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Abstract

For cortical motor activity, the relationships between different body part representations is

unknown. Through reciprocal body part relationships, functionality of cortical motor areas

with respect to whole body motor control can be characterized. In the current study, we

investigate the relationship between body part representations within individual neuronal

populations in motor cortices, following a 7 Tesla fMRI 18-body-part motor experiment in

combination with our newly developed non-rigid population Response Field (pRF) model

and graph theory. The non-rigid pRF metrics reveal somatotopic structures in all included

motor cortices covering frontal, parietal, medial and insular cortices and that neuronal popu-

lations in primary sensorimotor cortex respond to fewer body parts than secondary motor

cortices. Reciprocal body part relationships are estimated in terms of uniqueness, clique-for-

mation, and influence. We report unique response profiles for the knee, a clique of body

parts surrounding the ring finger, and a central role for the shoulder and wrist. These results

reveal associations among body parts from the perspective of the central nervous system,

while being in agreement with intuitive notions of body part usage.

Author summary

While over half the human brain shows elevated levels of activity during motor tasks, a

complete understanding of cortical motor activity is still lacking. Although somatotopic

organizations of sensorimotor cortices have been demonstrated before, a somatotopy is

only the ‘tip of the iceberg’ for cortical motor activity. Small ensembles of neurons—even

in primary sensorimotor cortex—respond to movements of multiple body parts. This

raises the following questions: how are movements of different body parts structured

within cortical response profiles, and how do body parts relate to each other from the

human brain’s perspective? Here we investigate the intrinsic structure of small neuronal

populations in human motor cortices following an 18-body-part motor task, using our

newly developed non-rigid population Response Field (pRF) method and high-field
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functional MRI. We report somatotopic structures in all sensorimotor cortices, and

smaller response field sizes in primary sensorimotor cortex compared to secondary motor

cortices. Furthermore, we show that physically adjacent body parts are often represented

in each other’s cortical response field. Using graph theory, we reveal relationships between

cortical body part representations, such as the relatively increased influence of the shoul-

der and wrist within neuronal populations during any of the 18 motor conditions.

1. Introduction

When we move an individual limb or body part like one of our fingers, many different cortical

areas in frontal and parietal lobes show elevated levels of activity [1–4]. However, it is far from

clear how the many different brain regions contribute to motor output. Even in primary

motor cortex (M1), which shows the highest correlation with localized muscle activity [5,6], it

is not fully understood how the neuronal activity contributes to the actual movement [7–9].

Exemplary of this lack in understanding is that M1 has been reported to exhibit both a somato-

topic organization (i.e. the orderly topography of cortical body part representations, [4,10–

14]), as well as efferent connections exceeding the range of individual body parts or localized

muscle groups [15–17]. In our previous study, we proposed that a Gaussian population Recep-

tive Field (pRF) model may help to reconcile these multiple M1 interpretations [18]. Our pRF

model showed that M1 neuronal populations (i.e. small ensembles of neurons within MR-vox-

els) can both contain a preferred finger representation (pRF center) constituting the somato-

topy, as well as connections to adjacent fingers reflected by the pRF size. How fingers or other

body parts relate to each other within small neuronal populations can illustrate how motor

cortices are wired and what functions they perform with respect to individual body part move-

ments. Since many body parts can move in conjunction, the mutual relation between different

body parts is not trivial. Our previous study investigated the movement of fingers only and,

additionally, assumed a rigid order of fingers (from thumb to little finger), predefining the

internal pRF structure. The limited number of body parts in combination with an a priori
assumption on their reciprocal relations prevents quantification of body part relationships.

Thus, while our previous study indicates that pRF modeling is able to model cortical motor

activity, it is unknown how body parts relate to each other and how body parts are ordered

within the response profile of neuronal populations.

In the current study, we investigate the relationship between body part representations in

human motor cortices following an 18-body-part motor task, using pRF modeling and high-

field 7 Tesla Blood-Oxygenation-Level-Dependent (BOLD) fMRI. At this point we note that in

light of cortical motor activity the term ‘population Response Field’ is better suited than ‘popu-

lation Receptive Field’, since cortical motor activity cannot be solely receptive in nature.

Hence, the abbreviation pRF will refer to ‘population Response Field’ from here on. We postu-

late that reciprocal relationship between body parts can be elucidated by estimation of the

internal structure of whole-body pRFs. Conventional pRF modeling tries to fit a Gaussian pRF

across a rigid functional space, e.g. visual field locations [19] or auditory frequencies [20],

which has also been applied to finger space in combination with somatosensory [21,22] and

motor tasks [18]. However, to adequately assess the internal structure of neuronal populations

with respect to motor activity, we cannot simply assume that each pRF consists of a rigid

ordering or body parts, e.g. similar to the conventional cortical homunculus ordering of body

parts [23]. Therefore, we developed a novel non-rigid pRF method that does not assume a

rigid ordering of body parts. Rather than fitting a variable Gaussian function along an
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unchanging dimension of body parts, variably positioned body parts are fitted within a static

Gaussian shaped pRF. The non-rigid pRF method can be regarded as a Gaussian shaped theo-

retical response field, which is populated with a set of functions (body part movements in the

current study). Properties that are common to conventional pRF methods, such as pRF center

and size, can likewise be extracted from the non-rigid pRF method on the basis of position,

number and spread of functions within the theoretical response field. Additionally, the non-

rigid pRF approach allows for the investigation of pRF composition: one can address which

body parts constitute the total pRF, including the proximity between body parts. Thus, the

novel non-rigid pRF center allows for estimation of conventional pRF properties such as pRF

center and size, and allows for the investigation of occurrence and proximity of body part rep-

resentations within a pRF without making assumptions on the intrinsic structure of the pRF.

