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Background. Advanced cardiac imaging with positron emission tomography (PET) is a
powerful tool for the evaluation of known or suspected cardiovascular disease. Deep learning
(DL) offers the possibility to abstract highly complex patterns to optimize classification and
prediction tasks.

Methods and Results. We utilized DL models with a multi-task learning approach to
identify an impaired myocardial flow reserve (MFR <2.0 ml/g/min) as well as to classify car-
diovascular risk traits (factors), namely sex, diabetes, arterial hypertension, dyslipidemia and
smoking at the individual-patient level from PET myocardial perfusion polar maps using
transfer learning. Performance was assessed on a hold-out test set through the area under
receiver operating curve (AUC). DL achieved the highest AUC of 0.94 [0.87-0.98] in classifying
an impaired MFR in reserve perfusion polar maps. Fine-tuned DL for the classification of
cardiovascular risk factors yielded the highest performance in the identification of sex from
stress polar maps (AUC = 0.81 [0.73, 0.88]). Identification of smoking achieved an AUC = 0.71
[0.58, 0.85] from the analysis of rest polar maps. The identification of dyslipidemia and arterial
hypertension showed poor performance and was not statistically significant.

Conclusion. Multi-task DL for the evaluation of quantitative PET myocardial perfusion
polar maps is able to identify an impaired MFR as well as cardiovascular risk traits such as sex,
smoking and possibly diabetes at the individual-patient level. (J Nucl Cardiol 2022;29:3300–10.)
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INTRODUCTION

Advanced medical imaging has boosted our capac-

ity to diagnose both subclinical and clinical

cardiovascular pathology without the constant need for

invasive procedures. It has improved disease character-

ization and has proven helpful for prognostic evaluation.

In the last decades, state-of-the-art imaging has

increased its temporal and spatial resolution at a pace

influenced by that of computational development

(Moore’s law) offering a stream of data of which

processing and interpretation may overwhelm the ana-

lytical workflows of both researchers and clinicians.1

Yet, it is suspected that the information contained in

the images resulting from techniques such as coronary

computed tomography angiography and positron emis-

sion tomography (PET) may not be fully harnessed

through conventional analyses, which currently trans-

lates image attributes into simple and univariate proxies

(e.g. calcium score for the former and summed stress

score for the latter). Such biomarkers, albeit pragmatic

and certainly interpretable, may omit a substantial

proportion of the information contained in the images.

As such, developments in imaging quality may have

only marginally enhanced our understanding of the

dynamics of cardiovascular disease.

Deep learning (DL) corresponds to a series of

machine learning algorithms based on (convolutional)

neural networks and has revolutionized image recogni-

tion in various fields of knowledge. DL can boost

performance in image analysis through artificial learning

of complex high-dimensional patterns in large datasets,2

which then are used to optimize classification tasks. DL

has already delivered exciting breakthrough proofs of

concept when applied in several pathological conditions

including coronary artery disease as studied through

SPECT (CAD).3–7 Furthermore, it has been suggested

that DL analysis of standardized medical imaging, such

as retinal images, may allow the characterization of

chronic diseases that signify added cardiovascular risk

through comorbidity.8

Presently, studies on the implementation of DL for

the identification of myocardial ischemia in PET imag-

ing are lacking. And it is unknown whether DL analysis

of myocardial perfusion images may provide insights

into patterns associated with the presence of cardiovas-

cular risk traits. Hence, the present report evaluated the

performance of DL in the identification of an impaired

myocardial flow reserve (MFR) and cardiovascular risk

traits to explore complex DL-derived patterns associated

with such factors in quantitative PET myocardial per-

fusion imaging polar maps at the individual patient-

level.

MATERIALS AND METHODS

Study Population

From the population referred to quantitative PET

myocardial perfusion imaging due to suspected myocar-

dial ischemia between 2015 and 2017 at the department

of nuclear medicine of the Northwest Clinics, Alkmaar,

The Netherlands, the data of 1,185 patients was retro-

spectively collected and included in the present analysis.

Patients with prior myocardial infarction (MI) or revas-

cularization (either through PCI or CABG) were

excluded from the present study.

All patients provided written informed consent for

the use of their anonymous data for scientific purposes.

