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a b s t r a c t 

Convolutional neural networks (CNNs) are increasingly adopted in medical imaging, e.g., to reconstruct 

high-quality images from undersampled magnetic resonance imaging (MRI) acquisitions or estimate sub- 

ject motion during an examination. MRI is naturally acquired in the complex domain C , obtaining magni- 

tude and phase information in k-space. However, CNNs in complex regression tasks are almost exclusively 

trained to minimize the L2 loss or maximizing the magnitude structural similarity (SSIM), which are pos- 

sibly not optimal as they do not take full advantage of the magnitude and phase information present in 

the complex domain. This work identifies that minimizing the L2 loss in the complex field has an asym- 

metry in the magnitude/phase loss landscape and is biased, underestimating the reconstructed magni- 

tude. To resolve this, we propose a new loss function for regression in the complex domain called ⊥ -loss, 

which adds a novel phase term to established magnitude loss functions, e.g., L2 or SSIM. We show ⊥ -loss 

is symmetric in the magnitude/phase domain and has favourable properties when applied to regression 

in the complex domain. Specifically, we evaluate the ⊥ + � 2 -loss and ⊥ +SSIM-loss for complex undersam- 

pled MR image reconstruction tasks and MR image registration tasks. We show that training a model to 

minimize the ⊥ + � 2 -loss outperforms models trained to minimize the L2 loss and results in similar perfor- 

mance compared to models trained to maximize the magnitude SSIM while offering high-quality phase 

reconstruction. Moreover, ⊥ -loss is defined in R 

n , and we apply the loss function to the R 

2 domain by 

learning 2D deformation vector fields for image registration. We show that a model trained to minimize 

the ⊥ + � 2 -loss outperforms models trained to minimize the end-point error loss. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Magnetic resonance imaging (MRI) is a noninvasive imag- 

ng technique to obtain an anatomical image with high reso- 

ution and excellent soft-tissue contrast. These properties have 

ade MRI an indispensable diagnostic tool and is increasingly 

sed for interventional guidance, such as high-intensity focused 

ltrasound ( Wijlemans et al., 2012 ), catheter guidance during 

urgery ( Rogers et al., 2014 ), and radiotherapy ( Raaymakers et al., 

009; Mutic and Dempsey, 2014 ). 

MRI must be acquired, reconstructed, and processed with 

igh accuracy in real-time for interventional guidance applica- 

ions. However, MRI acquisition can be time-consuming due to 
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ardware limitations that ensure patient safety, e.g., low gradi- 

nt slew rate to avoid peripheral nerve stimulation ( Zhang et al., 

003 ) or limited radio-frequency power to prevent patient heat- 

ng ( Collins and Wang, 2011 ). However, the limited shot-encoding 

ower of MR acquisitions is the most time-consuming part of 

mage formation ( Wright, 1997 ), resulting in repeated sampling 

f the frequency domain (k-space) to fulfil the Nyquist sam- 

ling criterion ( Shannon, 1948 ). These constraints limit patient 

hroughput and prohibit MRI applications that require high spatio- 

emporal resolution, e.g., cardiac imaging ( Bustin et al., 2020 ), 

peech imaging ( Lingala et al., 2016 ), or tracking abdominal mo- 

ion ( Keiper et al., 2020 ). One way to accelerate MRI is to acquire

ewer data, i.e., undersampling the frequency domain as the num- 

er of k-space samples determines acquisition time. However, un- 

ersampling violates the Nyquist criterion, introducing image ar- 

ifacts. Several methods have been proposed to remove these un- 

ersampling artifacts. For example, parallel imaging ( Pruessmann 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Geometric illustration of regression in the R 2 domain. An estimated vector 
ˆ Y compared to a target vector Y , with magnitude ratio λ = | ̂ Y | / | Y | and phase differ- 

ence ˆ ϕ . The � 2 
C 

loss is the magnitude of the red vector. Our proposed loss function 

⊥ -loss determines the phase error ˆ ϕ as the scalar rejection � ⊥ , i.e., the length of 

the perpendicular line from 

ˆ Y to Y . (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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t al., 1999; Griswold et al., 2002 ) exploits information redundancy 

sing multiple receiver elements. Also, iterative reconstruction al- 

orithms as compressed sensing have been proposed ( Lustig et al., 

007 ), which resolve image artifacts by casting MR reconstruction 

s a sparse denoising problem. However, the resulting acceleration 

actor of parallel imaging remains limited ( Wiesinger et al., 2004 ), 

.g., up to four-fold undersampling, and compressed sensing re- 

onstructions cause a significant reconstruction latency, precluding 

eal-time applications. 

Recently, machine learning has been proposed as an alterna- 

ive to traditional methods to solve inverse problems ( Adler and 

ktem, 2017 ). Specifically, several methods have been proposed 

o use convolutional neural networks (CNNs) to accelerate under- 

ampled MRI reconstruction ( Hammernik et al., 2018; Schlemper 

t al., 2018 ), perform organ segmentation ( Fu et al., 2021 ), or esti-

ate motion from undersampled MRI ( Terpstra et al., 2021 ). These 

ethods have attractive properties compared to traditional meth- 

ds, such as the ability to obtain high-quality MRI reconstructions 

ith high undersampling factors (eight-fold or higher), reducing 

cquisition time. Moreover, CNNs exhibit low inference times by 

aking advantage of parallel GPU architectures, even though train- 

ng of CNNs can take hours or days. Using CNNs to accelerate 

he acquisition, reconstruction, and processing of MRI could enable 

ew applications such as real-time interventional guidance using 

RI ( Jaubert et al., 2021 ) or real-time adaptive MRI-guided radio- 

herapy ( Keall et al., 2019a ). 

