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a b s t r a c t 

With an increase in deep learning-based methods, the call for explainability of such methods grows, es- 

pecially in high-stakes decision making areas such as medical image analysis. This survey presents an 

overview of explainable artificial intelligence (XAI) used in deep learning-based medical image analysis. 

A framework of XAI criteria is introduced to classify deep learning-based medical image analysis meth- 

ods. Papers on XAI techniques in medical image analysis are then surveyed and categorized according 

to the framework and according to anatomical location. The paper concludes with an outlook of future 

opportunities for XAI in medical image analysis. 
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. Introduction 

Deep learning has invoked tremendous progress in automated 

mage analysis. Before that, image analysis was commonly per- 

ormed using systems fully designed by human domain experts. 

or example, such image analysis system could consist of a sta- 

istical classifier that used handcrafted properties of an image (i.e., 

eatures) to perform a certain task. Features included low-level im- 

ge properties such as edges or corners, but also higher-level im- 

ge properties such as the spiculated border of a cancer. In deep 

earning, these features are learned by a neural network (in con- 

rast to being handcrafted) to optimally give a result (or output) 

iven an input. An example of a deep learning system could be the 

utput ‘cancer’ given the input of an image showing a cancer. 

Neural networks typically consist of many layers connected via 

any nonlinear intertwined relations. Even if one is to inspect all 

hese layers and describe their relations, it is unfeasibly to fully 

omprehend how the neural network came to its decision. There- 

ore, deep learning is often considered a ‘black box’. Concern is 

ounting in various fields of application that these black boxes 

ay be biased in some way, and that such bias goes unnoticed. 

specially in medical applications, this can have far-reaching con- 

equences. 

There has been a call for approaches to better understand the 

lack box. Such approaches are commonly referred to as inter- 
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retable deep learning or explainable artificial intelligence (XAI) 

 Adadi and Berrada, 2018 ; Murdoch et al., 2019 ). These terms are

ommonly interchanged; we will use the term XAI. Some notable 

AI initiatives include those from the United States Defense Ad- 

anced Research Projects Agency (DARPA), and the conferences on 

airness, Accountability, and Transparency by the Association for 

omputing Machinery (ACM FAccT). 

The stakes of medical decision making are often high. Not sur- 

risingly, medical experts have voiced their concern about the 

lack box nature of deep learning ( Jia et al., 2020 ), which is the

urrent state of the art in medical image analysis ( Litjens et al., 

017 ; Meijering, 2020 ; Shen et al., 2017 ). Furthermore, regulations 

uch as the European Union’s General Data Protection Regulation 

GDPR, Article 15) require the right of patients to receive meaning- 

ul information about how a decision was rendered. 

Researchers in medical imaging are increasingly using XAI to 

xplain the results of their algorithms. Something can be consid- 

red a good explanation if it gives insight into how a neural net- 

ork came to its decision and/or can make the decision under- 

tandable. In this survey, we aim to give a comprehensive overview 

f papers using XAI in medical image analysis. We chose to focus 

olely on papers that used deep learning-based XAI in medical im- 

ge analysis. 

The search strategy for inclusion of papers was as follows: We 

sed the search query “(explainable deep learning OR interpretable 

eep learning OR XAI OR interpretable machine learning OR ex- 

lainable machine learning) AND (medical imaging OR medical 

mage analysis)” in SCOPUS. We included papers from peer re- 

iewed journals and conferences. We analyzed the query results 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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sing the Active learning for Systematic Reviews toolbox ( van de 

choot et al., 2021 ). This toolbox uses active learning to sort pa- 

ers from most relevant to least relevant, while being updated by 

ser input. Furthermore, we had discussions with colleagues, and 

sed a snowballing approach – investigating papers referenced by 

he included papers and papers that refer to the included papers. 

e read the title and the abstract of each of these papers, and 

rowsed paper content if we were not sure whether to include the 

aper. In case of multiple publications by the same authors on the 

ame subject, we chose the journal publication or the most recent 

ublication in case of multiple conference publications. Papers up 

o October 2020 are included in the survey. 

The survey is structured as follows: We will first introduce the 

axonomy of XAI and describe a framework to classify XAI tech- 

iques in Section 2 . In Section 3 , the discussed papers are charac-

erized according to this XAI framework. We will discuss applica- 

ions of XAI techniques in medical image analysis. In case of mul- 

iple papers using the same technique, we will discuss some early 

dopters and summarize the rest of the papers in the tables. Since 

AI techniques often originate from computer vision, we will elab- 

rate on papers that adapted XAI techniques from computer vision 

y adding domain knowledge from the medical imaging field. The 

apers are grouped in the tables according to explanation method 

nd according to anatomical location. This survey adds to the re- 

iew of Reyes et al. (2020) ; since they mainly discussed techniques 

n computer vision, without extensively evaluating the adaptation 

f such techniques throughout medical image analysis. Further- 

ore, we describe if and how techniques from computer vision 

ave been adapted specifically for medical image analysis. This sur- 

ey adds to the review of Huff et al. (2021) , since they mostly fo-

used on examples of visual explanation, while our survey aims 

or a more holistic approach including non-visual explanation, cri- 

iques on XAI, and methods for evaluating XAI. Additionally, we 

ystematically survey papers, reflecting the current status of the 

eld of XAI in medical imaging. In Section 4 , we discuss the pros

nd cons of the discussed XAI techniques. The survey is concluded 

n Section 5 by discussing the state of the art of XAI in medical

mage analysis and an outlook of the opportunities of XAI. 

. Explainable artificial intelligence (XAI) framework 

In this section, we will give a brief overview of Explainable Arti- 

cial Intelligence (XAI) techniques found in deep learning for med- 

cal image analysis. For exhaustive surveys focused solely on XAI, 

lease refer to Adadi and Berrada (2018) and Murdoch et al. (2019) . 

We will distinguish XAI techniques based on three crite- 

ia: model-based versus post hoc, model-specific versus model- 

gnostic, and global versus local (i.e., the scope of the explana- 

ion). The framework of these three criteria is adapted from the 

urveys of Adadi and Berrada (2018) and Murdoch et al. (2019) and 

s depicted in Fig. 1 . The following paragraphs will describe these 

riteria. 

.1. Model-based versus post hoc explanation 

The first distinction we make is model-based explanation ver- 

us post hoc explanation ( Fig. 1 ). 

.1.1. Model-based explanation 

Model-based explanation refers to models, e.g. a linear regres- 

ion model or a support vector machine, that are simple enough 

o be understood, but sophisticated enough to fit a relationship 

etween input and output well ( Murdoch et al., 2019 ). These are 

ften the traditional machine learning models. Examples of model- 

ased explanation enforce the use of a limited amount of features 

i.e., sparsity), or enforce a human to be able to internally reason 
2 
bout the model’s entire decision-making process (i.e., simulata- 

ility) ( Murdoch et al., 2019 ). For example, models that enforce 

parsity such as the least absolute shrinkage and selection operator 

 LASSO, Tibshirani (1996) , force many coefficients to zero. Hence, a 

elect subset of features leads to an output, making the inner con- 

truct of this model explainable. 

Since the focus of our survey is on XAI methods for deep 

earning, model-based explanation by enforcing sparsity or simu- 

atability is infeasible. Deep learning uses a deep neural network, 

ypically with thousands to millions of weights, which is neither 

parse, nor suited for a human to internally simulate and reason 

bout the models entire decision making. However, one of the 

ethods mentioned by Murdoch et al. (2019) was model-based 

eature engineering, i.e., automated approaches for constructing ex- 

lainable features. 

.1.2. Post hoc explanation 

Analyzing a trained model (i.e., a neural network in deep learn- 

ng) to achieve insight into learned relationships is referred to as 

ost hoc explanation. An important distinction between post hoc 

xplanation and model-based explanation is that the former trains 

 neural network and subsequently attempts to explain the behav- 

or of the ensuing black box network, whereas the latter forces the 

eural network to be explainable. 

Methods that provide post hoc explanation include inspection 

f learned features, feature importance, and interaction of features 

 Abbasi-Asl and Yu, 2017 ; Olden et al., 2004 ; Tsang et al. 2018 ; as

ell as visual explanation by saliency maps ( Selvaraju et al., 2017 ; 

imonyan et al., 2013 ; Springenberg et al., 2014 ; Zeiler and Fer- 

us, 2014 ; Zhou et al., 2016 ). 

.2. Model-specific versus model-agnostic explanation 

The distinction between model-specific and model-agnostic ex- 

lanation is related to that between model-based and post hoc ex- 

lanation ( Adadi and Berrada, 2018 ), but there are some nuanced 

ifferences. 

.2.1. Model-specific explanation 

Model-specific explanation methods are limited to particular 

lasses of models. For example, such a method may use attributes 

hat are specific to a type of neural network. A drawback is that by 

iming at model-specific explanation, we limit our choice of neu- 

al networks, thereby potentially excluding a neural network that 

ould better fit the output to the input data. 

Model-based explanation is by definition model-specific 

 Adadi and Berrada, 2018 ), but model-specific explanation is 

ot necessary model-based. Some post hoc saliency mapping 

echniques are examples of techniques that are specific to a 

ertain class of convolutional neural networks (CNNs), but are not 

odel-based explanation methods ( Murdoch et al., 2019 ). 