In addition to the standard imaging protocol and clinical

management, no measurements or actions affecting the

patient were performed. The study was approved by the

institutional research department and performed in

accordance with the Declaration of Helsinki. The

approval of the local ethical committee for the present

study was not necessary since the study does not fall

within the scope of the Dutch Medical Research

Involving Human Subjects Act (section 1.b WMO,

26th February 1998).

Clinical Data

Demographic (sex and age) and cardiovascular risk

traits (hypertension, dyslipidemia, smoking and type 2

diabetes mellitus) were extracted from the electronic file

system.

PET Data Acquisition and Quantitative
Perfusion Analysis

Every patient underwent a two-phase, namely rest

and adenosine stress, PET scan with the use of 13N-

ammonia as the perfusion radiotracer which was pro-

duced by the Cyclotron Noordwest BV. All image data

were acquired in list mode on a Siemens Biograph-16

TruePoint TrueV PET/CT (Siemens Healthcare, Knox-

ville, USA) with the axial field of view of 21.6 cm. This

3D system consists of a 16-slice CT and a PET scanner

with four rings of lutetium oxyorthosilicate (LSO)

detectors. Patients were instructed to fast overnight

and to avoid the consumption of methylxantines, caf-

feine-containing beverages or medications for 24 hours

before the study. The details of the acquisition-recon-

struction protocol have been published previously in

detail.9

Based on the dynamic subsets, left ventricular

contours were assigned automatically using the Syngo
MBF software (Siemens Medical Solutions, Berlin,

See related editorial, pp. 3311–3314
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Germany) with minimum observer intervention when

appropriate. With a previously described 2-compartment

kinetic model for the aforementioned tracer, value of

stress MBF, rest MBF and myocardial flow reserve

(MFR) were computed and color-coded with a standard

scale for each sample on the polar map through the

resulting time-activity curves for quantification.10 An

impaired MFR was defined as\2.0 in at least one of the

17 segments from the American Heart Association /

American College of Cardiology standardized myocar-

dial segmentation model.

Image Analysis

Data flow and processing Data were randomly

divided into a development (training and validation) set

and a test set which consisted of 90% and 10% of the

total sample, respectively. Training and validation of the

deep learning (DL) models were performed on the

development set and a 5-fold cross-validation was

employed to tune the hyperparameters of the DL

models. The optimized models were evaluated on the

test set, with data from individuals that had not been

seen by the model during the training and validation

process. Figure 1 depicts the implemented workflow.

The quantitative myocardial perfusion polar maps,

namely the rest, stress and reserve polar maps derived

from the PET scan were extracted in RGB color code

(228 9 228 pixels wide) and resized to 224 9 224 pixels

wide, which corresponds to the expected input dimen-

sion of the pretrained DL models. Separately, we

developed classification models either from individual

polar maps or the stack of all three (rest, stress and

reserve) by concatenation.

Deep learning model architecture We

employed a modified ResNet-50 architecture and input

the perfusion polar maps of each patient to predict mean

segmental myocardial perfusion and identify (predict) in

separate models an impaired MFR (\2.0) and the binary

cardiovascular risk factors sex, positive smoking status,

hypertension, dyslipidemia and diabetes mellitus

through fine-tuning (see Multi-task learning below).
Briefly, DL ResNet models are feedforward convo-

lutional neural networks with ‘‘shortcut connections’’

between earlier layers and layers further down the

network, called skip connections. ResNet models are

organized into groups of layers, surrounded by the

beginning and ending of a skip connection, called

residual blocks, and variants of ResNet models are

created by varying the number of such blocks (Figure 2).

Thus, in the current study, we modified the last layer of

the 50-layers ResNet-50 network to generate 19 output

features, of which 17 were used to predict the mean

MFR and the remaining two features for the aforemen-

tioned binary classifications. In the case of stacked polar

maps, the input layer of models was modified

accordingly.

Multi-task learning To restrict the learning

context for improved generalization, multi-task learning

was employed such that each model learned to regress

the mean MFR, while simultaneously identify an

impaired MFR or individual cardiovascular risk factors

(traits) (Figure 2). More specifically, the regression tasks

of mean MFR guided the DL models to recognize the

polar map in the context of the standardized 17-

segmentation model; the models were to learn to master

the classification task conditioned on the 17-segmenta-

tion model. Cross-entropy loss was selected for the

classification task and mean squared error loss was

selected for the regression task. The total was a weighted

sum of the two losses, while k * [0,1] was the

hyperparameter to be optimized in cross-validation.