In order to estimate a whole-body pRF, eighteen body parts were selected for movement

that encompass the lower limb, midsection, upper limb and face. The distribution of selected

body parts is not uniform in terms of physical size, but was instead determined by the ability

to be moved on cue. Therefore, the upper limb and face consist of more body parts that are

cued for movement, compared to the lower limb and midsection. In order of appearance on

the cortical homunculus, those body parts are: toes, ankle, knee, abdomen, shoulder, elbow,

wrist, little finger, ring finger, middle finger, index finger, thumb, forehead, eyelid, nostril, lip,

jaw, and tongue (Fig 1A). Each neuronal population will represent these body part movements

within its pRF in its own unique way. Through averaging the pRFs from neuronal populations

with the same body part preference (i.e. pRF center), the mean body part pRF is obtained,

which represents the average response profile for any given body part movement. The relation-

ship between body parts can then be assessed with graph theory on the basis of the mean body

part pRF [24–26]. Whole-body graphs are constructed by correlation of the mean body part

pRFs, representing the linkage and connection strength between body parts. For each body

part representation we calculate graph theory metrics that reflect relevant aspects of body part

relations: the connectivity (degree), clustering coefficient and betweenness centrality coeffi-

cient. The connectivity metric estimates the connectedness of body parts based on the similar-

ity of their respective mean body part pRFs: the larger the connectivity, the more similar a

body part’s response field is compared to other body parts. The clustering metric is a measure

of ‘clique-formation’, representing the interconnectedness of a body part and its neighboring

body parts [27,28]. Betweenness centrality is measure of body part influence: here it represents

the (indirect) involvement of a particular body part when other body parts move [29,30].

Lastly, we define modules of body part representations, based on shared characteristics of the

mean body part pRFs (Fig 1B and 1C), using Louvain modularity [31,32].

In the current study, we investigate the relationships among 18 different body parts in the

following cortical areas related to motor control: primary motor cortex (M1), primary somato-

sensory cortex (S1), supplementary motor area (SMA), dorsal and ventral premotor cortex

(PMd and PMv, respectively), insular cortex (Insula), and superior and inferior parietal cortex

(sPC and iPC, respectively). Body part relationships are scrutinized in several distinct ways.

Using our novel non-rigid pRF model, we first estimate pRF center and size, approximating

the neuronal population’s body part preference and the size of the population’s response field.

We hypothesize that the non-rigid pRF centers reveal somatotopic structures in cortical motor

areas that have previously been reported to exhibit a somatotopy: M1, S1, SMA and the insula

[4,11–14]. Additionally, we hypothesize that the non-rigid pRF sizes will be smallest for pri-

mary sensorimotor cortices (M1 and S1), since activity profiles from primary sensorimotor

cortices are thought to correlate to individual body parts to a greater extent than activity from

secondary motor cortices [33,34]. Second, we quantify relationships between body parts as

observed within the non-rigid pRF. We hypothesize that body parts that are adjacent on the
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cortical homunculus share a high proximity within response fields. Finally, the graph theory

metrics describe the relations of body part representations in different cortical areas from the

brain’s perspective. The uniqueness of body parts is given by the connectivity measure, the

Fig 1. Body parts and body graphs. (A) Schematic of the body and the cued body parts (colors) are shown. (B) The

layout of the whole body graph is presented with the colored nodes representing the body parts. The position of nodes

in the graph is arbitrary and chosen to resemble the physical position of the body parts. The lines denote which body

parts are ‘connected’ on the basis the cortical homunculus ordering of body parts. (C) Schematic of the graph theory

metrics: connectivity (red), clustering coefficient (blue), and betweenness centrality (black) that relies on path length

(green). Example modules consisting of multiple body part nodes are denoted by the black dashed lines. These graph

theory metrics were applied to all body parts in all ROIs. The lines denote existing connections between body part

nodes that were determined by correlations of the mean body part pRFs and thresholding. The nodes in the graph have

the same order as in (B).

https://doi.org/10.1371/journal.pcbi.1009955.g001

PLOS COMPUTATIONAL BIOLOGY The relationship between body parts with non-rigid population response fields

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009955 April 4, 2022 4 / 31

https://doi.org/10.1371/journal.pcbi.1009955.g001
https://doi.org/10.1371/journal.pcbi.1009955


cliqueness is given by the clustering coefficient and body part influence is given by the between-

ness centrality coefficient. The modules reflect which body part response profiles share similar

characteristics.