.2.2. Model-agnostic explanation 

Model-agnostic explanation is independent of the choice of the 

ype of neural network, operating solely on the input and the out- 

ut of the neural network. By perturbing the input, the user can 

nspect what the change is in the output of the neural network. 

his can therefore explain which regions are driving the output. 

odel-agnostic explanation is naturally post hoc. 

.3. Scope of explanation 

The scope of an explanation distinguishes between explanation 

or an entire model (global) versus explanation for a single output 

local). 
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Fig. 1. The eXplainable Artificial Intelligence (XAI) framework proposed in this paper. A rough overview of XAI techniques (discussed in Section 3 ) is classified according to 

this framework. The orange number refers to the section number in the manuscript where the XAI technique is described. 
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.3.1. Global explanation 

Global explanation, also called dataset-level explanation, pro- 

ides general relationships learned by the neural network. For ex- 

mple, global explanation could provide feature importance scores 

t the dataset level, i.e., how much do features contribute to the 

utput across the entire dataset ( Olden et al., 2004 ). As an illus-

ration, one might observe from a neural network that – or even 

ow much – high blood pressure increases the risk of a cardiac 

vent. Another example of global explanation could be visualiza- 

ion of learned filters, i.e., which features are extracted by the neu- 

al network and to what extent are they meaningful to the task at 

and ( Olah et al., 2017 ; Zeiler and Fergus, 2014 ). 

.3.2. Local explanation 

Local explanation provides explanation of a single input. In the 

xample of cardiac risk, an input would be a single person. Local 

xplanation would therefore explain why blood pressure is impor- 

ant to the risk of cardiac event for that single person, whereas 

lobal explanation would describe the relation of blood pressure 

ith risk of cardiac events across the entire dataset. Another ex- 

mple of a local explanation could be a saliency map pinpointing 

o a brain tumor on magnetic resonance imaging (MRI) to explain 

hich part of the MRI mainly contributed to the classifier output 

tumor’. Since this explains which part of the image drives the clas- 

ifier to its output ‘tumor’ for that single person, this is a local ex- 

lanation. 

. XAI in medical image analysis 

In this section, we will present which XAI techniques are 

sed in medical image analysis, and we will discuss adaptations 

f the methods typically seen in computer vision. We catego- 

ize the explanation methods into three types: visual, textual, and 

xample-based; and we will classify each method according to the 

ramework of model-based versus post hoc, model-specific ver- 
3

us model-agnostic, and global versus local explanation ( Fig. 1 ). 

able 1 provides an overview of the most frequently used tech- 

iques and shows their connections according to the taxonomy de- 

ned in Section 2 . 

.1. Visual explanation 

Visual explanation, also called saliency mapping, is the most 

ommon form of XAI in medical image analysis ( Fig. 2 ). Saliency 

aps show the important parts of an image for a decision. 

ost saliency mapping techniques use backpropagation-based ap- 

roaches, but some use perturbation-based or multiple instance 

earning-based approaches. These approaches will be discussed be- 

ow. An overview of papers using saliency maps in medical imag- 

ng is shown in Table 2 . 

.1.1. Backpropagation-based approaches 

(Guided) backpropagation and deconvolution: Some of the ear- 

iest techniques to create saliency maps highlighted pixels that 

ad the highest impact on the analysis output. Examples included 

isualization of partial derivatives of the output on pixel level 

 Simonyan et al., 2013 ), deconvolution ( Zeiler and Fergus, 2014 ), 

nd guided backpropagation ( Springenberg et al., 2014 ). These 

echniques provided local, model-specific (only for CNNs), post hoc 

xplanation. These techniques have been used in medical image 

nalysis. For example, de Vos et al. (2019) estimated the amount 

f coronary artery calcium per cardiac or chest computed tomog- 

aphy (CT) image slice, and used deconvolution to visualize from 

here in the slice the decision was based on. 

Class activation mapping (CAM): Zhou et al. (2016) introduced 

lass Activation Mapping (CAM). They replaced the fully con- 

ected layers at the end of a CNN by global average pooling 

n the last convolutional feature maps. The class activation map 

as a weighted linear sum of presence of visual patterns (cap- 

ured by the filters) at different spatial locations. This technique 
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Table 1 

Overview of eXplainable AI (XAI) techniques used in medical image analysis, classified by the framework from Section 2 . 

Technique Section Authors Model- based Post hoc Model-specific Model-agnostic Global Local 

Visual explanation 3.1. 

Backpropagation-based approaches 3.1.1 

Backpropagation 3.1.1.1. Simonyan et al. (2013) 
√ √ √ 

Deconvolution 3.1.1.1. Zeiler and Fergus (2014) 
√ √ √ 

Guided backpropagation 3.1.1.1. Springenberg et al. (2014) 
√ √ √ 

Class activation mapping (CAM) 3.1.1.2. Zhou et al. (2016) 
√ √ √ 

Gradient-weighted class activation mapping (Grad-CAM) 3.1.1.3. Selvaraju et al. (2017) 
√ √ √ 

Layer-wise relevance propagation (LRP) 3.1.1.4. Bach et al. (2015) 
√ √ √ 

Deep SHapley Additive exPlanations (Deep SHAP) 3.1.1.5. Lundberg and Lee (2017) 
√ √ √ ∗ √ ∗ √ 

Trainable attention 3.1.1.6. Jetley et al. (2018) 
√ √ √ 

Perturbation-based approaches 3.1.2 

Occlusion sensitivity 3.1.2.1. Zeiler and Fergus (2014) 
√ √ √ 

Local Interpretable Model-agnostic Explanations (LIME) 3.1.2.2. Ribeiro et al. (2016) 
√ √ √ 

Meaningful Perturbation 3.1.2.3. Fong and Vedaldi (2017) 
√ √ √ 

Prediction difference analysis 3.1.2.4. Zintgraf et al. (2017) 
√ √ √ 

Textual explanation 3.2. 

Image captioning 3.2.1. Vinyals et al. (2015) 
√ √ √ 

Image captioning with visual explanation 3.2.2. Zhang et al. (2017a) 
√ √ √ 

Testing with Concept Activation Vectors (TCAV) 3.2.3. Kim et al. (2018) 
√ √ √ √ 

Example-based explanation 3.3. 

Triplet networks 3.3.1. Hoffer and Ailon (2015) 
√ √ √ √ 

Influence functions 3.3.2. Wei Koh and Liang (2017) 
√ √ √ 

Prototypes 3.3.3 Chen et al. 2019 
√ √ √ 

∗ Deep Shapley Additive exPlanations are post hoc and model-specific because of the optimization method, but Shapley Additive exPlanations can also be global and model- 

agnostic. 

Fig. 2. Number of papers published per year in medical image analysis, for the three types of XAI techniques. Most papers use a visual explanation. The y-axis shows the 

number of papers included in this survey, the x-axis shows the year these papers were published in. The dashed line for 2020 is an extrapolation given the situation on 

October 31, 2020. 
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rovided local, model-specific, post hoc explanation. Several re- 

earchers used this technique in medical imaging ( Table 2 ). 

CAMs have also been used in medical image analysis in en- 

embles of CNNs. For example, Jiang et al. (2019) constructed 

n ensemble of Inception-V3, ResNet-152, and Inception-ResNet- 

2 to distinguish fundus images of healthy subjects or patients 

ith mild diabetic retinopathy from those with moderate or se- 
4 
ere diabetic retinopathy; and provided a weighted combination 

f the resulting CAMs for localization of diabetic retinopathy. 

ee et al. (2019b) constructed CAMs of the output of an ensem- 

le of four CNNs: VGG-16, ResNet-50, Inception-V3, and Inception- 

esNet-V2, for the detection of acute intracranial hemorrhage. 

Since medical images often contain information at mul- 

iple scales, multi-scale CAMs have also been proposed. 
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Table 2 

Papers that provide visual explanation. For readability, the papers are sorted on anatomical location and only the first paper dealing with that anatom- 

ical location shows the location name. The column ‘Main XAI technique used/based on’ describes which visual explanation technique from Section 3.1 

was used, or which technique the method in the corresponding paper is based on. When multiple visual explanation techniques have been applied, the 

most recent technique based on Table 1 has been noted. CAM = class activation mapping, CT = computed tomography, LIME = local interpretable 

model-agnostic explanations, LRP = Layer-wise relevance propagation, MRI = magnetic resonance imaging, OCT = optical coherence tomography, 

PET = positron emission tomography, SHAP = Shapley additive explanations. 