Transfer learning A two-step transfer learning

strategy was applied as follows: Model with parameters

pre-trained on the ImageNet dataset was first finetuned

to recognize the characteristics of polar maps via

identification of impaired regional MFR and further

tuned to classify individual cardiovascular risk factors.

Figure 1. Study population and training strategy. (A) Study
population. After quality control, 944 patients were included in
the analysis. (B) Training strategy. 944 patients were randomly
split into development set and test set in - 9:1 ratio. A 5-fold
cross-validation was performed to optimize the hyperparam-
eters; the final models were then trained on the whole
development set and their performance were assessed using
the unseen test set.
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The model parameters were optimized through

back-propagation, using a variant of the adaptive

stochastic gradient based optimization algorithm

Adam,11 with a decoupled weight decay regulariza-

tion.12 Considering the large number of parameters of

ResNet-50 and the relatively small size of development

dataset, we optimized only parameters of the last 3

layers of ResNet-50 for binary classifications. To further

avoid overfitting of the model to training data, we

applied data augmentation techniques, including limited

rescaling (10%), rotation (±10�) and random dropout of

pixels. All DL experiments were implemented on

PyTorch 1.4.0.13

Attention heat maps To explore and discuss

patterns corresponding to the inherent relationships

between the polar maps and cardiovascular risk factors

identified by DL, we generated attention heat maps for

each risk factor taking individuals from the test set.

Given a predicted label (presence or absence of a

specific risk factor), an attention heat map visualizes the

relative importance (attribution) of pixels of the input

image towards that label predicted by the DL model. We

applied two different attribution approaches to generate

the attention heatmap: a perturbation-based occlusion

sensitivity method14 using a square patch of size 30930

pixels and a gradient-based method GradCAM15 imple-

mented using Captum,16 which is an open source python

library for model interpretability. Briefly, in the pertur-

bation-based method, the image is systematically

occluded partially by sliding a black square along the

image to examine how the model would (re-)classify.

Areas that would change the classification with greater

degree are then considered to be important. In the

gradient-based method, the importance of input neurons

(pixels) is assigned based on the gradient information

flowing into the last convolutional layer of the neural

network with respect to the target classification. Areas

(pixel collections) with higher gradients are thus con-

sidered to be more important to the target classification.

Attention maps based on high confidence predictions

([0.9 or the highest confidence in the absence of high

confidence prediction) were visually evaluated by a

clinician to search for potentially interpretable and

spatially relevant patterns.

Statistical Analysis

Descriptive statistics were expressed as frequency

(percentage) for categorical variables, mean ± standard

deviation (SD) for normally distributed quantitative

variables and median (interquartile range, IQR) for

variables with non-normal distributions. The normality

of continuous variables was assessed by skewness

statistics and graphically by histograms. Independent t-

tests were used for continuous variables, while Pearson

chi-squared tests were used for categorical variables to

compare the differences between the patients with/

without impaired MFR, and between the development

and test set respectively. Statistical analyses were

performed using Stata 16 (StataCorp LLC). A two-

tailed p \0.05 was considered to be statistically

significant.

Performance Evaluation of DL Model Per-

formance of the DL models was assessed by accuracy

and area under the receiver operating curve (AUC) in

the hold-out test set of 93 patients. A random prediction

corresponded to an accuracy of 50%, and an AUC of 0.5

respectively. The 95% confidence intervals of both

metrics were estimated by bootstrapping 4000 times.

To compare performance to conventional statistical

methods, logistic regression models for the cardiovas-

cular risk factors were fitted with the mean MBF (rest

Figure 2. Modified ResNet-50 architecture with multi-task learning. The ResNet-50 was modified
at the output layer for joint learning of classification task and regression task. The ratio of
classification loss and regression loss as an additional hyperparameter was optimized in the cross-
validation phase. For model using stack of three polar maps, the input layer was adjusted
correspondingly (9 9 224 9 224). The main layers are represented in rectangles with solid lines,
with numbers within describing their shapes and numbers outside indicate number of repeats
respectively; the main stages are represented in rectangles with dotted lines. Avg pool: average
pooling; conv: convolution block; iden: identity block; max pool: max pooling; MFR: myocardial
flow reserve.
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and stress polar map) or MFR (reserve polar map) of the

17 segments using the training set. Thereon, DL models

were contrasted against these regressions in the hold-out

test set.