In this work, we consider complex regression with CNNs for 

RI applications. These CNNs are trained by finding parameters 

hat minimize a loss function over a training set. The quality of the 

stimated solution largely depends on the loss function, as these 

oss functions determine the impact of residual artifacts and the 

mportance of specific (image) features, such as texture, contrast, 

r the effects of noise propagation. It has been shown that loss 

unctions with desirable properties, such as monotonicity, smooth- 

ess ( Kanai et al., 2021 ), or symmetry ( Patel and Sastry, 2021;

unin et al., 2021 ), can lead to better generalization, noise ro- 

ustness, and faster convergence ( Janocha and Czarnecki, 2017 ), 

epending on the task at hand. As MRI is an inherently com- 

lex signal, loss functions for reconstructing or processing MRI 

re naturally defined in the complex domain. For example, for 

mage reconstruction, popular choices of loss functions between 

 complex target image Y ∈ C 

m ×n and a complex estimated im- 

ge ˆ Y ∈ C 

m ×n include minimizing the complex difference using the 

 

p 
C 

-norm, e.g., � 2 
C 
( Y , ̂  Y ) = ||� ( Y − ˆ Y ) || 2 + ||� ( Y − ˆ Y ) || 2 or � 1 

C 
( Y , ̂  Y ) =

|� ( Y − ˆ Y ) || 1 + ||� ( Y − ˆ Y ) || 1 , where || · || 2 is the squared Frobenius

orm, || · || 1 is the � 1 norm, � (x ) is the real part of x , and � (x ) is

he imaginary part of x , or � SSIM 

= 1 − SSIM (| Y | , | ̂  Y | ) , where SSIM is

he structural similarity index measure ( Wang et al., 2004 ). For im- 

ge registration, the most common loss function between two de- 

ormation vector fields (DVFs) is the end-point error (EPE), which 

s equivalent to � 2 
C 

in the R 

2 domain ( Butler et al., 2012; Dosovit-

kiy et al., 2015 ). The geometric interpretation of minimizing the 

 

2 
C 

-norm is illustrated in Fig. 1 . 

These loss functions do not take full advantage of the phase 

tructure of the data; for example, � SSIM 

discards phase informa- 

ion, while it has been shown that using this information could 

mprove image reconstruction performance ( Haji-Valizadeh et al., 

021 ). On the other hand, the � 
p 
C 

is separately defined on the real

nd imaginary components of the complex-valued signal, possi- 

ly precluding the � 
p 
C 

from taking full advantage of the magni- 

ude and phase properties. Moreover, these loss functions do not 

ecessarily produce a symmetrically-distributed error, while it has 

een demonstrated that using symmetric loss functions can im- 

rove task performance ( Patel and Sastry, 2021 ). Specifically, a 

ymmetrically-distributed error when estimating motion for im- 

a

2 
ge registration is a desirable property as the registration error is 

qually distributed in all directions. 

We hypothesize that a new loss function based on a complex 

ignal’s magnitude and phase components could lead to improved 

egression in the complex domain using deep learning models, 

hus improving image quality when reconstructing undersampled 

RI and leading to better image registration. Therefore, we pro- 

ose ⊥ -loss, a symmetric loss function defined in the magnitude 

nd phase domain. In this work, we will: 

1. Analyze the behavior of � 
p 
C 

in the complex plane and investigate 

the symmetry of the loss landscape. 

2. Introduce the ⊥ -loss function, which operates on the polar rep- 

resentation of complex numbers and adds a novel phase term 

to magnitude loss functions. We examine the loss landscape 

produced by this loss function, comparing it to � 
p 
C 

. 

3. Study the performance of the � 2 
C 

loss, � SSIM 

, ⊥ + � 2 -loss, and

⊥ +SSIM-loss functions for undersampled MRI reconstruction 

tasks using deep neural networks. 

4. Explore the application of the ⊥ -loss to other domains, consid- 

ering regression in the R 

2 domain for 2D image registration. 

. Theory 

This section examines the topology of the � 
p 
C 

loss landscape 

nd proposes a new loss function. We consider a complex im- 

ge Y ∈ C 

m ×n , representing the signal of each voxel as Y jk = a + bi

here a, b ∈ R are the real and imaginary components (Cartesian 

epresentation), or Y jk = | Y jk | e iϕ jk where | Y jk | is the magnitude and

 jk as the phase (polar representation). 

.1. Proof of asymmetry of � 2 
C 

It has been shown that least-squares regression in the R 

2 - 

pace in the presence of noise results is biased. In particular, per- 

orming least-squares regression on noisy data results in parame- 

ers that underestimate the recovered magnitude ( Fermüller et al., 

0 01; Fuller, 20 09; Gleser, 1981; Nagel and Haag, 1998; Buczko 

nd Willert, 2017 ). We make the case that this bias is also present

or regression tasks in the complex domain. 

Suppose we wish to estimate a complex value, e.g., estimat- 

ng a voxel ˆ Y against the ground-truth voxel Y in the target im- 

ge Y . The reconstructed voxel ˆ Y is typically estimated by regres- 

ion, minimizing a loss function such as the complex extension 

f the � 2 -norm, i.e., � 2 
C 
(Y, ̂  Y ) = ||� (Y − ˆ Y ) || 2 + ||� (Y − ˆ Y ) || 2 . The re-

onstructed magnitude bias is expressed as | ̂  Y | = λ| Y | with λ > 0 ,

nd the remaining phase error is denoted as ˆ ϕ . 
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Fig. 2. The loss of � 2 
C 

. The parabola of the loss for a given value of ˆ ϕ is shown as a 

function of λ. The minimal value is indicated in every line plot, and the analytical 

curve of minimal loss is shown in green. It is clear that as ˆ ϕ increases, the min- 

imum of the loss function goes to λ → 0 . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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1 Code will be made publicly available on https://gitlab.com/ 

computational- imaging- lab/perp _ loss . 
In Fig. 1 , this estimation is illustrated using vectors in the com- 

lex plane, where the � 2 
C 

error, ˆ Y , and Y form a triangle. Therefore 

 

2 
C 

can be expressed using the law of cosines as 

 

2 
C 

= | ̂  Y | 2 + | Y | 2 − 2 | ̂  Y || Y | cos ˆ ϕ → � 2 
C 

∝ λ2 − 2 λ cos ˆ ϕ + 1 . 

his expression is zero if and only if Y and 

ˆ Y are identical, i.e., 

= 1 and ˆ ϕ = 0 . We can observe that the � 2 
C 

follows a parabola,

epending on the value of λ and cos ˆ ϕ . For ˆ ϕ = 0 , this function is

inimal when λ = 1 . However, the minimum of the curve when 

ˆ  	 = 0 is at λ < 1 and tends toward λ → 0 as | ̂  ϕ | increases, as

hown in Fig. 2 . This shift depending on ˆ ϕ implies that � 2 
C 

under- 

stimates the reconstructed magnitude, assigning a lower loss to 

stimates with λ < 1 than to estimates with λ > 1 . 

We can show that � 2 
C 

is biased towards reconstructions with 

≤ 1 by examining the gradient of � 2 
C 

. The loss of � 2 
C 

is minimal 

hen 

� 2 
C 

∂λ
= 0 . Taking the derivative of � 2 

C 
for λ yields 

∂� 2 
C 

∂λ
= 0 → 2 λ − 2 cos ˆ ϕ = 0 

2 λ = 2 cos ˆ ϕ 

λ = cos ˆ ϕ . 

s cos ˆ ϕ ≤ 1 for every value of ˆ ϕ , the loss function is minimal 

hen λ ≤ 1 , and λ = 1 if and only if ˆ ϕ = 0 (mod 2 π ). 