2. Results

Eight participants performed an 18-body part motor task, while neuronal population activity

was recorded using 7T fMRI. The majority of body part movements entailed a simple flexion-

extension movement (Table 1). Motor tasks typically cause more head movement than non-

motor task, which potentially affects the quality of the measurements. However, of all move-

ment cues, only the knee movement resulted in significantly larger estimated head motion

(Welch t(7) = 3.18, p = 0.015). The mean head displacement of the knee was 2.6mm (S.D. =

1.6mm), while the mean head displacement of other body parts combined was 0.6mm (S.D. =

0.4mm). Therefore, the following non-rigid pRF metrics associated with the knee movement

might be affected by relatively increased head motion. Nonetheless, the non-rigid pRF method

captures on average 13% of the timeseries variance explained in the cortical areas related to

motor control (mean R2 = .13, mean S.D. = .06). Variance explained of the data with the non-

rigid pRF model is highest in primary sensorimotor cortex (M1: R2 = .19, S.D. = .07; S1: R2 =

.18, S.D. = .09; SMA: R2 = .16, S.D. = .08; PMd: R2 = .16, S.D. = .07; S1: PMv = .12, S.D. = .05;

Insula: R2 = .13, S.D. = .05; iPC: R2 = .13, S.D. = .05; sPC: R2 = .14, S.D. = .06. See also S1 Fig

for goodness-of-fit statistics).

2.1 pRF center

The pRF center reflects the preferred body part for each neuronal population with respect to

the 18 body parts that were moved during the fMRI experiment. Representations of all body

parts were observed in all included cortical areas (Fig 2). Over 99% (S.D. = .07) of all neuronal

populations have a preference for a single body part, and on the basis of the preferred body

Table 1. The table describes the movements that were made for each body part condition. Subjects viewed a single forward movement cue and a single backward

movement cue per event. Rightmost column indicates in which of the two runs a body part cue was presented.

Body part Forward movement Backward movement fMRI run

1 Toes Flexion Extension 2

2 Ankle Flexion Extension 2

3 Knee Extension Flexion 2

4 Abdomen Muscle contraction/pushing outwards Muscle relaxation 1

5 Shoulder Flexion Extension 1

6 Elbow Flexion Extension 1

7 Wrist Flexion Extension 1

8 Little finger Flexion Extension 1

9 Ring finger Flexion Extension 1

10 Middle finger Flexion Extension 1

11 Index finger Flexion Extension 1

12 Thumb Flexion Extension 1

13 Forehead Muscle contraction/pulling upwards Muscle relaxation 2

14 Eyelid Closing eyelid Opening eyelid 2

15 Nose Flaring nostrils Relaxation nostrils 2

16 Lips Pouting lips Relaxation lips 2

17 Jaw Opening jaw Closing jaw 2

18 Tongue Moving tongue to the right Moving tongue to the center 2

https://doi.org/10.1371/journal.pcbi.1009955.t001
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part, somatotopic structures in the left (contralateral) hemisphere can be observed from both a

lateral and medial point of view (Figs 3 and S4). Somatotopic structures are most prominent in

M1 and S1, reflected by a significant gradual change in preferred body part along the direction

of the central sulcus (i.e. pRF center gradients: t(7) = 20.43, p< 0.001, and t(7) = 126.77, p<

0.001, for M1 and S1 respectively). Evidence for somatotopic structures is also observed for

Fig 2. Surface area. For each included cortical area, the surface area as estimated by Freesurfer is shown per body part representation. The surface area is

normalized to the total surface area of each cortical area. Body part representations are determined on the basis of the pRF center value.

https://doi.org/10.1371/journal.pcbi.1009955.g002

Fig 3. pRF center maps. The pRF centers are shown on an average subject pial surface (left) and inflated surface (right) from a lateral point of view (top) and

medial point of view (bottom). Colors indicate the body part that was estimated as the pRF center. The ROIs are denoted by the lines drawn on the surfaces:

primary motor cortex (M1), primary somatosensory cortex (S1), supplementary motor area (SMA), dorsal premotor cortex (PMd), ventral premotor cortex

(PMv), Insula/Sylvian fissure (Insula), inferior parietal cortex (iPC), and superior parietal cortex (sPC).

https://doi.org/10.1371/journal.pcbi.1009955.g003
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areas SMA and Insula (t(7) = 4.77, p = 0.002, and t(7) = 8.84, p< 0.001, respectively). Addition-

ally, somatotopic structures are observed in the 4 remaining areas covering premotor and pari-

etal cortex: PMd (t(7) = 7.57, p< 0.001), PMv (t(7) = 4.43, p = 0.003), iPC (t(7) = 3.87,

p = 0.006), and sPC (t(7) = 5.56, p< 0.001). For comparison, we have obtained similar pRF

center maps using the conventional pRF method (S2 Fig), which correlate significantly with

the main pRF center map, derived from the non-rigid pRF model (R = .89, p< 0.001).

2.2 pRF size

The pRF size is a single metric that reflects the distribution of body parts within a response

field. The unit for pRF size approximates body part density within a response field, which

means that a neuronal population with a pRF size of 1 has approximately 1 body part in its

response field. The pRF size differs per cortical area (F(7,10) = 23.02, p< 0.001), showing that

neuronal populations in M1 and S1 on average have the smallest pRF sizes (Figs 4 and S5).