RESULTS

Study Population Characteristics

A total of 944 patients were included in the

analysis. Table 1 shows the clinical characteristics of

the cohort, stratified by an impaired MFR (\2.0) as

determined by the PET scan. Mean age was 65.3±9.2 in

patients with no MFR impairment and 68.6±9.5 in

patients with an impaired MFR. Significantly more men

than women demonstrated an impaired MFR (no

impaired MFR vs impaired MFR: 54.4% vs 46.2%, P-
value=0.019). Patients with an impaired MFR were

more likely to have diabetes (no impaired MFR vs

impaired MFR: 10.8% vs 17.6%, P value = 0.007) and

hypertension (no impaired MFR vs impaired MFR:

55.0% vs 46.3%, P-value=0.011), while no statistically

significant differences in smoking behavior and dyslipi-

demia were observed. The cohort was randomly

assigned to either the development (i.e., training and

validation) or the test dataset in a 9:1 proportion,

respectively (Figure 1). Table 2 presents the prevalence

of cardiovascular risk traits (factors) in the development
set and test sets, which proved comparable as expected

from the random parcellation.

DL in Identifying an Impaired MFR

Table 3 shows the performance of the DL in

detecting an abnormal myocardial perfusion, in either

one of three territories or any of the territories. The

highest performance was achieved among DL models

either considering single reserve polar maps or the three

polar maps stacks (rest, stress and reserve) as input,

while the lowest performance was observed in those

using rest polar maps as input. There was no significant

difference in performance with regard to location of

abnormal perfusion, either on specific a territory or

overall. The DL model using myocardial perfusion

reserve polar maps had the highest accuracy of 92.5%

(95% confidence interval, CI 87.1-93.5%) in identifying

an abnormal perfusion with an AUC = 0.94 [0.87, 0.98].

In contrast, the lowest DL accuracy was observed in the

model using the polar maps from only the rest state to

detect abnormality in the LAD territory (accuracy of

54.8% [44.1, 64.5], AUC = 0.54 [0.43, 0.64]) (Table 3)

as expected.

DL in Cardiovascular Risk Trait
Classification

Thereon, DL models were further finetuned to

identify the presence or absence of the specified car-

diovascular risk traits (factors). Identification of sex was

notably successful regardless of the input (single or

stacked polar maps) with the highest performance

observed in rest polar maps: accuracy = 80.6% [72.0,

88.2] and an AUC = 0.81 [0.73, 0.88]. Notably, the DL

Table 1. Clinical characteristics of the study population

Characteristics No impaired MFR Impaired MFR P-value

N 307 637

Age, mean (SD) 65.3 (9.2) 68.6 (9.5) <0.001

Sex (Female) 167 (54.4%) 294 (46.2%) 0.019

BMI (kg/m2), mean (SD) 27.2 (4.6) 27.7 (4.8) 0.087

Family history of coronary artery disease 81 (26.4%) 182 (28.6%) 0.480

Smoker 50 (16.3%) 78 (12.3%) 0.093

Diabetes 33 (10.8%) 112 (17.6%) 0.007

Dyslipidaemia 97 (31.6%) 216 (33.9%) 0.480

Hypertension 142 (46.3%) 350 (55.0%) 0.011

Duke score, median (IQR) 49 (22, 74) 54 (22, 77) 0.180

Rest LVEF, median (IQR) 68 (63, 74) 69 (61, 75) 0.640

Stress LVEF, median (IQR) 70 (64, 75) 70 (61, 75) 0.320

Significant differences between groups with p\0.05 are indicated in bold
Impaired MFR:\ 2 ml/g/min in at least one of the 17 segments from the American Heart Association/American College of
Cardiology standardized myocardial segmentation model
BMI body mass index; IQR interquartile range; LVEF left ventricular ejection fraction; SD standard deviation
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model analyzing rest polar maps achieved an accuracy

of 86.0% (95% CI 78.5-92.5) and an AUC of 0.71 (95%

CI 0.58-0.85) in identifying a positive smoking status.