This analysis proves that using the � 2 
C 

loss function to recon- 

truct ˆ Y typically favors reconstructions where | ̂  Y | ≤ | Y | . 

.2. Proposed solution 

We hypothesize that this bias occurs because the angle and 

agnitude errors are minimized simultaneously by manipulating 

he real and imaginary components. We introduce a possible so- 

ution by proposing a new loss function that separates the loss in 

ngle and magnitude losses. 

We propose representing the phase error between 

ˆ Y and Y as 

 

⊥ , the length of the line segment which is perpendicular to ˆ Y , 

nding at Y , as visualized in Fig. 1 as the green line � ⊥ ( ̂  Y , Y ) . More
3 
pecifically, � ⊥ is the scalar rejection � ⊥ = || Y − proj ˆ Y 
Y || . This seg- 

ent is independent of the magnitude error λ and computed as 

 

⊥ ( Y , ̂  Y ) = 

Y · ˆ Y 

T 

| ̂  Y | . (1) 

n the complex plane, this function is efficiently com- 

uted ( Heckbert, 1994 ) as 

 

⊥ (Y, ̂  Y ) = 

|� ( ̂  Y ) · � (Y ) − � ( ̂  Y ) · � (Y ) | 
| ̂  Y | . (2) 

he magnitude error can then be independently represented from 

 

⊥ in the full loss function. 

The definition of � ⊥ assumes ˆ ϕ ≤ π/ 2 and � ⊥ decreases when 

ˆ  increases beyond π/ 2 . To ensure � ⊥ smoothly increases when 

ˆ  > π/ 2 , a smooth continuation of � ⊥ when ˆ ϕ ≥ π/ 2 has been

efined in Eq. 4 . Moreover, it was assumed that ˆ Y and Y have 

onzero magnitude, which is not always the case. Therefore, we 

dd ε = 10 −8 to the denominator of Eq. 2 during implementation 

s defined in Eq. 3 . 

The complete loss function for complex images Y , ̂  Y ∈ C 

m ×n is 

hen defined as 

 

⊥ ( ̂  Y , Y ) = 

1 

mn 

m ∑ 

j 

n ∑ 

k 

|� ( ̂  Y jk ) � (Y jk ) − � ( ̂  Y jk ) � (Y jk ) | 
| ̂  Y jk | + ε

(3) 

 

⊥ ( ̂  Y , Y ) = 

{
� ⊥ ( ̂  Y , Y ) | ̂  ϕ | < 

π
2 

2 | Y | − � ⊥ ( ̂  Y , Y ) | ̂  ϕ | ≥ π
2 

(4) 

 ( ̂  Y , Y ) = L 

⊥ ( ̂  Y , Y ) + f (| Y | , | ̂  Y | ) (5) 

In Eq. 5 , f is the loss function operating on the magnitude 

art of ˆ Y and Y . For example, we can define ⊥ + � 2 -loss where

f is the Frobenius norm of | ̂  Y | − | Y | , or ⊥ +SSIM-loss where f =
 − SSIM (| ̂  Y | , | Y | ) . As � ⊥ is independent of λ and the magnitude

erm is independent of ˆ ϕ , ⊥ -loss is symmetric and assigns equal 

oss to vectors with magnitude bias λ and λ−1 for the same ˆ ϕ . 

⊥ -loss as defined in Eq. 5 is currently only defined in the com- 

lex domain but can also be applied to different domains. In par- 

icular, as C is isomorphic to R 

2 , ⊥ -loss may find application in

any regression tasks, e.g., image registration ( Buczko and Willert, 

017; Terpstra et al., 2020 ) or fluid flow analysis ( Kim and Gün- 

her, 2019 ). Moreover, the concept of the scalar rejection that forms 

he basis of � ⊥ in Eq. 1 allows for direct extension to R 

n , enabling

he application of ⊥ -loss to higher-dimensional problems. 

. Methods 

First, we examine the symmetry of the loss landscapes of the 

 

1 
C 

, � 2 
C 

and ⊥ + � 2 -loss functions. Subsequently, to study the image

econstruction quality and dataset or model dependence, we ap- 

ly ⊥ + � 2 -loss and ⊥ +SSIM-loss to complex image reconstruction 

sing two different networks and two different datasets. Finally, 

e study how ⊥ + � 2 -loss generalizes to problems defined in the R 

2 

ector space, focusing on image registration. 1 

.1. Loss landscape examination 

To verify the symmetry of the loss functions, we have per- 

ormed a simulation to visualize the loss landscape of � 1 
C 

, � 2 
C 

, 

nd ⊥ + � 2 -loss loss functions. We generated a vector of n =
0 0 0 complex numbers x ∈ C 

n , x j = a + bi with a and b inde-

endently drawn from a uniform distribution between -5 and 

https://gitlab.com/computational-imaging-lab/perp_loss
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o  
. Next, we perturbed every x j with every (λ, ˆ ϕ ) -pair generated 

y the Cartesian product between � = { 0 , 0 . 02 , 0 . 04 , . . . , 2 } and

= { 0 , π
100 , 

2 π
100 , 

3 π
100 , . . . , π} . That is, ˆ x k = λk x j e 

i ̂ ϕ k , (λk , ˆ ϕ k ) ∈ � ×
. This resulted in a vector ˆ x with 10,0 0 0 perturbed complex num- 

ers for every x j . Finally, we computed the � 1 
C 

, � 2 
C 

and ⊥ + � 2 -loss

oss between x j and ˆ x to obtain a loss value per ( λ, ˆ ϕ )-pair. Cal-

ulating this loss for every x j and taking the mean resulted in the 

oss landscape of λ and ˆ ϕ . These landscapes were compared for 

he � 1 
C 

, � 2 
C 

and the ⊥ + � 2 -loss loss. 

.2. MRI reconstruction 

We have trained two deep CNNs on two different datasets 

o examine the performance of ⊥ -loss when optimizing deep 

eural networks for undersampled MRI reconstruction. An “end- 

o-end variational network” (E2E-VarNet) ( Sriram et al., 2020 ) 

as trained to reconstruct complex MRI from the fastMRI chal- 

enge ( Zbontar et al., 2018 ) (Experiment A). Also, a recurrent in- 

erence machine ( Putzky and Welling, 2017; Teuwen et al., 2020 ) 

RIM) was trained to reconstruct complex MRI from the Calgary- 

ampinas MRI reconstruction challenge ( Beauferris et al., 2020 ) 

Experiment B). 