Furthermore, pRF sizes vary depending on the neuronal population’s pRF center (Fig 5),

showing that a neuronal population’s preference for a particular body part affects the popula-

tion’s pRF size (F(17,15) = 28.10, p< 0.001). Neuronal populations that prefer the fingers dis-

play relatively large pRF sizes (mean pRF size 5 fingers = 7.69, SD = 1.88), whereas neuronal

populations that prefer the knee consistently display smallest pRF sizes (mean pRF size

knee = 4.84, SD = 1.46). Without grouping neuronal populations by their preferred body part

we observed small-to-large pRF size gradients in SMA (t(7) = 6.69, p = 0.001) and Insula (t(7) =

5.70, p = 0.003, Fig 4), but not in any of the other cortical areas. Finally, the pRF size maps

derived from the non-rigid and conventional pRF methods correlate significantly (R = .78,

p< 0.001, see S3 Fig), although pRF sizes estimated by the conventional pRF method tend to

be larger beyond primary sensorimotor cortices (see S6 Fig). Larger pRF sizes for the conven-

tional pRF method in secondary motor cortices are likely caused by a widening of the Gaussian

shape to encompass non-adjacent body parts.

Fig 4. pRF size maps. The pRF size is shown on an average subject pial surface (left) and inflated surface (right) from a lateral point of view (top) and medial

point of view (bottom). Colors indicate the pRF size. The ROIs are denoted by the lines drawn on the surfaces: primary motor cortex (M1), primary

somatosensory cortex (S1), supplementary motor area (SMA), dorsal premotor cortex (PMd), ventral premotor cortex (PMv), Insula/Sylvian fissure (Insula),

inferior parietal cortex (iPC), and superior parietal cortex (sPC).

https://doi.org/10.1371/journal.pcbi.1009955.g004
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2.3 Response field quantification

The pRF center and size summarize specific aspects of the complete response field. Addition-

ally, we investigate the positioning of all body part representations within response fields. The

movement order of body parts was pseudo-randomized to prevent an artificial coupling of

body parts on the basis of the experimental design, despite that such artificial coupling may

have persisted between separate fMRI runs (Table 1). However, we found no evidence for an

artificial coupling of body parts that were cued within a single run across the whole field of

view (Welch t(13) = 0.34 p = 0.737, see S1 Text). The full response fields show that for any given

body part at the pRF center, if another body part is proximate on the cortical homunculus, it is

also proximate to that specific pRF center (F(16,19) = 103.41, p< 0.001). In other words, neuro-

nal populations that have a preference for some body part P often contain body parts in their

response fields that are adjacent to P on the cortical homunculus (Fig 6), thereby revealing a

functional adjacency of body part representations in human motor cortices.

The observed functional adjacency of body part representations does not perfectly mirror

the cortical homunculus ordering of body parts, especially in cortical areas outside M1 and S1

(Fig 6, e.g. PMv). We use graph theory to investigate the relationships between body part rep-

resentations. Weighted graphs are constructed for every ROI by correlation of the mean body

part pRFs (Fig 6), creating body part nodes and the connections between them. We then

extract connectivity, clustering, and betweenness centrality coefficients from the whole-body

graphs. We found that connectivity values differed significantly across body parts (F(17,119) =

3.56, p< 0.001) and cortical areas (F(7,49) = 7.85, p< 0.001, Fig 7A). In particular, we found

that the knee was less connected within the graphs compared to other body parts (t(119) =

Fig 5. pRF size and cortical coordinates per pRF center. For each ROI the mean cortical coordinates (red circles) and mean pRF size (blue squares) are

plotted versus the estimated pRF centers (horizontal axis). Both the depicted coordinates and pRF size values were calculated as the mean value across neuronal

populations with the same pRF center (horizontal axis). Error bars denote the S.E.M. across subjects.

https://doi.org/10.1371/journal.pcbi.1009955.g005
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-5.22, p< 0.001). The connectivity averages of cortical areas reveal that body parts in M1 and

S1 are less interconnected (t(49) = -4.58, p< 0.001 and t(49) = -4.03, p< 0.001, respectively),

while body parts in PMv have above average connectivity values (t(49) = 4.05, p< 0.001). Next,

the clustering coefficient differed across body parts (F(17,119) = 2.40, p = 0.003), with the ring

finger having significantly larger clustering coefficients (t(119) = 3.04, p = 0.004). No clustering

effects were observed across cortical areas (F(7,49) = 1.35, p = 0.249, Fig 7B). Finally, we found

that betweenness centrality coefficients differ across body parts and cortical areas (F(17,119) =

2.56, p = 0.002 and F(17,49) = 11.88, p< 0.001, respectively). The shoulder and the wrist exhib-

ited larger betweenness centrality coefficients compared to all other body parts (t(119) = 3.36,

p = 0.001 and t(119) = 3.73, p< 0.001, respectively). Additionally, body parts in M1 and S1 con-

tain on average larger centrality coefficients (t(49) = 6.13, p< 0.001 and (t(49) = 5.43,

p< 0.001), while average centrality coefficients in PMv and sPC are significantly smaller com-

pared to other areas (t(49) = -3.26, p = 0.002 and t(49) = -2.66, p = 0.010, respectively. Fig 7C).

By viewing body part pRFs as a connected graph we can, additionally, look for modules in

the network. Modules are a measure of segregation, but unlike the clustering coefficient, act

Fig 6. Mean body part pRF. For each ROI (columns), the complete response field was normalized and averaged over all vertices sharing the same pRF centers

(rows), creating the mean body part pRF (i.e. 18 body part positions per pRF center and ROI). The bars denote the proximity of body parts to the center of the

response field. The higher the bar, the closer the corresponding body part is to the response field’s center. For each mean body part pRF, the body part equal to

the pRF center is depicted by the orange bar, and is by definition closest to the response field center. The Error bars denote the S.E.M. across subjects.

https://doi.org/10.1371/journal.pcbi.1009955.g006
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on multiple body parts in the network simultaneously. Hence, a qualitative analysis can be per-

formed on the existence of modules consisting of multiple body parts. Body parts within the

same module are assigned the same integer value and are indicated by different colors in Fig 8.