DL models for detection of diabetes performed only

marginally better than random with the highest perfor-

mance found in the model using polar maps from

reserve state with an accuracy = 77.4% [68.8-86.0%]

and AUC = 0.65 [0.51, 0.79]. The identification of

dyslipidemia and arterial hypertension showed the

lowest performance and was not statistically significant.

The expanded results are shown in Table 4.

When compared against classical regression mod-

els, DL models attained similar performance in

identification of sex and diabetes with the exception

the DL model also able to identify sex using reserve

polar maps as input (Table 5). Notably, classical

regression models were not able to identify positive

smoking status taking mean MFR as input.

DL Attention Maps Evaluation

To explore the localizability and spatial profile of

the associations captured by DL for the identification of

cardiovascular risk traits, attention heatmaps were gen-

erated from the top performing statistically significant

models, namely those classifying sex, diabetes mellitus

and smoking status. The attention maps placed on the

polar maps with the highest prediction confidence

showed that female sex identification hovered over the

apical regions of the left ventricle (Figure 3). Con-

versely, we observed no fixed regions highlighted for the

identification of diabetes mellitus and smoking for

which rather diffuse patterns were noted.

DISCUSSION

The present study documents the feasibility and

performance of a multi-task DL approach in the eval-

uation of quantitative PET myocardial perfusion polar

maps for the identification of an impaired MFR and the

identification of common cardiovascular risk traits

(factors) in subjects with known or suspected CAD at

the individual patient-level. Furthermore, our results

frame how DL may enhance our capacity to identify

complex attributes that associate with known risk factors

that affect myocardial perfusion beyond what conven-

tional regression analysis utilizing myocardial blood

flow estimations may offer.

The clinical value of cardiac functional imaging is

undisputed. PET allows quantitative evaluation of

myocardial perfusion in absolute terms for the charac-

terization of ischemia in CAD. Furthermore, perfusion

estimates are also influenced by well-known cardiovas-

cular risk factors, namely sex, smoking, dyslipidemia,

arterial hypertension and diabetes mellitus. These traits

are understood to additively modify risk at the individ-

ual patient level as underlined by the concept of clinical

likelihood in the latest European Society of Cardiology

guidelines on the diagnosis and management of chronic

coronary syndromes.17 The diagnostic and prognostic

value of myocardial perfusion quantification beyond that

of robust factors such as LVEF, scar extent, and even

semi-quantitative perfusion variables, such as the sum-

med stress score, has been illustrated through traditional

statistical analyses. In fact, quantitative myocardial

perfusion estimates (namely, stress MBF and MFR)

have been suggested to represent two of the most

significant predictors of cardiac events.18 In this study,

DL showed the best performance to accurately identify

abnormal myocardial perfusion through the evaluation

of reserve polar maps both regionally and globally. This

is relevant because it will allow us to incorporate its

utility into decision support for the clinical evaluation of

PET myocardial perfusion scans.

On the other hand, there is paucity in previous

studies reporting sex differences in global MBF values,

and differences in the resulting MFR value have been

inconclusive.19,20 In the current study, we found that it

was possible to classify the sex of a patient from either

rest, stress or reserve polar maps, where DL achieved the

Table 2. Prevalence of clinical risk factors in development set and test set

Characteristics Development set Test set P value

N 851 93

Sex (female) 417 (49.1%) 44 (47.3%) 0.75

Smoker 114 (13.4%) 14 (15.1%) 0.66

Diabetes 130 (15.3%) 15 (16.1%) 0.84

Dyslipidaemia 286 (33.6%) 27 (29.0%) 0.37

Hypertension 449 (52.8%) 43 (46.2%) 0.23
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best performance when by only evaluating single rest

polar maps. Attention heatmaps showed apical regions

of the left ventricle to be an area of interest in such

distinction. This result suggests that there may be

Table 5. Performance of logistic regression models on identification of impaired MFR and
cardiovascular risk factors