.2.1. Datasets 

The fastMRI dataset ( Zbontar et al., 2018 ) is a large, open 

ataset of knee MRI, providing 34,742 MRI slices of 973 vol- 

mes for training and 7135 slices of 199 volumes for valida- 

ion. The MRI was acquired using 15 receiver channels at 1.5T 

nd 3T systems, providing various contrasts at 0 . 5 mm 

2 resolu- 

ion. The MRI was acquired using an Cartesian 2D turbo spin 

cho sequence (TE = 27–34 ms, TR = 220 0–30 0 0 ms). Approxi- 

ately half of the scans were acquired with fat suppression, while 

he other half did not employ fat suppression. The dataset pro- 

ided unprocessed, fully-sampled, complex multi-coil k-space for 

very slice, along with fully-sampled ground-truth images. How- 

ver, these ground-truth images only contained the magnitude 

omponent as they were computed using a root-sum-of-squares 

oil combination, which precluded using a complex-valued loss 

unction. We computed coil-sensitivity maps (CSMs) and gener- 

ted fully-sampled complex coil-weighted reconstructions as tar- 

et images ( Inati et al., 2014 ). Finally, the multi-coil k-space was 

etrospectively undersampled by multiplying it with an equispaced 

artesian undersampling mask ( R = 4 ), preserving 8% of the center 

ines. 

The Calgary-Campinas multi-channel MR dataset ( Beauferris 

t al., 2020 ) is an open, 2D brain MRI dataset providing 12- 

hannel k-space of 167 volunteers, acquired using a T 1 -weighted 

radient-recalled echo sequence (TE = 2.6–3.1 ms, TR = 6.3–

.4 ms, TI = 400–650 ms). The MRI was acquired using a 3T 

ystem at 1 mm 

3 isotropic resolution. The dataset provided un- 

rocessed, fully-sampled, complex multi-coil k-space for every 

lice, along with fully-sampled ground-truth images. As with the 

astMRI dataset, the ground-truth images only contained the mag- 

itude component as they were computed using a root-sum- 

f-squares coil combination, which precluded using a complex- 

alued loss function. Compuation of CSMs allowed generation of 

ully-sampled complex coil-weighted reconstructions as target im- 

ges ( Inati et al., 2014 ). Data were undersampled using provided 

andom Poisson disc undersampling masks, yielding an accelera- 

ion factor R = 5 . In total, the dataset provided 12,032 slices for

raining, 5120 slices for validation, and 7800 slices as the test set. 

.2.2. Architectures 

The E2E-VarNet ( Sriram et al., 2020 ) is an unrolled network for 

ndersampled MRI reconstruction consisting of multiple cascades. 
4 
ach cascade computes 

 

t+1 = k t − ηt M(k t − ˆ k ) + G (k t ) 

here k t is the k-space per coil from the previous cascade, M is 

he sampling mask, ˆ k is the k-space sampled by the MRI, η is a 

earnable parameter, and G is a convolutional neural network op- 

rating on the coil-combined, Fourier-transformed k t . Its output 

as then again coil-weighted and Fourier-transformed. The CSMs 

ere estimated from the central lines of k-space using a U-Net of 

epth 4 and 8-channel input. In our case, G is a U-Net of depth

 with 18 input channels ( Ronneberger et al., 2015 ). The entire 

odel consisted of 8 cascades. The reconstructed image was ob- 

ained by transforming the coil-combined k-space of the final cas- 

ade to image-space. Sriram et al. showed that end-to-end estima- 

ion of the CSMs allows higher reconstruction quality than using 

han using traditional methods to estimate CSMs from the under- 

ampled MRI, as the ground-truth CSMs are not available as these 

ere derived from fully-sampled k-space. 

The RIM is a recurrent neural network proposed for inverse 

roblems, such as undersampled MRI reconstruction ( Putzky and 

elling, 2017; Teuwen et al., 2020 ). The network starts with an ini- 

ial estimate of the of the image x 0 , which is the Fourier transform

f the undersampled, coil-combined k-space. Then, this estimate is 

pdated such that 

 t+1 , s t+1 = x t + h θ

(∇ y | x t , x t , s t 
)
. 

ere, ∇ y | x t is the data fidelity term, h θ is the recurrent neural net- 

ork parameterized by θ , and s is the internal state of the re- 

urrent neural network. The final reconstruction is given by x T for 

ome predefined number of steps T . 

A RIM was used for complex image reconstruction with T = 8 

nd h θ is a 2-layer convolutional gated recurrent unit (GRU) with 

4 hidden features. Additionally, a U-Net of depth 4 was used to 

stimate CSMs from the undersampled k-space, as the ground- 

ruth CSMs were not available during training and CSM estimation 

sing deep CNNs showed improved performance compared to tra- 

itional methods to estimate CSMs. 

.2.3. Experiments 

Two experiments were performed: The E2E-VarNet model was 

sed to reconstruct complex undersampled MRI of the fastMRI 

ataset to examine the performance of ⊥ -loss compared to � 2 
C 

and 

 SSIM 

(Experiment A), and the RIM was used to reconstruct com- 

lex undersampled MRI with added noise of the Calgary-Campinas 

ataset to examine the noise robustness of ⊥ -loss compared to � 2 
C 

nd � SSIM 

(Experiment B). 

For every experiment, four separate models were trained: 

1. A model trained to minimize the � 2 
C 

loss function between the 

ground truth and the estimated image. 

2. A model trained to minimize the ⊥ + � 2 -loss between the ground 

truth and the estimated image. 

3. A model trained to minimize the function � SSIM 

loss function 

between the magnitude ground-truth and the magnitude esti- 

mated image, discarding phase information. 

4. A model trained to minimize the function ⊥ +SSIM = � ⊥ · ψ + 

(1 − ψ) · � SSIM 

between the ground-truth and the estimated im- 

age. Here, ψ is a learnable parameter between 0 and 1. 

Each model was trained on an NVIDIA V100 GPU with 32GB 

RAM. The models were trained deterministically with a fixed ran- 

om seed and identical hyperparameters for a fair comparison. 

he models from experiment A were trained for 50 epochs using 

 batch size of 1. At each epoch, 25% of the volumes were ran- 

omly sampled from all training data to manage training time, us- 

ng the Adam optimizer ( Kingma and Ba, 2017 ) with a learning rate 

f 10 −3 . After 40 epochs, the learning rate was reduced to 10 −4 .
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he models in experiment B were trained for 20 0,0 0 0 steps with

 batch size of 4 using the Adam optimizer. The base learning rate 

as 10 −4 and was halved after every 50,0 0 0 steps. During training 

f the models for Experiment B, Gaussian noise ε ∼ N (0 , ξ ) was 

dded to the sampled k-space points, where ξ ≥ 0 was drawn from 

 uniform distribution ξ ∼ U(0 , 0 . 2 · | k 0 | ) , with | k 0 | as the magni-

ude of the central point in k-space. 