Using Louvain modularity, we find that particularly in M1 and S1 the cluster assignment of

body parts is in agreement with the physical distance of body parts and with co-occurrence of

body parts in real-life movements: a toes-ankle-knee cluster; a shoulder-elbow cluster; a cluster

of the wrist and the 5 fingers; a forehead-eyelid-nose cluster; and a lip-jaw-tongue cluster (Fig

8). The only difference between M1 and S1 clustering is found at the abdomen, which is clus-

tered together with the bottom half of the face (i.e. lip, jaw, and tongue) in M1, and forms its

own cluster in S1. Please note, that the cluster assignments are purely based on the Louvain

Modularity method, and their resemblance to somatotopic and physical structuring of body

parts emphasizes specific commonalities among response profiles. Clusters derived from the

other cortical areas differ each in their own way. Some clusters appeared relatively consistent

across the separate brain regions, namely the toes-ankle-cluster cluster (observed in M1, S1

and sPC), the forehead-eyelid-nose cluster (observed in M1, S1, Insula, iPC, and sPC) and the

Fig 7. Graph theory results. Whole-body-graphs are presented per ROI (from left to right) and for the connectivity, clustering and betweenness centrality

coefficients (from top to bottom). The colors of each node in the graphs correspond to a specific body part given by the schematic at the far right. The

connections between any 2 body part nodes was calculated per ROI and shown here through the lines connecting the nodes. The thicker the line the stronger

the connection between body parts. (A) Connectivity values per body part node and ROI are depicted. The size of the body part nodes presents the size of the

connectivity value per node. (B) Clustering coefficients have the same layout and graphs as the connectivity values. Here the size of the body part node reflects

the strength of the clustering coefficient. (C) The size of the body part nodes in the ROI graphs reflects the strength of the betweenness centrality coefficient.

https://doi.org/10.1371/journal.pcbi.1009955.g007

Fig 8. Body part modules. For each ROI, different modules are represented by different colors. Note that the colors only define a cluster of nodes within one

graph, and any correspondence of colors between graphs is purely accidental. The whole-body graph layout is presented at the outmost right indicating the

node-body part relationship.

https://doi.org/10.1371/journal.pcbi.1009955.g008
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lip-jaw-tongue cluster (M1, S1, Insula, and iPC). All areas except PMv reveal specific clusters

of physically proximate body parts. Area PMv has only two clusters of body parts that do not

directly relate to each other from either a physical of functional perspective. For the remaining

areas, the combination of non-rigid pRF estimation and graph theory confirms clusters of

physically and functionally related body parts and reveal subtle differences in the cortical

representation of our body.

3. Discussion

3.1 General discussion

The aim of the current study was to gain insight into relations between representations of

body parts in human sensorimotor cortex. We deployed our novel non-rigid population

Response Field (pRF) model to investigate motor cortical activity with fMRI, accompanying

an 18-body-part motor task. The pRF centers represent the preferred body part of individual

neuronal populations and on the basis of pRF centers we provide strong evidence for previ-

ously observed whole-body somatotopic structures in M1, S1, SMA and Insula/Sylvian fissure

(Fig 3). In addition, we provide new evidence for the presence of somatotopic structures in

other motor-related cortical areas: PMd, PMv, sPC and iPC (Fig 5). In line with expectations,

pRF sizes are smaller in primary sensorimotor cortex compared to other frontal and parietal

motor areas, indicating that neuronal populations in primary sensorimotor cortex code for

fewer body parts than secondary motor cortices (Figs 4 and 5). Non-rigid pRF modeling

reveals a high degree of cross-correspondence among body parts. PRF center body parts are

frequently neighbored by body parts that are proximate from either a physical or cortical

homunculus ordering’s perspective (Fig 6). However, the internal structure of response fields

is not uniform among body part representations or cortical areas. With the use of graph the-

ory, we find that there are consistent differences in connection strength, clustering and

betweenness centrality coefficients among body parts and cortical areas (Fig 7). Furthermore,

body part modules can be distinguished on the basis of the mean body part pRFs, revealing

that predominantly primary sensorimotor cortex contains modules that are in agreement with

the physical proximity of body parts (Fig 8). Thus, the non-rigid pRF model exposes coherent

but different functional relations between body part representations across several cortical

areas involved in motor functioning.

3.2 pRF center and size

The pRF center reflects a neuronal population’s preferred body part, which allows for the

assessment of somatotopic structures in brain regions. On the basis of previous studies