Output
Prevalence

(%)
AUC using
rest PM

AUC using
stress PM

Reserve AUC
using reserve PM

AUC using
stacked PMs

Impaired MFR in

any segment

67.50 0.70 0.82 0.94 0.98

(0.60–0.81) (0.73–0.90) (0.90–0.98) (0.96–1.00)

Diabetes 15.40 0.6 0.5 0.61 0.58

(0.44–0.76) (0.32–0.68) (0.45–0.78) (0.41–0.75)

Dyslipidaemia 33.20 0.55 0.45 0.44 0.5

(0.41–0.69) (0.32–0.58) (0.31–0.57) (0.38–0.63)

Arterial

hypertension

52.20 0.52 0.57 0.54 0.53

(0.40–0.64) (0.45–0.68) (0.42–0.66) (0.41–0.65)

Sex female 48.90 0.85 0.65 0.57 0.79

(0.77–0.93) (0.54–0.76) (0.45–0.69) (0.69–0.88)

Smoking 13.60 0.44 0.43 0.56 0.48

(0.29–0.60) (0.27–0.60) (0.39–0.73) (0.31–0.65)

Performance with 95% confidence interval not covering the expected performance of a random prediction model are indicated in
bold
AUC area under curve; PM polar map

Figure 3. Attention heatmaps. (A) Attention heatmap for model prediction of impaired regional
mean MFR in left anterior descending artery (LAD). (B) Attention heatmap for model prediction of
female. (C) Attention heatmap for model prediction of diabetes. (D) Attention heatmap for model
prediction of smoking. Each attention map was generated with one representative polar map from a
patient from the test set previously unseen by the model in the development process.
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intrinsic differences between males and females leading

to divergent perfusion patterns during rest. Furthermore,

we found that the DL model showed a discriminatory

performance (AUC [ 0.5) in identifying a positive

smoking status and diabetes mellitus all at an individual

level. However, this was not the case for the classifi-

cation of arterial hypertension and dyslipidemia.

Whether this was a result of differences in the average

profile of adjacent cardiovascular risk factors remains

unclear and should be cautiously considered. This

differential performance may also arise from the fact

that the effects of hypertension and dyslipidemia on

myocardial perfusion will also be dependent on their

degree of severity and on whether these conditions are

being medically treated. Unfortunately, such informa-

tion was not directly available in this study. Yet, we

believe that such factors may have moderated the

association of the risk traits with MBF and MFR, and

thus affected the classification capacity of DL. This

suggestion aligns with the fact that strongest differen-

tiation could be made in the identification of sex already

discussed.

It must be understood that the conventional

approach of operationalizing information provided by

myocardial perfusion imaging (e.g. PET) into simplified

categorical (e.g. the semi-quantitative 5-point scale) or

absolute continuous variables (e.g. MFR in ml/g/min)

merely represents a heuristic that facilitates human

interpretation and application of linear statistics. Fur-

thermore, images in any domain represent by themselves

a very complex collection of patterns emerging from all

relationships between their smallest addressable ele-

ments, i.e. pixels. It is likely, therefore, that relevant

features within comprehensive perfusion images may be

overlooked by such operationalization.

Overall, this DL study offers a novel way in which

the intrinsic value of advanced cardiac imaging can be

more extensively utilized for clinical (identification of

ischemia and cardiovascular risk traits) and research

(exploration of complex patterns in the classification of

such factors) purposes. We recognize, however, that

whether this can in fact improve risk stratification and

event prediction remains to be elucidated.

DL is an advanced machine learning methodology,

able to appraise and identify complex image patterns

that may go undetected by the human eye. Our DL

implementation adds to the evidence suggesting that

high-quality myocardial perfusion images contain a

substantial amount of information with value beyond

that of their numerical summary extracts, and that these

relate at least moderately with conventional cardiovas-

cular risk factors that represent in themselves chronic

co-morbidities. Although a precise description of such

abstract patterns was not yet identified, further research

to identify the interactions of these patterns and quantify

their importance in the classification task is warranted.