Anatomical location Authors (year) Modality Main XAI technique used/based on 

Bladder Woerl et al. (2020) Histology CAM 

Brain Ahmad et al. (2019) MRI CAM 

Baumgartner et al. (2018) MRI CAM 

Böhle et al. (2019) MRI LRP 

Ceschin et al. (2018) MRI CAM 

Chakraborty et al. (2020) MRI CAM 

Choi et al. (2020) PET/CT CAM 

Dang and Chaudhury (2019) MRI LRP 

Dubost et al. (2019b) MRI Guided backpropagation 

Dubost et al. (2019a) MRI Occlusion sensitivity 

Dubost et al. (2020) MRI Trainable attention 

Eitel et al. (2019) MRI LRP 

Fuchigami et al. (2020) CT Backpropagation 

Gao et al. 2019 MRI Deconvolution 

Gao et al. (2019) MRI CAM 

Grigorescu et al. (2019) MRI LRP 

Hilbert et al. (2019) MRI Grad-CAM 

Kim and Ye (2020) MRI Grad-CAM 

Kubach et al. (2020) Histology Guided Grad-CAM 

Lee et al. (2019b) CT CAM 

Li et al. 2019b MRI CAM 

Lian et al. (2019) MRI Trainable attention 

Liao et al. (2020) MRI Grad-CAM 

Lin et al. (2019) Ultrasound CAM 

Natekar et al. (2020) MRI Grad-CAM 

Ng et al. (2018) MRI CAM 

Pereira et al. (2018) MRI Grad-CAM 

Pominova et al. (2018) MRI Grad-CAM 

Rezaei et al. (2020) MRI Backpropagation 

Saab et al. (2019) CT Multiple instance learning 

Seo et al. (2020) MRI Prediction difference analysis 

Shahamat and Saniee Abadeh (2020) MRI Occlusion sensitivity 

Shinde et al. (2019a) MRI CAM 

Shinde et al. (2019b) MRI CAM 

Tang et al. 2019 Histology Grad-CAM 

Wang et al. 2020c MRI Guided backpropagation 

Wei et al. (2019) MRI Backpropagation 

Windisch et al. (2020) MRI Grad-CAM 

Xie et al. (2020) Ultrasound Grad-CAM 

Xu et al. (2019) MRI Trainable attention 

Xu et al. (2019) MRI LRP 

Ye et al. (2019) CT Grad-CAM 

Zintgraf et al. (2017) MRI Prediction difference analysis 

Breast Akselrod-Ballin et al. (2019) X-ray Meaningful perturbation 

El Adoui et al. (2020) MRI Grad-CAM 

Gecer et al. (2018) Histology Occlusion sensitivity 

Huang et al. (2020) X-ray CAM 

Kim et al. (2020) Ultrasound CAM 

Lee and Nishikawa (2019) X-ray CAM 

Luo et al. (2019) MRI CAM 

Maicas et al. (2019) MRI Multiple instance learning 

Obikane and Aoki (2020) Histology Grad-CAM 

Papanastasopoulos et al. (2020) MRI Integrated gradient 

Qi et al. (2019) Ultrasound CAM 

van der Velden et al. (2020) MRI SHAP 

Wang et al. (2018) X-ray Trainable attention 

Xi et al. (2019) X-ray CAM 

Yang et al. (2019) Histology Trainable attention 

Yi et al. (2019) X-ray CAM 

Zhou et al. 2020 Ultrasound CAM 

Cardiovascular Candemir et al. (2020) CT Grad-CAM 

Cong et al. (2019) X-ray Grad-CAM 

Gessert et al. (2019) OCT Guided backpropagation 

Huo et al. (2019) CT Grad-CAM 

Patra and Noble (2020) Ultrasound Grad-CAM 

de Vos et al. (2019) CT Deconvolution 

( continued on next page ) 
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Table 2 ( continued ) 

Anatomical location Authors (year) Modality Main XAI technique used/based on 

Chest Ausawalaithong et al. (2018) X-ray CAM 

Brunese et al. (2020) X-ray Grad-CAM 

Chen et al. (2019) X-ray Grad-CAM 

Dunnmon et al. (2019) X-ray CAM 

Guo et al. (2020) CT CAM 

He et al. (2017) Histology Grad-CAM 

Hosny et al. (2018) CT Grad-CAM 

Huang and Fu (2019) X-ray CAM 

Humphries et al. (2020) CT Grad-CAM 

Khakzar et al. (2019) X-ray CAM 

Ko et al. (2020) CT Grad-CAM 

Kumar et al. (2019a) CT CAM 

Lei et al. (2020) CT CAM 

Li et al. 2019d X-ray Multiple instance learning 

Liu et al. 2019f X-ray CAM 

Mahmud et al. (2020) X-ray Grad-CAM 

Paul et al. 2020 CT Grad-CAM 

Pesce et al. (2019) X-ray Trainable attention 

Philbrick et al. (2018) CT Grad-CAM 

Qin et al. (2020) PET/CT Grad-CAM 

Rajaraman et al. (2019) X-ray LIME 

Rajpurkar et al. (2018) X-ray CAM 

Schwab et al. (2020) X-ray Multiple instance learning 

Sedai et al. (2018) X-ray CAM 

Singla et al. (2018) CT Trainable attention 

Tang et al. (2019) CT CAM 

Tang et al. (2020) X-ray CAM 

Teramoto et al. (2019) Histology Grad-CAM 

van Sloun and Demi (2019) Ultrasound Grad-CAM 

Wang et al. 2019 X-ray CAM 

Xu et al. 2019 CT Grad-CAM 

Paul et al. (2020) X-ray CAM 

Zhu and Ogino (2019) CT SHAP 

Dental Vila-Blanco et al. (2020) X-ray Grad-CAM 

Eye Ahmad et al. 2019 Fundus photography CAM 

Araújo et al. (2020) Fundus photography Multiple instance learning 

Costa et al. (2019) Fundus photography Multiple instance learning 

Jang et al. (2018) Fundus photography Guided Grad-CAM 

Jiang et al. (2019) Fundus photography CAM 

Kim et al. (2019) Fundus photography Grad-CAM 

Kumar et al (2019b ) Fundus photography CAM 

Li et al. 2019a Fundus photography Trainable attention 

Liao et al. (2019) Fundus photography CAM 

Liu et al. (2019) Fundus photography CAM 

Martins et al. (2020) Fundus photography Grad-CAM 

Meng et al. (2020) Fundus photography Grad-CAM 

Narayanan et al. (2020) Fundus photography CAM 

Perdomo et al. (2019) OCT CAM 

Quellec et al. (2020) Fundus photography Backpropagation 

Shen et al. (2020) Fundus photography CAM 

Thakoor et al. (2019) OCT Grad-CAM 

Tu et al. (2020) Fundus photography CAM 

Wang et al. 2020a OCT Grad-CAM 

Wang et al. 2020b CT CAM 

Wang et al. 2019b Fundus photography CAM 

Zhang et al. (2019) Fundus photography Grad-CAM 

Zhou et al. (2020) OCT CAM 

Female reproductive system Gupta et al. (2020) Histology Grad-CAM 

GV and Reddy (2019) Histology Grad-CAM 

Sun et al. (2020) Histology CAM 

Gastrointestinal Chen et al. 2019 CT Grad-CAM 

Everson et al. (2019) Endoscopy CAM 

García-Peraza-Herrera et al. (2020) Endoscopy CAM 

Heinemann et al. (2019) Histology CAM 

Itoh et al. (2020) Endoscopy Grad-CAM 

Kiani et al. (2020) Histology CAM 

Korbar et al. (2017) Histology Grad-CAM 

Kowsari et al. (2020) Histology Grad-CAM 

Lee et al. 2020 Ultrasound Backpropagation 

Malhi et al. (2019) Endoscopy LIME 

Rajpurkar et al. (2020b) CT Grad-CAM 

Shapira et al. (2020) CT Multiple instance learning 

Wang et al. (2020) MRI Grad-CAM 

Wang et al. 2019a Endoscopy CAM 

Wickstrøm et al. (2020) Endoscopy Guided backpropagation 

Yan et al. (2020) Histology CAM 

Zhu et al. (2020) Histology Trainable attention 

( continued on next page ) 

6 
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Table 2 ( continued ) 

Anatomical location Authors (year) Modality Main XAI technique used/based on 

Lymph nodes Ji (2019) Histology Grad-CAM 

Musculoskeletal Bien et al. (2018) MRI CAM 

Chang et al. (2020) MRI CAM 

Cheng et al. (2019) X-ray Grad-CAM 

Gupta et al. 2020 X-ray Grad-CAM 

Jamaludin et al. (2017) MRI Guided backpropagation 

Kim et al. 2020 X-ray Backpropagation 

Paul et al. (2019) X-ray CAM 

Zhang et al. (2020) X-ray Grad-CAM 

Zhao et al. (2018) X-ray CAM 

von Schacky et al. (2020) X-ray Grad-CAM 

Prostate Silva-Rodríguez et al. (2020) Histology CAM 

Yang et al. (2017) MRI CAM 

Skin Barata et al. (2020) Dermatoscopy Trainable attention 

Bian et al. (2019) Photography Backpropagation 

Li et al. (2020) Dermatoscopy CAM 

Li et al. 2019c Photography Prediction difference analysis 

Xie et al. 2020 Photography CAM 

Yan et al. 2019 Dermatoscopy Trainable attention 

Young et al. (2019) Dermatoscopy SHAP 

Zunair and Hamza (2020) Photography Grad-CAM 

Skull Kim et al. 2019b X-ray CAM 

Thyroid Lee et al. (2020) CT Grad-CAM 

Wang et al. 2019 Ultrasound Attention 

Wang et al. 2020 Ultrasound CAM 

Multiple Chan et al. (2019) Histology Grad-CAM 

Huang and Chung (2019) Histology CAM 

Hägele et al. (2020) Histology LRP 

Kermany et al. (2018) Multiple Occlusion sensitivity 

Kim et al. 2019 Multiple CAM 

Langner et al. (2019) MRI Grad-CAM 

Meng et al. (2019) Ultrasound Trainable attention 

Schlemper et al. (2019) CT Trainable attention 

Tang (2020) Multiple CAM 

Upadhyay and Banerjee (2020) Multiple Grad-CAM 
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iao et al. (2019) concatenated feature maps at three scales which 

ere subsequently provided as input for the global average pool- 

ng. The provided activation maps showed higher resolution than 

ingle-scale maps, and were better at identifying small structures 

n fundus images of the retina. Shinde et al. (2019a) concatenated 

he feature maps of each layer before max-pooling and also gave 

hose as input to a global average pooling layer. Their ‘High 

esolution’ CAMs provided accurate localizations of brain tumors 

n MRI. García-Peraza-Herrera et al. (2020) proposed extracting 

AMs at multiple resolutions. They showed that the CAMs at high 

esolution were accurate in highlighting interpapillary capillary 

oop patterns in endoscopy images, which were relatively small 

ompared to the entire image. 