.2.4. Evaluation 

The reconstruction quality of the models was evaluated over 

he entire field of view using the mean and standard deviation of 

he peak signal-to-noise ratio (PSNR), SSIM, and visual information 

delity (VIF) ( Sheikh and Bovik, 2005 ) metrics of the magnitude 

stimate to the magnitude target. VIF is a multi-resolution image 

uality metric based on the mutual information between two im- 

ges and has been shown to strongly correlate with MRI quality as 

ssessed by radiologists ( Mason et al., 2020 ). The VIF between a 

arget image I target and estimated image I est is computed as 

IF (I target , I est ) = 

∑ 

j 

log 10 

(
C j ( I target ) · g j ( I target , I est ) 

2 
)

log 10 

(
C j ( I target ) 

)

ere, j = 0 , 1 . . . , J is the resolution level, C j ( I ) = 1 + 

( I j ) 
2 −( I 2 ) j 
σ 2 

N 

s the information in an image I at resolution level j, and 

 j (I target , I est ) = 

C j ( I est ) 

C j ( I target ) 
is the mutual information between I target 

nd I est . The j th sub-band of an image I is approximated by blur- 

ing I using a zero-meaned Gaussian kernel with σ 2 ∝ 2 J− j and 

ownsampling the image by factor 2 j . σ 2 
N 

is a parameter of the vi- 

ion model and was chosen as 0.4 for MRI images ( Beauferris et al.,

020 ). The VIF is bounded by 0, but can reach values greater than

ne if the reconstructed image shows less noise or improved con- 

rast compared to the target image. 

Besides magnitude quality, we evaluated the mean and stan- 

ard deviation of the mean-squared error between the estimated 

hase map and the target phase map. Wilcoxon signed-rank tests 

ith α < 0 . 01 were performed when comparing the results. Dur- 

ng the evaluation of experiment B, Gaussian noise was added to 

he input data using ξ ∼ U(0 , 0 . 5 · | k 0 | ) , allowing comparison of

he loss functions based on image quality depending on the noise 

evel. 

.3. Image registration 

To investigate whether the proposed ⊥ -loss generalizes beyond 

R image reconstruction, we trained a model to learn deformation 

ector fields (DVFs) from a pair of 2D MR images. A DVF is a vector

eld V ∈ R 

2 ×m ×n , where the first dimension is the displacement in 

he x -direction, while the second dimension is the displacement 

n the y -direction. A transformation f : R 

2 ×m ×n → C 

m ×n mapped x -

isplacements of the DVF to the real part of the complex field and 

 -displacements of the DVF to the imaginary part of the complex 

eld. 

.3.1. Data acquisition and processing 

We have used magnitude-only sagittal cine-MRI of 135 patients 

ith abdominal cancer undergoing radiotherapy simulation at our 

epartment ( Terpstra et al., 2020 ) to train the image registration 

odel on simulated ground-truth deformations. The data were ac- 

uired using a two-dimensional Cartesian balanced steady-state 

ree precession (bSSFP) sequence on a 1.5 T MRI scanner (Inge- 

ia MR-RT, Philips, Best, the Netherlands) using 28 receiver chan- 

els, TE/TR = 1.3/2.8 ms, a flip angle of 50 degrees, a resolution of 

 . 4 mm 

2 and a field of view of 320 mm 

2 , yielding an acquisition

atrix size of 224 × 224 pixels. In total, 31,750 magnitude-only dy- 

amics were collected. The signal intensity over all dynamics was 
5 
inearly rescaled to [0, 1], clipping the top 99th intensity percentile 

f the dynamics in a cine-MRI. Images were augmented using ran- 

om affine transformations (rotation between [ −20 , 20] degrees, 

ranslations between [ −10 , 10]% of the image size, scaling between 

75 , 125] %, and shearing between [ −10 , 10]% ), random horizontal

nd vertical flips, and cropping to a random region of 224 × 224 

ixels. 

The ground-truth deformation was generated using 

ryds ( Eppenhof and Pluim, 2019 ), which generates ran- 

om, smooth DVFs D ∈ R 

2 ×m ×n using a B-spline basis from 

 

2 ×3 ×3 ∼ N (0 , U(0 . 001 , 0 . 025)) . The motion parameters were

elected such that the determinant of the Jacobian was higher 

han 0 everywhere to avoid folding by the DVF, which would have 

esulted in implausible motion ( Reinhardt et al., 2008 ). Warping 

andomly-chosen cine frames using the ground-truth DVF D
ielded a magnitude reference image, magnitude warped image. 

he ground-truth DVF was mapped to the complex domain by 

pplying the transformation f : R 

2 ×m ×n → C 

m ×n to D. 

.3.2. Model architecture, training, and evaluation 

We trained a residual U-Net ( Ma et al., 2021 ) of depth 5 with

wo input channels and two output channels, with two residual 

nits per level. Every residual unit consisted of a 3 × 3 convolution, 

 two-dimensional instance norm ( Ulyanov et al., 2017 ), and PReLU 

on-linear activation ( He et al., 2015 ). The first convolution used 

tride 2, while the latter convolution used stride 1. Two variants of 

his image registration model were trained: 

1. One model was trained to minimize the end-point error (EPE), 

which is equivalent to the � 2 
C 

loss function in the R 

2 -domain. 

This is the de-facto loss function for training image registration 

models ( Butler et al., 2012; Dosovitskiy et al., 2015 ). 

2. One model was trained to minimize the ⊥ + � 2 -loss. 

The models used the reference and warped image as input to 

econstruct the DVF. The models were trained using the AdamW 

ptimizer ( Loshchilov and Hutter, 2019 ) for 150 epochs with a base 

earning rate of 1 × 10 −4 and a weight decay of 5 × 10 −4 using a

atch size of 16 on an NVIDIA V100 GPU with 32 GB VRAM. After 

his training, the models were fine-tuned for 50 epochs using a 

earning rate of 10 −6 . 

The models were evaluated on the residual EPE and SSIM after 

mage registration with the estimated DVF. Moreover, the models 

ere evaluated on λ, i.e., the ratio between magnitude overestima- 

ion and magnitude underestimation. Wilcoxon signed-rank tests 

ith α < 0 . 01 were performed when comparing the results. 

. Results 

.1. Loss landscape 

The loss landscapes of the � 1 
C 

, � 2 
C 

and ⊥ + � 2 -loss functions are

hown in Fig. 3 . The � 1 
C 

and � 2 
C 

loss functions both display an asym-

etry, assigning a higher loss to vectors with λ > 1 and a lower 

oss to vectors with λ < 1 with the same phase error. For ⊥ + � 2 -

oss, this loss landscape is symmetric with steep gradients far from 

= 1 and a large region where the loss is low, as can be observed

rom the size of the area within the first isocontour around λ = 1 

nd ˆ ϕ = 0 . 