[4,11,12,14,35], we expected somatotopies in M1, S1, SMA, and near the insular cortex. The

clearest somatotopies are indeed observed in these areas, although evidence of a somatotopic

arrangement is observed for the other included cortical areas as well (i.e. PMd, PMv, iPC and

sPC). On average, we find evidence in support for a linear upright somatotopy of head/face

representations in M1 and S1, as was originally proposed by Penfield and Boldrey [23]. How-

ever, on the basis of visual inspection, the cortical representations of the head and face in M1

and S1 appear to be organized in an approximately polar coordinate system (Fig 3). A similar

head/face organization has previously been proposed on the basis of macaque electrophysiol-

ogy [36] and somatosensory stimulation in humans [37]. One possibility is that the conven-

tional somatotopic head/face organization based on “average cortical coordinates” may be an

oversimplification, and that a radial head/face somatotopy might be closer to the truth. Further

research is required to evaluate the different somatotopic organizational possibilities.
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It needs to be mentioned that, except for M1 and S1, the parcellation of included cortical

areas is rather coarse, which likely influences results on somatotopic arrangement. Cortical

parcellations that are too large or too small in size risk incorporating multiple or incomplete

functionally distinct brain regions, respectively. The current results putatively reveal multiple

somatotopic structures in regions SMA and Insula. SMA is known to consist of two separate

regions: pre-SMA and SMA proper [38,39], which might each represent the whole body in

full. The region denoted insula, which covers the region enclosed by the Sylvian fissure up to

the parietal operculum, likely contains the secondary somatosensory cortex (S2), which is

believed to contain a whole-body somatotopy as well [40–42]. Further parcellation of these

areas might, however, lead to an underrepresentation of certain body parts (see also Fig 2),

which could potentially hinder the assessment of somatotopic structures. The selection of

regions of interest (ROI) often is an arbitrary and non-trivial process, which could be aided in

future studies by the current pRF center results.

The changes in pRF size across the left hemisphere reveal several striking similarities with

changes in pRF centers. The outer borders of primary sensorimotor cortex are accompanied

by a sudden change in pRF size: primary somatosensory cortex displays relatively small pRF

sizes, whereas secondary motor cortices and parietal cortex show substantially larger pRF

sizes, indicating that neuronal populations in primary sensorimotor cortex are involved with

fewer body parts than other motor related areas. Neuronal populations in M1 have efferent

connections to localized motor units and muscle groups [6,15,43–45] and might relate directly

to ‘muscle fields’ demonstrated in animal studies [46,47], whereas S1 activity likely portrays

localized proprioceptive feedback information following movements [48,49]. In contrast, pre-

motor cortex and SMA are thought to be involved in motor planning and motor sequences,

which would yield an integration of multiple body parts that are not necessarily physically con-

nected [2,50–52]. Additionally, small-to-large pRF size gradients are observed in SMA and the

insular cortex. The function of these pRF size gradients, and whether they are part of a single

functional area or denote the borders between functionally distinct brain regions, remains to

be investigated.

With respect to body parts, we found that pRF sizes are largest for the 5 fingers and smallest

for the knee. PRF size is a measure of body part representation within neuronal populations

and the larger pRF sizes for the fingers indicate that all fingers populate the response fields of

all neuronal populations representing the fingers. It is important to state that the estimated

pRF sizes are relative to the 18 body parts that were cued for movement. Since more body

parts from the upper limb were cued for movement than e.g. the midsection, more upper limb

body parts could potentially be included in a response field. Additionally, the finger pRF sizes

may be specific to motor-induced activity, and finger pRF sizes solely induced by somatosen-

sory stimulation may be smaller [21,22]. However, others have found no difference in S1 mul-

tivariate activity patterns between active motor and passive somatosensory stimulation [53], or

increased movement complexity during electrical cortical stimulation of M1 [54]. These previ-

ous findings could indicate a difficulty in separating somatosensory and motor activity in vivo.

The entanglement of sensorimotor activity is likely also present in our previous finger move-

ment pRF study [18], where we initially showed that neuronal populations coding for fingers

frequently incorporate other fingers within their response fields. Thus while fingers are physi-

cally small in size, they are often used conjointly and the larger motor-induced finger pRF

sizes plausibly reflect their joint (sensorimotor) integration [1,55]. PRF profiles for finger rep-

resentations might, therefore, by shaped on the basis of their usage [56]. Conversely, the knee

is heavily involved in walking and sitting down—actions that are notoriously difficult to test in

an MR-scanner—and may actually be integrated with other body parts and movement types

that have simply not been tested currently [57]. Moreover, it is probable that neuronal
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populations, especially in secondary motor cortices, prefer specific movement types that are

not captured by the simple flexion-extension instruction presented here [58–60]. Altering the

set of movement types might change the estimated pRF size. Additionally, the knee movement

cue led to the largest estimated head movements in the scanner. It is, therefore, possible that

increased head motion during scanning might have decreased the estimated pRF sizes.

3.3 Body part relationships

Where the pRF center and size present a useful summary of population response fields of indi-

vidual neuronal populations, the graph theory metrics reveal additional inter-body-part rela-

tionships between multiple neuronal populations characterized by connectivity, clustering and

betweenness centrality coefficients. The knee exhibited the lowest connectivity values, which

means that given the performed movements the knee response profile is relatively unique

across all included motor related cortical areas. The low connectivity value for the knee

matches the smaller pRF size for neuronal populations, preferring the knee (for the relation-

ship between pRF size and connectivity metrics, see also S7 Fig). The ring finger was found to

have a significantly larger clustering coefficient, reflecting the interconnectedness of the ringer

finger and the direct neighboring body parts of the ring finger. This interconnectedness only

concerns directly connected body parts, while higher-order clustering algorithms (not

employed here) might reveal higher-order body part interconnectedness [61]. The large clus-

tering coefficient of the ring finger indicates clique-formation of predominantly the fingers

and the upper limb. It is not particularly obvious why the ringer finger is appreciated as the

center of clique-formation of the fingers and upper limb, but this might relate to previous find-