Gradient-weighted class activation mapping (Grad-CAM): 

elvaraju et al. (2017) introduced Gradient-weighted Class Ac- 

ivation Mapping (Grad-CAM), which is a generalization of CAM. 

rad-CAM can work with any type of CNN to produce post hoc 

ocal explanation, whereas CAM specifically needs global aver- 

ge pooling. The authors also introduced guided Grad-CAM, an 

lement-wise multiplication between guided backpropagation and 

rad-CAM. Grad-CAM and Guided Grad-CAM have been used in 

edical image analysis. For example, Ji (2019) used Grad-CAM to 

how on which areas of histology lymph node sections a classifier 

ased its decision of metastatic tissue; Kowsari et al. (2020) used 

t to pinpoint small bowel enteropathies on histology; and 

indisch et al. (2020) used Grad-Cam to show which areas 

f brain MRI made the classifier decide on the presence of a 

umor. 

Layer-wise relevance propagation (LRP): Bach et al. (2015) intro- 

uced layer-wise relevance propagation (LRP). LRP uses the out- 

ut of the neural network, e.g. a classification score between 0 

nd 1, and iteratively backpropagates this throughout the network. 
7 
n each iteration (i.e., each layer), LRP assigns a relevance score 

o each of the input neurons from the previous layers. These dis- 

ributed relevance scores must equal the total relevance score of 

ts source neuron, according to the conservation law. 

LRP has been used in medical image analysis. For example, 

öhle et al. (2019) used LRP for identifying regions responsible 

or Alzheimer’s disease from brain MR images. They compared the 

aliency maps provided by LRP with those provided by guided 

ackpropagation, and found that LRP was more specific in iden- 

ifying regions known for Alzheimer’s disease. 

Deep SHapley Additive exPlanations (Deep SHAP): Lundberg and 

ee (2017) proposed a unified approach for explaining predic- 

ions by using SHapley Additive exPlanations (SHAP). This model- 

gnostic approach used Shapley values ( Shapley, 2016 ), a concept 

rom game theory. Shapley values determine the marginal contri- 

ution of every feature to the model’s output individually. A down- 

ide of Shapley values is that they are resource-intensive to com- 

ute, since they require assessment of many permutations. 

By combining DeepLIFT with Shapley values, Lundberg and 

ee (2017) proposed a fast method to approximate Shapley values 

or CNNs called Deep SHAP. Deep SHAP has been used in medi- 

al image analysis. For example, van der Velden et al. (2020) used 

 regression CNN to estimate the volumetric breast density from 

reast MRI. Deep SHAP was used to explain which parts of the im- 

ge had a positive contribution and a which parts a negative con- 

ribution to the density estimation. 

Trainable attention: While many of the previously mentioned 

echniques highlighted what regions of the image the net- 

ork focuses on, i.e. to where the attention was directed, 

etley et al. (2018) proposed a trainable attention mechanism. This 

rainable attention method highlighted where and in what propor- 

ion the network payed attention to input images for classification, 
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nd used this attention to further amplify relevant areas and sup- 

ress irrelevant areas. 

In medical imaging, Schlemper et al. (2019) used trainable at- 

ention and introduced grid attention. The rationale behind this 

as that most objects of interest in medical images are highly 

ocalized. By using grid attention, the trainable attention cap- 

ured the anatomical information in medical images. They demon- 

trated high performance for both segmentation and localization, 

y adding the attention gates to a UNET ( Ronneberger et al., 2015 )

nd a variant of VGG ( Simonyan and Zisserman, 2014 ). The atten- 

ion coefficients were used to explain on which areas of the image 

he network focused. 

.1.2. Perturbation-based approaches 

.1.2.1. Occlusion sensitivity 

Perturbation-based techniques perturb the input image to as- 

ess the importance of certain areas of that image for the task un- 

er consideration. Zeiler and Fergus (2014) used an occlusion sen- 

itivity analysis to visualize which parts of the image were most 

mportant for classification. For example, they showed that an im- 

ge of a dog holding a tennis ball was correctly classified by the 

og’s breed, except if the face of the dog was occluded, which 

ielded the incorrect classification ‘tennis ball’. 

.1.2.2. Local interpretable model-agnostic explanations (LIME) 

Ribeiro et al. (2016) introduced Local Interpretable Model- 

gnostic Explanations (LIME). LIME provides local explanation by 

eplacing a complex model locally with simpler models, for exam- 

le by approximating a CNN by a linear model. By perturbing the 

nput data, the output of the complex model changes. LIME uses 

he simpler model to learn the mapping between the perturbed 

nput data and the change in output. The similarity of the per- 

urbed input to the original input is used as a weight, to ensure 

hat explanations provided by the simple models with highly per- 

urbed inputs have less effect on the final explanation. In images, 

ibeiro et al. (2016) implemented the perturbations using super- 

ixelsxxxxxxxxxxx is inclluded in the hyperlink"? > Achanta et al., 

012) , rather than individual pixels, to show which regions were 

mportant for explaining a classification. 

LIME has been used by several researchers in medical image 

nalysis. For example, Malhi et al. (2019) used LIME to explain 

hich areas in gastral endoscopy images contained bloody regions. 

.1.2.3. Meaningful perturbation 

Fong and Vedaldi (2017) introduced meaningful perturbation, 

here they perturbed the input image to detect changes in the 

redictions of a trained neural network. Rather than using pertur- 

ations such as occlusion sensitivity that block out parts of the 

mage, they suggested simulating naturalistic or plausible effects, 

eading to more meaningful perturbations, and consequently to 

ore meaningful explanations. They opted for three types of local 

erturbations, namely a constant value, noise, or blurring. 

Uzunova et al. (2019) stated that the perturbations proposed by 

ong and Vedaldi (2017) were not suited for medical images. Re- 

lacing areas of a medical image with a constant value is implau- 

ible, and medical images naturally tend to be noisy and blurry. 

hey proposed to replace pathological regions with a healthy tis- 

ue equivalent using a variational autoencoder (VAE). They showed 

hat the perturbations by the VAE pinpoint pathological regions 

n diverse imaging studies as optical coherence tomography im- 

ges of the eye (pathology consisted of intraretinal fluid, subretinal 

uid, and pigment epithelium detachments), and MRI of the brain 

pathology consisted of stroke lesions). Furthermore, they showed 

hat using a VAE yielded better localization of pathology compared 

ith using simple blurring or constant-value perturbations. 
8

Lenis et al. (2020) used similar reasoning as 

zunova et al. (2019) , and used inpainting to replace pathological 

egions with healthy tissue equivalents. They showed that the 

erturbations created by inpainting outperformed backpropagation 

nd Grad-CAM in pinpointing masses in breast mammography 

nd tuberculosis on chest X-rays, based on the Hausdorff distance 

etween thresholded heatmaps derived from the saliency maps 

nd the ground truth labels at pixel level. 

.1.2.4. Prediction difference analysis 

Zintgraf et al. (2017) adapted prediction difference analysis 

 Robnik-Šikonja and Kononenko, 2008 ) for generating saliency 

aps. If each pixel in an image is considered a feature, predic- 

ion difference analysis assigns a relevance value to each pixel, by 

easuring how the prediction changes if the pixel is considered 

nknown. Zintgraf et al. (2017) expanded this by adding condi- 

ional sampling, which means that they only analyzed pixels that 

re hard to predict by simply investigating neighboring pixels, and 

y adding multivariable analysis, which means that they analyzed 

atches of connected pixels instead of single pixels. They included 

n analysis of brain MRI of patients with HIV versus healthy con- 

rols, yielding explanation of the classifier’s decision. 

Seo et al. (2020) used prediction difference analysis in combi- 

ation with superpixels (or supervoxels for 3D) on multiple scales. 

hese multiscale supervoxel-based saliency maps provided expla- 

ations that the authors described as visually pleasing since they 

ollow image edges. The saliency maps explained which regions 

ere informative for a classifier to distinguish between Alzheimer’s 

isease patients and normal controls. 

.1.3. Multiple instance learning-based approaches 

Multiple instance learning can be used for visualizing explana- 

ions. In multiple instance learning, training sets consist of bags 

f instances ( Dietterich et al., 1997 ). These bags are labeled, but 

he instances are not. In medical image analysis, multiple instance 

earning can for example be done using a patch-based approach: 

n image represents the bag, and patches from that image repre- 

ent the instances ( Cheplygina et al., 2019 ). 

Several researchers have used this approach to pinpoint which 

nstances in the bag are responsible for the classification. For ex- 

mple, Schwab et al. (2020) localized critical findings in chest 

-ray using such a patch-based approach. Each image patch re- 

eived a prediction, and the predictions were overlaid on the im- 

ge to visualize on which areas the classifier based its decision. 

raújo et al. (2020) used multiple instance learning to explain 

hich areas of a fundus photograph were important for diabetic 

etinopathy. They assessed the severity of the disease using an or- 

inal scale with grades from 0 to 5. Using a patch-based approach, 

hey provided visual explanation maps for each diabetic retinopa- 

hy grade. 