.2. Image reconstruction 

.2.1. Experiment A: E2E-VarNet 

Each E2E-VarNet model was trained in approximately 48 hours. 

s shown in Table 1 , the proposed ⊥ + � 2 -loss yields reconstruc- 

ions with significantly higher SSIM and VIF than � 2 
C 

(Wilcoxon, 

p � 0 . 01 ) – with an SSIM of 0 . 90 ± 0 . 07 versus 0 . 86 ± 0 . 10 – while
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Fig. 3. The loss landscapes for the � 1 
C 

loss function (left), � 2 
C 

loss function (center) and ⊥ + � 2 -loss (right). Lines through the loss landscape are isolines of the losses. The � 1 
C 

and � 2 
C 

loss functions show an asymmetry, resulting in a higher loss value for λ > 1 , while ⊥ + � 2 -loss is symmetric. 

Table 1 

Evaluation of E2E-VarNet and RIM models trained to minimize � 2 
C 

, ⊥ + � 2 -loss, SSIM or ⊥ +SSIM-loss functions using the structural similarity, peak- 

signal-to-noise ratio, phase mean-squared error, and VIF metrics. Best results per model and metric are marked in boldface. 

Loss \ Model E2E-VarNet/FastMRI RIM/Calgary-Campinas 

SSIM ( ↑ ) PSNR ( ↑ ) Phase MSE ( ↓ ) VIF ( ↑ ) SSIM ( ↑ ) PSNR ( ↑ ) Phase MSE ( ↓ ) VIF ( ↑ ) 
� 2 
C 

0 . 86 ± 0 . 10 31 . 2 ± 3 . 1 0 . 04 ± 0 . 03 0 . 80 ± 0 . 17 0 . 89 ± 0 . 04 31 . 2 ± 2 . 5 0 . 03 ± 0 . 01 0 . 98 ± 0 . 09 

⊥ + � 2 -loss 0 . 90 ± 0 . 07 33 . 0 ± 3 . 0 0 . 04 ± 0 . 03 0 . 83 ± 0 . 16 0 . 93 ± 0 . 03 31 . 4 ± 2 . 6 0 . 03 ± 0 . 01 0 . 99 ± 0 . 09 

SSIM 0 . 91 ± 0 . 07 33 . 9 ± 3 . 5 0 . 12 ± 0 . 03 0 . 86 ± 0 . 15 0 . 93 ± 0 . 03 31 . 0 ± 2 . 6 0 . 15 ± 0 . 01 0 . 99 ± 0 . 11 

⊥ +SSIM-loss 0 . 91 ± 0 . 07 33 . 1 ± 3 . 0 0 . 04 ± 0 . 03 0 . 86 ± 0 . 16 0 . 93 ± 0 . 03 30 . 9 ± 2 . 5 0 . 03 ± 0 . 01 1 . 0 ± 0 . 11 

Values marked in bold are statistically significant. 
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he phase error is equally low. Example reconstructions are shown 

n Fig. 4 , where it can be seen that the � 2 
C 

reconstruction shows

n apparent magnitude underestimation in the reconstructed knee 

issue and a more significant error in the background region. The 

econstruction from the ⊥ + � 2 -loss model shows no clear prefer- 

nce for magnitude overestimation or underestimation. However, 

ess signal is present in the background in this specific instance, 

ndicating better denoising properties. 

The model trained to maximize the magnitude SSIM results in 

ven higher magnitude quality but does not reconstruct usable 

hase information, as the network received no loss for the phase 

erm. Combining the SSIM loss with ⊥ -loss using the ⊥ +SSIM-loss 

esults in reconstructions of equal quality as the SSIM model but 

as a similar phase reconstruction performance as the � 2 
C 

loss and 

 + � 2 -loss. However, there seems to be an increased residual mag- 

itude error compared to the SSIM reconstruction, indicating a 

rade-off between denoised and dealiased magnitude reconstruc- 

ions and high-quality phase maps. 

.2.2. Experiment B: RIM 

Each RIM was trained in approximately 8 hours. Similar to the 

esults of the E2E-VarNet model, using ⊥ + � 2 -loss yields signifi- 

antly higher reconstruction quality in the noise-free case than 

 

2 
C 

(Wilcoxon, p � 0 . 01 ) – with SSIM values of 0 . 89 ± 0 . 04 ver-

us 0 . 93 ± 0 . 03 . Additional quantitative results are presented in

able 1 . The model trained to maximize the magnitude SSIM out- 

erforms both the ⊥ + � 2 -loss and � 2 
C 

models, but these reconstruc- 

ions have high phase error. Based on the VIF metric, the ⊥ +SSIM- 

oss model outperforms the SSIM model (with a mean VIF of 

 . 0 ± 0 . 011 versus 0 . 99 ± 0 . 11 ) while having low phase error. 

An example reconstruction without added noise is shown in 

ig. 5 . It can be observed that both SSIM and ⊥ +SSIM-loss models

ield high-quality magnitude reconstructions. However, the SSIM 

odel reconstructs poor phase images, while the phase images 
6 
f the ⊥ +SSIM-loss model are similar to the ground-truth phase 

aps. 

When evaluated with added noise, i.e., ξ > 0 , the quality of the 

agnitude reconstructions degrade for all models. In Fig. 6 , the 

erformance of the four RIM models with added noise is eval- 

ated based on the magnitude PSNR metric. Here, in the noise- 

ree case, ⊥ + � 2 -loss achieves the highest median PSNR of 32.8. 

owever, the models were trained up to a noise level of 0.2. Up 

o this noise level, ⊥ + � 2 -loss achieves the highest median PSNR. 

eyond this noise level, the image quality of ⊥ + � 2 -loss degrades 

aster than the competing models, yielding a median PSNR of 22.8 

t noise level 0.5 versus 23.1 for the � 2 
C 

model. The ⊥ +SSIM- 

oss model performs similarly to the SSIM model, which both 

ield an median PSNR of 32.1 in the noise-free case and 23.3 

t noise-level 0.5. 

The model trained to maximize the magnitude SSIM shows high 

hase error for every noise level and produced unusable phase 

aps. For the � 2 
C 

models, the phase error slowly increased as the 

dded noise increases. For the ⊥ + � 2 -loss and ⊥ + � 2 -loss, the phase

rror remained near-constant as the noise level was increased, 

howing superior phase reconstruction for all noise levels. 