ings showing relatively enlarged cortical representations for the ring finger in S1 during soma-

tosensation [62]. One possible explanation might be that the ring finger’s constrained freedom

of movement [63–65] could result in the ring finger acting as a ‘common denominator’ for

various multi-digit movements, leading to the observed digit interconnectedness surrounding

the ring finger [66,67]. On the basis of betweenness centrality coefficients the shoulder and

wrist are characterized as central and are, therefore, relatively influential during the move-

ments of other body parts. The involvement of frontal and parietal cortex in upper limb motor

control has previously been demonstrated [68–70]. However, current results indicate that

shoulder and wrist representations are more influential within the central nervous system,

compared to other body parts. Increased levels of centrality for the shoulder and wrist may sig-

nify the relative importance of upper limb control within the human motor repertoire from a

cortical computation perspective [60,71–73].

The graph theory findings, however, can be influenced by several confounding factors.

First, the presentation of body parts was split in two halves (hand/arm/torso and face/leg),

which could have caused a coupling of body parts by task design. This could hinder the inter-

pretation of our results. However, we specifically tested for an unintended task design bias, for

which we found no evidence when taking into account the whole field of view. Second, the size

of the cortical representations of body parts differs in any of the included cortical areas. There-

fore, the relationship between body parts is not based on the same number of data points for

each body part, and could be skewed towards smaller or larger body part representations.

However, when the same analysis is performed while controlling for an equal number of data

points per body part, a comparable pattern of body part relationships emerges (see S2 Text).

Averaged over cortical areas, we observe that body parts representations in primary

somatosensory cortex (M1/S1) are characterized by relatively unique response profiles and

relate fairly directly to the corresponding physical body parts [1,74]. The high correspondence

with individual body parts in M1/S1 plausibly relates to the large betweenness centrality
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coefficients, signifying that here many body part representations are influential at the scale of

individual body part motor control. Additionally, we observed body part modules in M1 and

S1 that are in agreement with physical body part adjacency. Since modules are solely based on

response profile similarities, they reflect motor planning, motor execution and proprioceptive

feedback information [75–77]. The only difference between M1 and S1 is observed for the

abdomen, which forms a cluster together with the articulatory body parts lip, jaw and tongue

in M1, while forming its own module in S1. Additionally, the wrist is considered part of the

fingers in M1 and S1, rather than part of the shoulder and elbow module. The fact that the

wrist and shoulder are part of different modules in primary somatosensory cortex combined

with their relative increased influence during movements of other body parts (increased

betweenness centrality coefficients) could suggest that both body parts act as the leading joint

in hand/arm movements relative to their respective module [71,78,79]. Beyond primary senso-

rimotor cortex, distinctions between body parts are less prominent with PMv showing the

least clear body part distinctions. PMv has on average the largest connectivity values and rela-

tively low betweenness centrality coefficients, indicating a lack of body part differentiation.

Body part response profiles might be so similar, that it can be disputed if PMv motor calcula-

tions involve body part representations at all. Such interpretation is supported by the observed

PMv modules, consisting of just two large groups of body parts that do not obviously relate to

one another (Fig 8). These findings agree well with the notion that PMv is positioned relatively

high up the cortical hierarchy during motor processes, performing abstract rather than body

part motivated computations [3,80–82]. Note, however, that several graph theory metrics con-

cerning PMv may be dependent on the included surface area per body part (see S2 Text),

which may suggest that area PMv contains a relatively heterogenous collections of neuronal

populations. The body part modules that are observed for the remaining cortical areas are a

mixture of physically adjacent and distant body part combinations, requiring further research

to elaborate on their functions.

3.4 Non-rigid pRF model

In sensory cortices, such as visual and auditory cortex, much knowledge has been gained using

population Receptive Field modeling and fMRI [19,20,83–86]. However, visual and auditory

modalities exhibit a clear continuous relationship between sensation (through the retina and

cochlea, respectively) and cortical representation, whereas our body and movements of body

parts do not exhibit such an obviously clear connection to cortical representation despite the

coarse somatotopic arrangement of corticospinal tracts [87,88]. Population Receptive Field

modeling capitalizes on the relation between sensation and cortical representation, but the

advantages of population Receptive Field modeling have eluded the sensorimotor system in

absence of such relationship. We modified the population Receptive Field model to accommo-

date the lack of a predefined somatic ordering, while maintaining the ability to extract mean-

ingful features: the non-rigid population Response Field model. Instead of finding the best fit

of a Gaussian shaped receptive/response field over a rigid dimension of functional features

(e.g. visual field locations, auditory frequencies, body parts), the non-rigid pRF model finds

the best fit of functional features within a static Gaussian shaped response field. The rationale

for modeling neuronal activity in this manner revolves around the concept of having to—or

actually–not having to define the reciprocal relation between selected functional features a pri-
ori. Particularly for cortical motor response fields, we wish not to assume reciprocal relation-

ships between body parts beforehand, since many different body parts can move in

conjunction. It needs to be mentioned that we do make the assumption that the shape of the

response field is Gaussian. The choice for a Gaussian shape is motivated based on the
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successful application of Gaussian response profiles in neuroscientific research [89–91],

although other shapes might provide a more accurate display of neuronal functioning. The

strength of the non-rigid pRF model lies in its ability to find the correspondence among func-

tional features, quantified as relative distance of functional features from the response field’s