.2. Textual explanation 

Textual explanation is a form of XAI that provides textual de- 

criptions. Such descriptions include relatively simple characteris- 

ics (e.g. ‘spiculated mass’), up to entire medical reports. We will 

escribe three types of textual explanation: image captioning, im- 

ge captioning with visual explanation, and testing with concept 

ttribution. 

An overview of papers using textual explanation in medical 

maging is shown in Table 3 . 

.2.1. Image captioning 

Vinyals et al. (2015) provided textual explanation for images us- 

ng an end-to-end image captioning framework. They coupled a 
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Table 3 

Papers that provide textual explanation. For readability, the papers are sorted on anatomical location and only the first paper deal- 

ing with that anatomical location shows the location name. The column ‘Main XAI technique used/based on’ describes which textual 

explanation technique from Section 3.2 was used, or which technique the method in the corresponding paper is based on. CT = com- 

puted tomography, TCAV = testing with concept activation vectors 

Anatomical location Authors (year) Modality Main XAI technique used/based on 

Bladder Zhang et al. (2017b) Histology Image captioning with visual explanation 

Breast Kim et al. 2019a X-ray Image captioning with visual explanation 

Lee et al. (2019a) X-ray Image captioning with visual explanation 

Sun et al. (2019) X-ray Image captioning 

Cardiovascular Clough et al. (2019) MRI TCAV 

Chest Gasimova (2019) X-ray Image captioning 

Kashyap et al. (2020) X-ray Image captioning with visual explanation 

Li et al. (2019) X-ray Image captioning with visual explanation 

Nunes et al. (2019) X-ray Image captioning with visual explanation 

Rodin et al. (2019) X-ray Image captioning with visual explanation 

Shen et al. (2019) CT Other textual explanation 

Singh et al. (2019) X-ray Image captioning 

Spinks and Moens (2019) X-ray Image captioning 

Tian et al. (2019) X-ray Image captioning 

Wang et al. 2019c X-ray Image captioning with visual explanation 

Wu et al. (2018) CT TCAV 

Yan et al. (2019) CT Other textual explanation 

Yang et al. 2020 X-ray Image captioning 

Yin et al. (2019) X-ray Image captioning 

Yuan et al. (2019) X-ray Image captioning with visual explanation 

Eye Kim et al. (2018) Fundus photography TCAV 

Female reproductive system Ma et al. (2018) Histology Image captioning with visual explanation 

Gastrointestinal Tian et al. (2018) CT Image captioning with visual explanation 

Kidney Maksoud et al. (2019) Histology Image captioning 

Musculoskeletal Koitka et al. (2020) X-ray Image captioning 

Multiple Allaouzi et al. (2018) Multiple Image captioning 

Graziani et al. (2020) Multiple TCAV 

Jing et al. 2018 Multiple Image captioning with visual explanation 

Pelka et al. (2019) X-ray Image captioning 

Zeng et al. (2020) Multiple Image captioning 
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onvolutional neural network for encoding of the image, with a re- 

urrent neural network – specifically a long-short term memory 

et (LSTM) ( Hochreiter and Schmidhuber, 1997 ) – for textual en- 

oding. They used human-generated sentences as ground truth for 

raining, and used the bilingual evaluation understudy (BLEU) met- 

ic for evaluation. The BLEU-metric describes the precision of word 

-grams, i.e. a sequence of N words, between generated and refer- 

nce sentences ( Papineni et al., 2002 ). 

Singh et al. (2019) used an image captioning framework to 

rovide textual explanation for chest X-rays. They used word- 

mbedding databases Global Vectors (GloVe) ( Pennington et al., 

014 ) and the radiology variant RadGloVe ( Zhang et al., 2018 ) to

rain the LSTM, and used the aforementioned BLEU metric as well 

s variants METEOR, CIDER, and ROUGE ( Banerjee and Lavie, 2005 ; 

in, 2004 ; Vedantam et al., 2015 ). As expected, higher performance 

as reached in the generated radiology report when both Rad- 

loVe and GloVe were used instead of just GloVe. 

.2.2. Image captioning with visual explanation 

Several researchers combined image captioning with visual ex- 

lanation. Zhang et al. (2017a) introduced a framework that used 

ual attention, both for text and for imaging. They used a similar 

pproach as with image captioning, i.e. an encoder for the image 

nd an LSTM for the text, but added dual attention. This facili- 

ated high-level interactions between image and text predictions, 

nd yielded visual attention maps corresponding with textual ex- 

lanation in Histology images. 

Wang et al. 2018 used a similar approach, and showed in their 

hest X-ray example that different parts of the textual explana- 

ion led to different areas of saliency mapping in the image. They 

howed a saliency map of the chest with multiple regions corre- 

ponding to different radiological findings. 
9 
Lee et al. (2019a) showed image captioning with visual explana- 

ion for breast mammograms. They added a visual word constraint 

oss to the text-generating LSTM, to ensure that the provided ex- 

lanations follow the correct jargon of breast mammography re- 

orts. They showed that adding this loss aids in generating better 

extual explanation. Furthermore, they linked the radiology reports 

o visual saliency maps. 

.2.3. Testing with concept activation vectors (TCAV) 

Concept attributions provide explanation corresponding to 

igh-level concepts that humans find easy to understand 

 Kim et al., 2018 ). Using Testing with Concept Activation Vectors 

TCAV), Kim et al. (2018) presented human-friendly linear explana- 

ions of the internal state of neural networks, yielding global ex- 

lanation of the networks in terms of human-understandable con- 

epts. These concepts can be provided after training of the neu- 

al network as a post hoc analysis. The TCAV algorithm uses user- 

efined sets of examples of a concept and of random non-concept 

xamples. Such a concept might be ‘stripes’ to assess whether an 

mage contained a zebra, or ‘spiculated mass’ to assess whether 

n image contained a cancer. TCAV quantified the sensitivity of a 

rained model to such concepts using concept activation vectors 

CAVs). The response of test cases to these CAVs was then used to 

easure the sensitivity to that concept. The authors showed fea- 

ibility of TCAV on a medical image processing example, by re- 

ating physician annotations such as ‘microaneurysm’ to diabetic 

etinopathy in fundus imaging. 

Clough et al. (2019) identified cardiac disease in cine-MRI by 

lassifying the latent space of a VAE. They used TCAV to show 

hich clinically known biomarkers were related to cardiac disease. 

urthermore, they reconstructed images with low peak ejection 

ate – a characteristic that might be related to cardiac disease –

y adding the CAV to the latent space. 
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Table 4 

Papers that provide example-based explanation. For readability, the papers are sorted on anatomical location and only the first 

paper dealing with that anatomical location shows the location name. The column ‘Main XAI technique used/based on’ describes 

which example-based explanation technique from Section 3.3 was used, or which technique the method in the corresponding paper 

is based on. CT = computed tomography, MRI = magnetic resonance imaging. 

Anatomical location Authors (year) Modality XAI technique used/based upon 

Brain Li et al. 2019d MRI Examples from the latent space 

Breast Uehara et al. (2019) Histology Prototypes 

Chest LaLonde et al. (2020) CT Examples from the latent space 

Silva et al. (2020) X-ray Examples from the latent space 

Gastrointestinal Peng et al. (2019) Histology Triplet network 

Wang et al. (2019) MRI Influence functions 

Skin Codella et al. (2018) Dermatoscopy Triplet network 

Sarhan et al. (2019) Dermatoscopy Examples from the latent space 

Thyroid Chen et al. (2020) Histology Examples from the latent space 

Li et al. 2020 Ultrasound Prototypes 

Multiple Biffi et al. (2020) MRI Examples from the latent space 

Choudhary et al. (2019) Histology Triplet network 

Silva et al. (2018) Multiple Examples from the latent space 

Yan et al. (2018) CT Triplet network 

Yang et al. (2020) Histology Examples from the latent space with visual explanation 
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Graziani et al. (2020) expanded on TCAV by introducing regres- 

ion concept vectors. The main addition was that, while TCAV indi- 

ated the presence or absence of binary concepts, regression con- 

ept vectors indicated continuous-valued measures of a concept. 

his can be useful when investigating a continuous concept such 

s tumor size. Graziani et al. (2020) showed that by using regres- 

ion concept vectors, they could for example explain why the net- 

ork classified one area of a breast histopathology image as cancer 

nd another as healthy: Both areas of the image scored high on the 

oncept ‘contrast’, but the concept ‘nuclei area’, referring to a clin- 

cally used system for evaluating cell size, was different between 

ealthy and cancerous regions. 

.2.4. Other tel explanation techniques 

Shen et al. (2019) used what they called a hierarchical seman- 

ic CNN to predict malignancy of lung nodules on CT. They clas- 

ified five textual descriptions of image characteristics represen- 

ative of lung nodule malignancy that are typically assessed by a 

adiologist. The task of finding textual descriptions was combined 

ith the main task of classifying lung nodule malignancy. Although 

heir hierarchical semantic CNN did not significantly outperform a 

ormal CNN in predicting nodule malignancy, the method did pro- 

ide human-interpretable characteristics of the nodules. 

.3. Example-based explanation 

Example-based explanation is an XAI technique that provides 

xamples relating to the data point that is currently being ana- 

yzed. This can be useful when trying to explain why a neural net- 

ork came to a decision, and is related to how humans reason. For 

xample, when a pathologist examines a biopsy of a patient that 

hows similarity with an earlier patient examined by the patholo- 

ist, the clinical decision may be enhanced by knowing the assess- 

ent of that earlier biopsy. 