.3. Image registration 

Each image registration model was trained in approximately 6 

ours. An example comparing the DVFs of the ⊥ + � 2 -loss and EPE 

odels to the ground-truth is shown in Fig. 7 , where the model 

rained to minimize ⊥ + � 2 -loss produces a lower residual error and 

 lower registration error, with a registration SSIM of 0.931 for the 

 + � 2 -loss model versus 0.768 for the EPE model. Moreover, it can 

e seen from the difference DVF that the EPE model yields a rela- 

ive magnitude underestimation of up to 25% compared to the tar- 

et DVF in regions with significant deformation. Quantitative eval- 

ation of both models demonstrates that minimizing the ⊥ + � 2 - 
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Fig. 4. Example reconstructions using an E2E-VarNet ( R = 4 ). Examples of reconstructions of the same slice with normalized magnitude using four networks, trained to 

minimize the � 2 
C 

, ⊥ + � 2 -loss, SSIM-Loss, and ⊥ +SSIM-loss loss, respectively. The bottom-left number in magnitude reconstructions shows the foreground VIF (magnitude) 

while showing the foreground mean squared error for phase images. Using the ⊥ + � 2 -loss instead of the � 2 
C 

loss significantly improves image quality. In the zoomed region 

of the � 2 
C 

model, a hallucinated lesion is visible and is much less severe using the ⊥ + � 2 -loss model. Using the SSIM as a loss function yields even higher magnitude image 

quality and higher phase error than the � 2 
C 

and ⊥ + � 2 -loss models. Using the ⊥ +SSIM-loss function obtains the highest magnitude image quality with low phase error. In the 

zoomed region, higher image quality and more contrast for the ⊥ +SSIM-loss model can be observed compared to the SSIM model. 

Table 2 

Evaluation of image registration models trained to minimize ⊥ + � 2 -loss or the EPE 

loss functions using the registered SSIM, remaining EPE, and λ, the ratio between 

magnitude overestimation and magnitude underestimation. Best results per metric 

are marked in boldface. 

SSIM ( ↑ ) EPE (mm, ↓ ) λ ( ≈ 1 ) 

⊥ + � 2 -loss 0 . 927 ± 0 . 053 0 . 898 ± 0 . 598 0 . 960 ± 0 . 304 

EPE 0 . 895 ± 0 . 071 1 . 391 ± 0 . 704 0 . 720 ± 0 . 632 

Values marked in bold are statistically significant. 
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oss produces significantly better DVFs, reducing the mean EPE 

rom 1.39 mm to 0.89 mm (Wilcoxon, p � 0 . 01 ), as presented in

able 2 Moreover, the mean registered SSIM increased by approxi- 

ately 0.03 (Wilcoxon, p � 0 . 01 ), and the mean value λ is signifi-

antly closer to 1. This indicates that the magnitude error is more 

ymmetrically-distributed, i.e., magnitude underestimation is about 

s likely as magnitude overestimation for the ⊥ + � 2 -loss model. The 

rror is significantly more biased towards magnitude underesti- 

ations for the EPE model than the ⊥ + � 2 -loss model (Wilcoxon, 

p < 0 . 01 ). 
7 
. Discussion 

In this work, we have identified that the � 2 
C 

loss function ex- 

ibits a magnitude bias when applied to regression in the C and 

 

2 domains, which may impact the performance of deep neu- 

al networks. Specifically, for the reconstruction and processing of 

omplex MRI, we have shown this bias is detrimental to the per- 

ormance of CNNs for complex MRI reconstruction and MRI regis- 

ration. To address this issue, we have proposed a new loss func- 

ion called ⊥ -loss, which produces a symmetric loss space when 

pplied to regression in the C and R 

2 domains. 

We have shown that ⊥ + � 2 -loss reconstructs undersampled MRI 

ith higher quality than models trained to minimize the � 2 
C 

loss. 

 hybrid ⊥ +SSIM-loss function allowed image reconstruction with 

imilar image quality as networks trained to maximize the mag- 

itude SSIM while generating high-quality phase maps. The E2E- 

arNet model trained to minimize ⊥ + � 2 -loss as loss function in- 

reased the magnitude SSIM by approximately 0.04 and the PSNR 

y approximately 1.8 dB compared to the � 2 
C 

loss. Using ⊥ + � 2 -loss

s the loss function for the RIM model increased the magnitude 
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Fig. 5. Example reconstructions of the RIM ( R = 5 ). Examples of reconstructions 

with the normalized magnitude of the same slice, using a RIM trained to min- 

imize the ⊥ +SSIM-loss and SSIM-Loss, respectively. Using ⊥ +SSIM-loss as a loss 

function produces significantly higher-quality phase information (Indicated by the 

phase MSE, shown in the top-left corner of the phase images) and similar magni- 

tude reconstructions (Indicated by the VIF on the magnitude images). The zoomed 

region indicates an artifact in the SSIM reconstruction. 

S

c

i

w

l

p

r

m

d

o  

m

s

Fig. 6. Quantitative RIM results. The PSNR of the magnitude reconstructions (top) 

and the root-mean square error of the reconstructed phase (bottom) were evaluated 

for the four RIM models trained with different loss functions. On the horizontal axis 

is the magnitude of the added noise. In the low-noise regime, ⊥ + � 2 -loss achieves a 

median PSNR of 32.8 versus 32.6 for � 2 
C 

. The PSNR of ⊥ + � 2 -loss decreases faster at 

higher noise levels, while the ⊥ +SSIM-loss model achieves a similar PSNR as the 

SSIM RIM. The SSIM model show very high phase error, while the ⊥ -loss models 

show superior phase reconstruction compared to the � 2 
C 

and SSIM models. 
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SIM by approximately 0.04 and the VIF by approximately 0.01 

ompared to the � 2 
C 

loss. 

These models trained to optimize for ⊥ + � 2 -loss display compet- 

ng performance to state-of-the-art image reconstruction models 

hile achieving high-quality phase reconstruction. However, some 

iterature currently reports higher scores than the values we re- 

orted here. For example, an SSIM of 0.930 and PSNR of 40 when 

econstructing the fastMRI “challenge” dataset using an E2E-VarNet 

odel has been reported ( Sriram et al., 2020 ). On the validation 

ataset, they reported an SSIM of 0.923 whereas we found an SSIM 

f 0 . 91 ± 0 . 07 . This difference in performance could be caused by

ultiple reasons, such as a better training regime with larger batch 

izes, longer training times, larger models, or our training with 
8 
omplex target images instead of standard magnitude-only train- 

ng. 