The present study naturally carries all the intrinsic

disadvantages of any observational study. It also deals

with a complex DL algorithm for which interpretation

can be considered more challenging to perform than

simpler statistical methods. This can be an obstacle

when clinical interpretation of intermediate features is

needed. In the current study, we investigated whether

information on cardiovascular risk traits could be

inferred from PET polar maps through DL. To mitigate

the issue of a relatively small sample size in the context

of DL, we employed multi-task learning to guide the

network towards relations connected to the flow patterns

by training the models to predict (an impaired) MFR

from the polar maps and then the risk factors. This

served not only as a prior knowledge of the polar map to

aid the learning process, but also forced the models to

extract common features relevant to all tasks, therefore

potentially enhancing clinical/biological meaning of the

prediction result. As DL modelling substantially exceeds

threshold rule-based classification in complexity (sheer

number of input and parameters/coefficients) a perfect

performance (AUC = 1.0) in the identification of an

impaired MPR could not be achieved at this sample size.

Nevertheless, the achieved performance may still be

considered as good for the identification of myocardial

ischemia while simultaneously contributing to the fur-

ther classification of cardiovascular risk traits from the

polar maps.

NEW KNOWLEDGE GAINED

Deep learning can be applied on quantitative PET

myocardial perfusion polar maps to identify ischemia

and extract information on cardiovascular risk factors

namely, sex, smoking and diabetes. A priori knowledge

can be injected to assist the training of a deep learning

model.

CONCLUSIONS

Multi-task DL for the evaluation of quantitative

PET myocardial perfusion polar maps is able to identify

an impaired MFR as well as cardiovascular risk traits at

the individual-patient level. DL seems able to signifi-

cantly identify sex, smoking and probably diabetes

mellitus from both localized and diffuse perfusion

patterns throughout the left ventricle. Although the

mechanistic significance and clinical relevance of such

patterns and identification capacity through DL analysis

is still unclear, further research into the exploration of

advanced cardiac imaging through DL is warranted.
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18. Juárez-Orozco LE, Tio RA, Alexanderson E, et al. Quantitative

myocardial perfusion evaluation with positron emission tomogra-

phy and the risk of cardiovascular events in patients with coronary

artery disease: a systematic review of prognostic studies. Eur Hear

J Cardiovasc Imaging 2018;19:1179-87. https://doi.org/10.1093/

EHJCI/JEX331.

19. Opstal TSJ, Knol RJJ, Cornel JH, et al. Myocardial blood flow and

myocardial flow reserve values in 13N–ammonia myocardial

perfusion PET/CT using a time-efficient protocol in patients

without coronary artery disease. Eur J Hybrid Imaging 2018;2:1-

11. https://doi.org/10.1186/S41824-018-0029-Z.

20. Nickander J, Themudo R, Sigfridsson A, et al. Females have

higher myocardial perfusion, blood volume and extracellular

volume compared to males—an adenosine stress cardiovascular

magnetic resonance study. Sci Reports 2020;101:1-9. https://doi.

org/10.1038/s41598-020-67196-y.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

3310 M. W. Yeung et al. Journal of Nuclear Cardiology�
Multi-task Deep Learning of Myocardial Blood Flow November/December 2022

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41568-018-0016-5
https://doi.org/10.1038/s41568-018-0016-5
https://doi.org/10.1038/s41551-018-0195-0
https://doi.org/10.1038/s41551-018-0195-0
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1093/eurheartj/ehz425
https://doi.org/10.1093/EHJCI/JEX331
https://doi.org/10.1093/EHJCI/JEX331
https://doi.org/10.1186/S41824-018-0029-Z
https://doi.org/10.1038/s41598-020-67196-y
https://doi.org/10.1038/s41598-020-67196-y

	Multi-task Deep Learning of Myocardial Blood Flow and Cardiovascular Risk Traits from PET Myocardial Perfusion Imaging
	Abstract
	Background
	Methods and Results
	Conclusion

	Introduction
	Materials and Methods
	Study Population
	Clinical Data
	PET Data Acquisition and Quantitative Perfusion Analysis
	Image Analysis
	Data flow and processing
	Deep learning model architecture
	Multi-task learning
	Transfer learning
	Attention heat maps

	Statistical Analysis
	Performance Evaluation of DL Model


	Results
	Study Population Characteristics
	DL in Identifying an Impaired MFR
	DL in Cardiovascular Risk Trait Classification
	DL Attention Maps Evaluation

	Discussion
	New Knowledge Gained
	Conclusions
	Disclosures and Funding

	Open Access
	References