Example-based explanation often optimizes the hidden layers 

eep in the neural network (i.e., the latent space) in such a way 

hat similar points are close to each other in this latent space, 

hile dissimilar points are further away in the latent space. 

An overview of papers using example-based explanation in 

edical imaging is shown in Table 4 . 

.3.1. Triplet network 

Several papers provided example-based explanation using a 

riplet network ( Hoffer and Ailon, 2015 ). A triplet network consists 

f three identical networks with shared parameters. By feeding 

hese networks three input samples, the network calculates two 
10 
alues consisting of the L 2 distances between the representations 

n the latent space (i.e., embedded representations) of these input 

amples. This allows learning of useful representations by unsu- 

ervised comparison of samples. When analyzing a data point, in- 

pection of neighbors in this embedded representation will provide 

xamples of data points that are similar to the data point that is 

eing analyzed, which can provide explanation why the network 

ame to its output. 

Peng et al. (2019) used example-based explanation in colorectal 

ancer histology. They first trained a CNN using a triplet loss, hash- 

ng, and k hard-negatives to learn an embedding that preserves 

imilarity. In testing, a coarse-to-fine search yielded the 10 near- 

st examples from a testing database related to the input image. 

his provided explanation on which images similar to the image 

hat was being analyzed the network based a decision. 

Yan et al. (2018) utilized a radiological picture archiving and 

ommunication systems (PACS) to extract 320 0 0 clinically relevant 

esions from the entire body. To learn relevant lesion embeddings, 

hey trained a triplet network with three supervision cues: lesion 

ize, lesion anatomical location (e.g. lung, liver, or kidney), and 

elative coordinate of the lesion in the body. These embeddings 

howed good separation based on anatomical location (e.g., liver 

esions were separated from lung lesions), and could accurately re- 

rieve example-based explanation from a test set. 

Codella et al. (2018) also used a triplet loss but combined it 

ith global average pooling, the technique used in CAM. Con- 

equently, they could not only extract example-based explana- 

ion, but they also provided query activation maps and search re- 

ult activation maps. In other words, a visual explanation showed 

hich region of the input image the network used to generate the 

xample-based explanation. They demonstrated this technique in 

ermatology images of melanoma. 

.3.2. Influence functions 

Wei Koh and Liang (2017) proposed to use influence functions 

o explain on which inputs from a training set a decision was 

ased. They did so by investigating what would happen in case 

n input from the training set would not be available or would 

e changed. Since it is expensive to assess this by perturbation, 

hey provided an efficient approximation using influence functions 

 Cook and Weisberg, 1980 ). This implementation of influence func- 

ions is related to SHAP in the sense that they both allow efficient 

omputation of feature importance. 

Wang et al. (2019) used influence functions to explain which 

lassifications of liver lesions on multiphase MRI were associ- 
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ted with which radiological characteristics. This global explana- 

ion provided insight into the neural network’s behavior. For ex- 

mple, the class ‘benign cyst’ was most often associated with the 

adiological finding ‘thin-walled mass’. Since the network did not 

nly output the class label but also the corresponding radiologi- 

al characteristics, this explanation could enhance user trust in the 

utput of the network. 

.3.3. Prototypes 

Chen et al. 2019 proposed to use typical examples as expla- 

ation (i.e., prototypes), which they described as ‘this-looks-like- 

hat’. The method reflected case-based reasoning that humans per- 

orm. For example, when a person explains why a picture contains 

 car, they can internally reason that this is a car because it looks 

ike a car they have seen before. A prototype layer was added to 

he neural network, which grouped training inputs according to 

heir classes in the latent space. A prototype was picked for each 

lass, consisting of a typical example of that class. During testing, 

he method utilized parts of the test image that resembled these 

rained prototypes. The output was a weighted combination of the 

imilarities to these prototypes. Hence, the explanation was an ac- 

ual computation of the neural network, not a post hoc approxi- 

ation. 

Uehara et al. (2019) used prototypes to explain why a neural 

etwork classified patches of histology images as cancer or as not- 

ancer. The network was able to identify on which parts of the im- 

ge it based its decision, and to what extent these parts of the im- 

ge were similar to prototypical examples learned from the train- 

ng set. 

.3.4. Examples from the latent space 

Sarhan et al. (2019) proposed learning disentangled represen- 

ations of the latent space using a residual adversarial VAE with 

 total correlation constraint. This adversarial VAE enhanced the 

delity of the reconstruction and provided more detailed descrip- 

ions of underlying generative characteristics of the data. When an- 

lyzing reconstructions by traversing through the latent space, they 

howed that their method yielded reconstructions that were more 

rue to human-interpretable concepts such as lesion size, lesion ec- 

entricity, and skin color compared with a regular VAE. 

Biffi et al. (2020) provided a framework for explainable anatom- 

cal shape analysis using a ladder VAE ( Sønderby et al., 2016 ). They

oupled this ladder VAE with a multi-layered perceptron, enabling 

he network to train end-to-end for classification tasks. By doing 

his, the highest level of the latent space was enforced to be low- 

imensional (2D or 3D), which meant that these learned latent 

paces could be directly visualized without the need of further di- 

ensionality reduction after training. They provided dataset-level 

xplanation using these low-dimensional latent spaces to visual- 

ze differences in shape for hypertrophic cardiomyopathy versus 

ealthy controls on cardiac MRI, and for Alzheimer’s disease ver- 

us healthy controls on brain MRI by visualizing the shape of the 

ippocampus. 

Silva et al. (2018) proposed example-based explanation that 

howed similar and dissimilar cases foraesthetic results of breast 

urgery on photos, and for skin images on dermoscopy. They iden- 

ified these examples using a nearest neighbor search in latent 

pace: The nearest neighbor of the same class was considered the 

ost similar case, and the nearest neighbor of the other class 

as considered the most dissimilar case. Their explanation also in- 

luded rule extraction from meta-features (e.g. the color of a skin 

esion or the visibility of scars). They proposed three criteria to 

easure the validity of the rule-extracted explanation, namely: (1) 

ompleteness, i.e. the explanation should be general enough to be 

pplied to more than one observation; (2) correctness, i.e. if the 
11 
xplanation itself was considered a model, it should correctly iden- 

ify which class it belongs to; and (3) compactness, i.e. the expla- 

ation should be succinct. 

In later work, Silva et al. (2020) combined example-based ex- 

lanation with saliency mapping. First, they trained a baseline CNN 

o classify chest X-rays into pleural effusion versus non-pleural ef- 

usion. After that, the CNN was fine-tuned on saliency maps. In 

esting, a nearest neighbor search between the latent space of the 

est image and a curated ‘catalogue’ set of images was performed. 

dding the saliency map yielded more consistent examples than 

xtracting examples without the saliency map (i.e., the baseline 

NN). 

Sabour et al. (2017) showed that by replacing the scalar feature 

aps from convolution neural networks by vectorized representa- 

ions (i.e., capsules), they were able to encode high-level features 

f images. Capsules were basically subcollections of neurons in a 

ayer. These were linked to subcollections of neurons in subsequent 

ayers, forming a capsule network. This capsule network was opti- 

ized using dynamic routing. In short, higher level capsules were 

ctivated if their corresponding lower-level capsules are active. 

his correspondence was described by routing coefficients, which 

ummed to one for each capsule. The coefficients were iteratively 

i.e., dynamically) updated when the capsule network received new 

nput data. For the MNIST digits dataset, Sabour et al. (2017) found 

hat these capsules learn human-interpretable features such as 

cale, thickness, and skew. 

LaLonde et al. (2020) used capsules for lung cancer diagnosis, 

hile also predicting visual attributes such as sphericity, lobula- 

ion, and texture. Since these visual attributes were not necessar- 

ly mutually exclusive, as was the case in MNIST (a digit cannot 

e a two and a nine at the same time), they adapted the dy- 

amic routing algorithm accordingly. Specifically, the routing co- 

fficients did not have to sum to one in their implementation. 

aLonde et al. (2020) showed that their implementation was in- 

eed able to predict these visual attributes as well as lung nodule 

alignancy. 

. Pros and cons of XAI techniques 

All XAI techniques described in Section 3 have pros and cons, 

nfluencing how one would choose from the various options. We 

ill structure these pros and cons in the categories ease of use, 

alidity, robustness, computational cost, necessity to fine-tune, and 

pen-source availability. An overview of these pros and cons per 

ethod from Table 1 is given in Table 5 . 

.1. Ease of use 

We define the ease of use by the potential of XAI tech- 

iques to be ‘plug-and-play’. Post hoc model agnostic techniques 

ave the highest ease of use. These methods generally consist of 

erturbation-based visual explanation techniques such as occlusion 

ensitivity. These techniques can be used on any trained neural 

etwork to provide a visual explanation. Model-based techniques 

ypically have lowest ease of use, since the explanation is embed- 

ed in the design of the neural network. 

.2. Validity 

We define validity by whether the explanation is correct and 

orresponds to what the end-user expects. In case of visual ex- 

lanation, this can be assessed for example by asking a radiolo- 

ist whether the explanation points towards the pathology that the 

eural network was designed to classify. 

Research on quantifying validity of XAI is sparse, and currently 

ocuses on visual explanation. Arun et al. (2021) aimed to quan- 
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Table 5 

Pros and cons of XAI techniques. Pros are depicted by + , cons by -. The letters in the column Open source (original paper) refer to the URL below the table. 