These results indicate that deep learning models can use phase 

nformation from the complex signal to improve magnitude recon- 

tructions. This observation aligns with other works, which found 

hat including phase information or designing a network that uses 

omplex-valued model weights – thus taking full advantage of the 

omplex information present in the data – improves both magni- 

ude and phase reconstruction performance ( Pezzotti et al., 2020; 

ole et al., 2021 ). Moreover, improved phase reconstruction might 

nable deep learning applications, such as quantitative susceptibil- 

ty mapping (QSM) ( Wang and Liu, 2015 ) or four-dimensional flow 

RI ( Markl et al., 2012 ). We speculate that reconstructing phase 

nformation makes the inversion problem less ill-posed as � ⊥ acts 

s a phase regularizer. 
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Fig. 7. Image registration results. The reference image (A), warped image (B) were input to the models. The ground-truth DVF is also shown in (B), but was not presented 

to the model. Figures C and F show the estimates produced by the ⊥ + � 2 -loss and EPE models, respectively. Figures D and G show the relative magnitude error between the 

produced DVF and target DVF for the ⊥ + � 2 -loss and EPE models, respectively. Finally, figures E and H show the normalized intensity difference (a.u.) between the images 

registered by the ⊥ + � 2 -loss and EPE DVF and the ground-truth image, respectively. In the bottom-left of C and H, the SSIM between the estimated registration and the 

ground-truth registration is shown. The EPE model shows a larger registration error (H), as visible by larger intensities in the difference image and the lower registration 

SSIM. Also, the estimated DVF by the EPE model shows a larger negative error (G), which indicates a magnitude underestimation, while the ⊥ + � 2 -loss shows errors closer to 

zero. 
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Finally, we demonstrated that ⊥ -loss is not limited to complex 

mage reconstruction but can be applied to problems in other do- 

ains. In particular, we have shown that using ⊥ + � 2 -loss as the

oss function outperforms the EPE when applied to an image reg- 

stration task. The DVFs are estimated with lower residual error, 

educing from approximately 1.4 mm to 0.9 mm, better image reg- 

stration, and a more symmetrically distributed error. 

In past literature ( Buczko and Willert, 2017; Fermüller et al., 

001 ), it has been established that applying least squares regres- 

ion to the R 

2 domain in the presence of noise yields a magni- 

ude underestimation. Our findings align with these previous re- 

ults, and we have shown that these issues also apply to the com- 

lex domain in general and occur during non-linear regression. 

Currently, we have only used real-valued networks for compar- 

son. Recently, networks with complex-valued weights have been 

roposed, and it has been shown that these models achieve supe- 

ior performance ( Cole et al., 2021 ). Future work might investigate 

hether these complex-valued networks could enable even better 

erformance with ⊥ -loss, as every part from input to output is de- 

ned in the complex plane. 

We have identified that it is beneficial to have a smooth and 

ymmetric loss function for MR image reconstruction and im- 
9 
ge registration. However, it is crucial to consider the domain of 

he problem, and these qualities do not necessarily transfer to 

ther tasks. For example, it has been identified that non-convex 

oss functions achieve better performance for image classification 

asks ( Zhao et al., 2010 ) while convex loss functions are generally 

referred, and for anomaly detection, where it is beneficial to use 

n asymmetric loss function that penalizes outliers harder than in- 

iers ( Fu and Wang, 2021 ). 

A symmetrically-distributed error in image registration is an at- 

ractive property for many applications. For example, in radiother- 

py, accurate tracking of tumor motion enables real-time adaptive 

reatments, where the position and shape of the radiation beam 

re adapted to the current anatomy ( Keall et al., 2019b ). A bi-

sed image registration algorithm might underdose a tumor while 

isking increased toxicity to increased dose delivery to healthy tis- 

ue ( Cai et al., 2007 ). With a symmetric loss function like ⊥ -loss, a

ore conformal dose delivery could be obtained. 

For future work, it would be helpful to further study the prop- 

rties of ⊥ -loss. For example, it would be interesting to analyze 

urther the noise robustness of ⊥ -loss to conventional loss func- 

ions. Currently, ⊥ + � 2 -loss does not outperform � 2 
C 

in the mag- 

itude domain when subjected to more noise than seen during 
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raining. In the phase domain, however, the performance of ⊥ + � 2 - 

oss and ⊥ +SSIM-loss is minimally perturbed by the added noise. 

he cause of this phenomenon is unknown, but we speculate this 

ight be caused by a low gradient in the phase direction in high- 

oise environments when λ ≈ 1 ( Fig. 3 ). Moreover, the loss func- 

ion consists of weighing between the magnitude term and phase 

erm. This parameter is currently optimized as part of the network, 

hile more manual tuning could change the emphasis of the loss 

etween the domains. Further experiments could investigate the 

erformance of ⊥ -loss in a low SNR regime or at higher under- 

ampling factors. 

For image registration, it would be interesting to extend the 

efinition of ⊥ -loss to three dimensions. It is simple to express the 

calar rejection as defined in Eq. 1 in R 

n , thus facilitating extension 

o R 

3 and beyond. Further analysis could establish whether the at- 

ractive properties of the ⊥ -loss function in the complex plane, e.g., 

ymmetric output or higher image registration performance, trans- 

ates to higher dimensions. 

Finally, it would be interesting to apply ⊥ -loss to non-deep 

earning image reconstruction. For example, ⊥ -loss could be used 

s a cost function in an iterative compressed sense algorithm. 

uture research could investigate whether using ⊥ + � 2 -loss or 

 +SSIM-loss could improve image reconstruction or result in faster 

teration convergence. 

As using ⊥ +SSIM-loss allows for better image reconstruction 

odel training, further undersampling of k-space with equal image 

uality could be achieved by such models. This would increase MRI 

fficiency, increasing patient throughput. Moreover, reconstructing 

mages with higher quality could lead to better diagnosis by radi- 

logists. 

. Conclusion 

We have identified that the conventional � 2 
C 

loss function gives 

ise to an asymmetric loss landscape in the complex field, resulting 

n an underestimation bias of the reconstructed magnitude. 

To resolve this problem, we have presented ⊥ -loss, a loss func- 

ion defined in a complex vector space for MRI reconstruction 

nd image registration with a symmetric magnitude/phase loss 

andscape. We have applied ⊥ + � 2 -loss to undersampled complex 

R image reconstruction, obtaining higher-quality reconstructions 

han when minimizing the � 2 
C 

loss. Compared to state-of-the-art 

odels that maximize the SSIM, we achieved competitive perfor- 

ance in the magnitude domain and superior performance for 

hase reconstruction using ⊥ +SSIM-loss. 

Finally, we showed that ⊥ + � 2 -loss generalized beyond complex 

mage reconstruction and could be applied for image registration. 

e achieved higher performance than models minimizing the end- 

oint error, with lower residual error, better image registration 

erformance, and a symmetric output error. 
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