better understanding of the pre-lethal bone marrow
response. The porcine model is suitable to perform further
studies on this issue and may also be utilized to perform
future proof-of-principle interventions for pre-lethal trauma
situations interventions.
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