Technique Ease of use Validity Robustness 

Computational 

needs 

No fine-tuning 

required 

Open-source 

(original paper) 

Open-source 

(captum.ai) 

Visual explanation 

Backpropagation-based approaches 

Backpropagation + - + - + - + 

Deconvolution + n.t. n.t. - + - + 

Guided backpropagation + - inc. - + - + 

Class activation mapping (CAM) + n.t. - - + a - 

Gradient-weighted class activation mapping (Grad-CAM) + + /- - - + /- b + 

Layer-wise relevance propagation (LRP) + n.t. + - + /- - + 

Deep SHapley Additive exPlanations (Deep SHAP) + n.t. n.t. - + /- c + 

Trainable attention + /- n.t. n.t. + - d - 

Perturbation-based approaches 

Occlusion sensitivity + n.t. - + - - + 

Local Interpretable Model-agnostic Explanations (LIME) + n.t. n.t. + - e + 

Meaningful Perturbation + n.t. n.t. + - f - 

Prediction difference analysis + n.t. n.t. + - g - 

Textual explanation 

Image captioning + /- n.t. n.t. + - - - 

Image captioning with visual explanation + /- n.t. n.t. + - h - 

Testing with Concept Activation Vectors (TCAV) + n.t. n.t. n.t. + /- i - 

Example-based explanation 

Triplet networks + /- n.t. n.t. + - j - 

Influence functions + n.t. n.t. n.t. + /- k - 

Prototypes + /- n.t. n.t. + - l - 

n.t. = not tested by studies on that criterion. 

inc. = inconclusive results between studies on that criterion. 

a https://github.com/zhoubolei/CAM 

b https://github.com/Cloud- CV/Grad- CAM 

c https://github.com/slundberg/shap 

d https://github.com/saumya-jetley/cd _ ICLR18 _ LearnToPayAttention 

e https://github.com/marcotcr/lime 

f https://github.com/ruthcfong/perturb _ explanations 

g https://github.com/lmzintgraf/DeepVis-PredDiff

h https://github.com/zizhaozhang/tandemnet 

i https://github.com/tensorflow/tcav 

j https://github.com/eladhoffer/TripletNet 

k https://github.com/kohpangwei/influence-release 

l https://github.com/cfchen-duke/ProtoPNet 
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ify the validity of visual explanation techniques using the SIIM- 

CR Pneumothorax Segmentation and RSNA Pneumonia Detection 

atabases ( Society for Imaging Informatics in Medicine and Ameri- 

an College of Radiology, 2019 ; Radiological Society of North Amer- 

ca, 2018 ). They compared four of the methods discussed in this 

aper: backpropagation, guided backpropagation, Grad-CAM, and 

uided Grad-CAM. Of these methods, Grad-CAM showed the high- 

st validity. Note that this study solely focuses on chest X-rays. 

herefore, more research is needed to investigate the validity of 

isual explanation techniques in other modalities and anatomical 

ocations. 

In case of textual explanation, validity can be assessed by com- 

aring the generated textual explanation to the ground truth text. 

n case of example-based explanation, validity can be assessed 

y comparing relevant characteristics of found examples, such as 

atient or clinicopathological characteristics. To the best of our 

nowledge, there have not been such rigorous studies on validity 

erformed for textual explanation and for example-based variation 

s there are for visual explanation ( Arun et al., 2021 ). Hence, more

esearch in this area is desired. 

.3. Robustness 

The robustness of XAI techniques can be assessed by intention- 

lly changing certain aspects of the deep learning framework and 

easuring the effect of these changes to the given explanation. 
12 
The robustness is mainly quantified for visual explanation tech- 

iques, using parameter randomization tests and data randomiza- 

ion tests. 

The parameter randomization test compares visual explanation 

rom a trained CNN with visual explanation from a randomly ini- 

ialized untrained CNN of the same architecture. If the explanation 

epends on the learned parameters of the CNN (the desired situ- 

tion), the two explanations should differ substantially. If the two 

xplanations are similar, the visual explanation technique is insen- 

itive to the properties of the CNN. 

The data randomization test compares visual explanation from 

 trained CNN with visual explanation from a CNN trained on the 

ame dataset but with randomly imputed labels. If the explana- 

ion depends on the data labels (the desired situation), the two 

xplanations should differ substantially. If the two explanations are 

imilar, the visual explanation does not depend on the relationship 

etween images and labels. 

Adebayo et al. (2018) performed these two tests for many vi- 

ual explanation methods including backpropagation, guided back- 

ropagation, Grad-CAM, and guided Grad-CAM. They showed that 

uided backpropagation and guided Grad-CAM provided a similar 

isual explanation in both tests, and might be emphasizing edges. 

ence, caution is advised when using such methods for visualiza- 

ion. 

Eitel and Ritter (2019) evaluated the robustness of visual ex- 

lanation techniques guided backpropagation, layer-wise relevance 

https://github.com/zhoubolei/CAM
https://github.com/Cloud-CV/Grad-CAM
https://github.com/slundberg/shap
https://github.com/saumya-jetley/cd_ICLR18_LearnToPayAttention
https://github.com/marcotcr/lime
https://github.com/ruthcfong/perturb_explanations
https://github.com/lmzintgraf/DeepVis-PredDiff
https://github.com/zizhaozhang/tandemnet
https://github.com/tensorflow/tcav
https://github.com/eladhoffer/TripletNet
https://github.com/kohpangwei/influence-release
https://github.com/cfchen-duke/ProtoPNet
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ropagation, and occlusion sensitivity in medical images over mul- 

iple training runs, specifically for the classification of Alzheimer’s 

isease using brain MRI. They found that layer-wise relevance 

ropagation and guided backpropagation produced the most coher- 

nt visual explanation. This was not fully in line with the results 

f Adebayo et al. (2018) . 

Arun et al. (2021) performed similar analyses. Their results 

howed that guided backpropagation and Grad-CAM passed the 

arameter randomization test. 

These conflicting results demonstrate that more research is de- 

ired for visual explanation techniques in medical image analy- 

is. For textual and example-based XAI, such rigorous comparison 

tudies have not yet been performed. 

.4. Computational cost 

Computational cost of XAI is seldom reported in papers, but can 

e assessed by comparing how these explanation techniques work. 

Since model-based techniques embed the explanation in the 

esign of the neural network, it is obvious that these explanations 

re relatively costly to produce. 

For visual explanation techniques, there is a clear dis- 

inction between backpropagation-based and perturbation- 

ased techniques with respect to their computational needs. 

ackpropagation-based techniques typically make a single 

ass back through the neural network, which is relatively fast. 

erturbation-based techniques require, however, extensive per- 

urbation of input images to measure the influence of these 

erturbations on the output. Therefore, these techniques are 

enerally more computationally-expensive. This can especially be 

he case in 3-dimensional, 4-dimensional, and/or multi-modality 

mages, which often occur in medical image analysis. 

The computational costs of the post hoc textual explanation 

CAV and the post hoc example-based explanation of influence 

unctions in medical image analysis has not rigorously been re- 

orted. 

.5. Necessity of fine-tuning 

Some explanation techniques require no fine-tuning of parame- 

ers while others require fine-tuning of parameters associated with 

he XAI technique. 

Since model-based techniques embed the explanation in the 

esign of the neural network, it is obvious that fine-tuning of the 

etwork will influence the explanation. 

For visual explanation, most backpropagation techniques have a 

imited number of parameters to tune. For example, in Grad-CAM, 

he user needs to choose at which layer to inspect the activation 

nd in Deep SHAP, one needs to choose samples from the training 

et to calculate a background signal. 

Perturbation-based visual explanation techniques often require 

 choice of the perturbation. For example, both occlusion sensitiv- 

ty and LIME require the user to define the size and shape of the 

ccluded areas. In meaningful perturbation, the user has to define 

hat kind of perturbation technique is deemed best. 

The post hoc textual explanation TCAV requires some fine- 

uning with respect to the concepts that will be tested. The post 

oc example-based explanation technique of influence functions 

equires definition of the functions of which the influence is to be 

easured. 

.6. Open-source availability 

Most XAI techniques are available from open source. Often, 

ode is available from the authors of the original paper. Many tech- 

iques are also implemented in XAI packages such as captum.ai . An 
13 
verview of open-source availability of XAI techniques is given in 

able 5 . 

. Discussion 

.1. Overview 

We have discussed 223 papers on eXplainable Artificial Intelli- 

ence (XAI) for deep learning in medical image analysis. We cat- 

gorized the papers based on the XAI-frameworks proposed by 

dadi and Berrada (2018) and Murdoch et al. (2019) . Some trends 

ere noticeable in the surveyed papers. The majority of the pa- 

ers used post hoc explanation as contrasted with model-based 

xplanation, i.e., the explanation was provided on a neural net- 

ork that had already been trained, instead of being incorporated 

n neural network training. Both model-specific (e.g., specifically 

esigned for CNNs) and model-agnostic explanation methods were 

sed. Furthermore, most of the papers investigated provided lo- 

al explanation rather than global explanation, i.e., the explanation 

as provided per case (e.g. per patient), rather than on a dataset- 

evel (e.g. for all patients). Since we focus on deep learning in med- 

cal image analysis, these trends were to be expected. Most read- 

ly available XAI methods suitable for CNNs are saliency mapping 

echniques, which often provide post hoc, model-specific, and local 

xplanation. Furthermore, post hoc XAI methods can be used after 

 neural network has been trained, making them more accessible 

han model-based XAI. 

We categorized the papers based on anatomical location and 

odality of medical imaging. We found that most papers focus on 

hest or brain and on MRI ( Fig. 3 ). This is comparable to what

itjens et al. (2017) found for deep learning methods in medical 

maging in general. This trend is likely due to publicly available 

atasets in these organs and modalities, and not a reflection of 

ow well explainable these organs and modalities are. 

.2. Evaluation of XAI 

We have described several XAI techniques and their appli- 

ations in medical image analysis, but how does one evalu- 

te whether an XAI technique provides good explanation? Un- 

ike measures of performance commonly used in medical im- 

ge analysis, such as accuracy, Dice coefficient, or an ROC anal- 

sis; success criteria of explanation are more difficult to define. 

oshi-Velez and Kim (2017) proposed a framework for the eval- 

ation of explainability, consisting of three evaluation methods: 

pplication-grounded evaluation, human-grounded evaluation, and 

unctionally-grounded evaluation. 

.2.1. Application-grounded evaluation 

Application-grounded evaluation uses human experiments 

ithin a real application. In other words, let domain experts test 

he explanation. In medical image analysis this might involve a ra- 

iologist inspecting whether example-based explanations are ac- 

ually good examples based on the many images the radiologist 

as seen in their many years of experience. The advantage of 

pplication-grounded evaluation is that it directly tests the objec- 

ive that the system was built for. The disadvantage is that it is a 

ostly evaluation. 

.2.2. Human-grounded evaluation 

Human-grounded evaluation uses simpler human experiments 

hat maintain the essence of the target application. In other words, 

et laypersons test the explanation or a proxy of the explanation. 

or example, when explaining the location and size of a cancer, 

his might involve a crowdsourcing project where laypersons judge 

he quality of saliency maps. Since it uses laypersons instead of 

https://www.captum.ai
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Fig. 3. Papers included in this survey, categorized by modality (left) and anatomical location (right). Papers discussing multiple modalities or anatomical locations were 

grouped as ‘multiple’. Modalities or anatomical locations that were used in fewer than five papers were grouped as ‘other’. 
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ighly trained domain experts, the advantage of human-grounded 

valuation is that it is less costly, while still receiving general no- 

ions of the quality of an explanation. The disadvantage is that the 

ssessment of the quality of an explanation is a proxy of the actual 

uality. 

.2.3. Functionally-grounded evaluation 

Functionally-grounded evaluation does not use human experi- 

ents, but uses other proxies to assess the quality of the explana- 

ion. These proxies may include measurements that have already 

een validated using human users. In our example of explaining 

he location and size of a cancer, this might involve comparing the 

xplanation with manually drawn tumor delineations of a radiolo- 

ist. The advantages of functionally-grounded evaluation stated by 

oshi-Velez and Kim (2017) include that they are relatively cheap 

o acquire. This is, however, not necessarily the case in medical im- 

ge analysis, since acquiring for example manual annotations is a 

ery resource intensive process. When these manual annotations 

o already exist, e.g. when using curated data from a challenge, 

valuation of explanations are easily extracted, and can be auto- 

atically extracted multiple times. This can be useful, for example 

n the development phase of explanation methods. 

.2.4. Evaluation of XAI in medical image analysis 

Evaluation of XAI as proposed above is currently not yet stan- 

ard practice in papers in medical image analysis. Furthermore, in 

edicine a good explanation can differ between areas of expertise 

f the person for whom the explanation is given. For example, a 

isual explanation pinpointing where disease is located could be 

 sufficient explanation for a radiologist or a medical image anal- 

sis researcher. However, clinicians such as an oncologist, neurol- 

gist, or hematologist would probably like to have XAI added to 

heir clinical decision-making framework. Such framework would 

lso incorporate the patient’s history, previous and current treat- 

ents, treatment options, and expected effects or outcomes. 

.3. Critique on XAI 

Rudin (2019) advised caution when using a black box with ex- 

lanation for high-stakes decision making. Rudin raised several is- 

ues with explaining black boxes. For example, XAI may provide 
14 
n explanation that is not completely faithful to what the origi- 

al model computes: If the explanation explains 90% true to the 

odel, that means that 10% is untrue ( Rudin, 2019 ). Furthermore, 

n explanation may not make sense or provide enough detail to 

nderstand what the black box is doing. For example, a saliency 

ap of the class with the highest probability may look similar to 

 saliency map of a class with a lower probability. Rudin therefore 

dvices to use interpretable model-based XAI instead, such as the 

rototype network discussed in Section 3.3.3 . 

Critiques also often focus on the robustness of XAI techniques, 

s discussed in Section 4 . 

.4. Outlook 

Since high stakes decision-making is intertwined with 

edicine, we are convinced that XAI will be increasingly im- 

ortant. We have investigated the trends, and noticed that an 

ncreasing amount of papers contain a holistic approach, combin- 

ng multiple forms of explanation. Examples of such more holistic 

pproaches include combinations of textual explanation and visual 

xplanation (e.g. Graziani et al., 2020 ), or combinations of example 

ased explanation and visual explanation (e.g. Wang et al., 2019 ). 

Future directions of XAI in medical image analysis may in- 

lude biological explanation. Several researchers have predicted 

iological processes from imaging features using deep learning. 

or example, Matsui et al. (2020) predicted the molecular sub- 

ype of lower-grade gliomas on multimodal brain imaging, and 

hu et al. (2019) predicted the molecular subtype luminal A of 

reast cancer on MRI. These analyses used a biological target to 

rain the neural network. However, performing such analysis the 

ther way around, for example by performing a pathway analysis 

n imaging phenotypes (e.g. Bismeijer et al. (2020) , not deep learn- 

ng), could provide interesting biological explanation. 

XAI may also be useful to aid physicians in the diagnostic pro- 

ess or in identifying unknown information from medical images. 

or example, a study on the diagnosis of tuberculosis on chest X- 

ays showed that 10 out of the 13 participating physicians (77%) 

ad better diagnostic accuracy when assessing chest X-rays with 

n XAI providing a visual explanation compared to assessing the 

hest X-ray without XAI ( Rajpurkar et al., 2020a ). 
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It is likely that XAI in medical imaging will increasingly in- 

lude domain information. To reach this goal, physicians should 

e included when designing task-specific interpretation methods 

 Fan et al., 2021 ). Active collaboration among physicians, theoreti- 

al researchers, medical imaging experts, and medical image anal- 

sis experts will be an important avenue for future development 

f deep learning methods ( Fan et al., 2021 ). 

Other directions of XAI in medical image analysis may include 

he link between causality and XAI. Typical medical image analy- 

is consists of correlation rather than causation. Causality describes 

he relation between cause and effect, and can be mathematically 

escribed ( Pearl, 2009 ). Current XAI techniques that aim to be free 

f bias such as prototypes are potentially still sensitive to differ- 

nces in training population, which might hamper generalizability. 

astro et al. (2020) describe how causal reasoning may be useful 

o assess biases in the data. DeGrave et al. (2021) gave an exam- 

le how dataset bias can be detected using XAI: In studies that 

istinguish between X-rays of patients who were Coronavirus dis- 

ase 2019 (COVID-19)-positive and of patients who were COVID- 

9-negative, they used visual explanation to demonstrate that high 

erformance of the deep learning models was actually attributed 

o how the datasets were composed, rather than to actual COVID- 

9 detection in the X-rays. van Amsterdam et al. (2019) show an 

xample of eliminating bias using causality, yielding unbiased pre- 

iction of prognosis for patients with lung cancer. It would be of 

nterest to incorporate such analyses in explanation of medical im- 

ges, as Chattopadhyay et al. (2019) have done for visual explana- 

ion of MNIST data. 

There is no consensus on a priori estimations for required sam- 

le size for XAI and deep learning in medical imaging in general 

 Balki et al., 2019 ). Given the costly nature of acquiring medical 

maging datasets in terms of money, time, and patient burden, it is 

esired to have guidelines describing what minimum sample sizes 

ould be required for which XAI techniques. 

.5. Limitations 

We derived our XAI framework from the frameworks of 

dadi and Berrada (2018) and Murdoch et al. (2019) . Other frame- 

orks also exist, such as the framework by Kim et al. that di- 

ides XAI in pre-, during-, and post-model explanation. During- 

nd post-model explanation are captured by our XAI framework 

ith model-based and post hoc explanation. Pre-model explana- 

ion mainly focuses on the structure of a dataset, such as inspect- 

ng outliers. One could state that an example-based explanation 

hat utilizes the latent distributions of a dataset could be perceived 

s a pre-model explanation. We have, however, not made this dis- 

inction, since in deep learning, these latent distributions are dis- 

overed by training a neural network. 

We tried to be as comprehensive as possible with the inclusion 

f papers in our survey. However, XAI often is a technique used 

o support methods, and keywords are often not mentioned in the 

itle or body of papers ( Rudin, 2019 ). Therefore, we cannot guar- 

ntee that we covered all the work in the field. Nevertheless, we 

rovided the search strategy to be as transparent as possible about 

he selection of papers. 

. Conclusion 

This paper surveyed 223 papers using explainable artificial in- 

elligence (XAI) in deep-learning based medical image analysis, 

lassified according to an XAI framework, and categorized accord- 

ng to anatomical location and imaging technique. The paper dis- 

ussed how to evaluate XAI, current critiques on XAI, and future 

erspectives for XAI in medical image analysis. 
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