center or from each other. The positioning of functional features within the response field

allows for the assessment of pRF center and size, which correlate significantly with the pRF

center and size derived from a conventional pRF model using a rigid cortical homunculus-like

ordering of body parts. There are, however, several noteworthy differences between the non-

rigid and conventional pRF models: the conventional pRF model returns a center value on a

continuous, rather than discrete, feature dimension. It can, therefore, return a fractioned value

for the pRF center, allowing the center to be positioned between two body parts. Furthermore,

the pRF sizes were on average larger for the conventional compared to the non-rigid pRF

model (except for M1 and S1). This finding may reflect that when response fields become

larger and/or more complex (i.e. beyond primary sensorimotor cortices), the conventional

pRF model is forced to widen its Gaussian shape to encompass body parts that are not directly

adjacent to each other with respect to the cortical homunculus ordering of body parts (e.g.

hand-mouth response fields in parietal cortex [92]).

We have not compared our non-rigid pRF model with the commonly used general linear

model (GLM) approach. However, from a theoretical stance we argue that it does not differ

with respect to estimated amplitude per functional feature (i.e. per condition), or the explained

variance by either model. The current study suffered from a relative low variance explained

mainly caused by a poor fit between the canonical HRF and observed BOLD response. How-

ever, the GLM approach does differ with respect to the correspondence between features. A

standard GLM returns regression coefficients per feature and binary statistical tests can be per-

formed to identify significantly deviating signals [93–95]. However, a GLM does not inform

on the correspondence or clustering of features within a neuronal population. One thing the

non-rigid pRF method does have in common with a standard GLM-analysis is that it can be

readily applied to any set of features. Within-feature correspondence can be assessed with

“Representational Similarity Analysis (RSA), which bares several similarities to our non-rigid

pRF method [96]. Both methods are well-suited to investigate the relation within sets of fea-

tures, although the non-rigid pRF method primarily returns response field properties (i.e. pRF

center and size), plausibly reflecting afferent connections. Thus, when the intrinsic structure of

a response field with respect to a set of features is unknown or subject to investigation, the

non-rigid pRF method provides information on cross-correspondence among features within

neuronal populations, through which metrics such as pRF center and size and even complex

feature networks can be derived.

3.5 Conclusions

Accompanying an 18-body-part motor task, we present evidence for somatotopic organiza-

tions in cortical areas M1, S1, SMA, PMd, PMv, Insula, iPC and sPC on the basis of non-rigid

pRF centers. Additionally, non-rigid pRF sizes vary across the contralateral hemisphere, show-

ing that neuronal populations in M1 and S1 are involved with fewer body parts compared to

the other cortical areas. Furthermore, our novel non-rigid pRF method reveals exactly how all

18 body parts are represented in each neuronal population’s response field. Using graph theory

we were able to define the relationship between body parts in human motor cortex, revealing

that the knee is represented by a relatively unique response field, digits of the hand cluster

around the ring finger, and that the shoulder and elbow occupy a relatively influential role in

motor cortex. The novel non-rigid pRF model together with graph theory network
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quantification provides a powerful tool for investigation of neuronal population response

fields, when the relationship among selected functions is not known beforehand.

4 Material and methods

4.1 Ethics statement

Eight healthy volunteers (mean age = 24 years, s.d. = 2.2 years, female = 3, right-handed = 8)

participated in this study. All participants gave written informed consent before entering the

study. The protocol was approved by the local ethics committee of the University Medical Cen-

ter Utrecht, in accordance with the Declaration of Helsinki (2013).

4.2 Motor task

The participants carried out a movement task in a Philips 7 Tesla MRI scanner that required

the separate movement of 18 different body parts. Instructions were projected on a screen in

the scanner bore, which were viewed through prism glasses. The movement cues were pre-

sented using two different screen images: one image showing the torso, arm and hand, and

another image showing a face on the left and a foot/leg on the right. Each of these images was

used to present 9 different motion cues (Fig 9). When the movement of any body part was

cued, a green circle was presented for 1 second over the cued body part, at which point the par-

ticipant was to move the cued body part to an instructed position. One second later a red circle

was shown for 1 second, during which the participant moved the cued body part back to the

starting position. For most body parts the movement procedure meant a single flexion move-

ment, followed by an extension movement. However, there were exceptions such as the abdo-

men, forehead and eyelid movement instructions (see Table 1). Furthermore, since

participants were supine and the knee was supported with a cushion, the knee was first

extended and then flexed. Each motion cue was repeated 9 times and the movement order was

pseudo-randomized, to prevent systematic sequences. The inter cue interval was 10 seconds,

except for 1 randomly chosen repetition per condition, when the interval was lengthened to

14.7 seconds. The participants practiced the task several times outside the scanner until they

felt comfortable with the task.

4.3 Image acquisition

Scanning was performed on a 7 Tesla Philips Achieva scanner (Philips Healthcare, Best, Neth-

erlands) with a 2-channel volume transmit coil and a 32-channel receive headcoil (Nova Medi-

cal, MA, USA). Functional MRI (fMRI) measurements were obtained using a whole-brain

echo-planar imaging (EPI) sequence with the following parameters: SENSE factor = 3.5,

TR = 2100 ms, TE = 27 ms, flip angle = 70˚, axial orientation, interleaved slice acquisition,

FOV (AP, FH, LR) = 208.8 x 41.6 x 208.8 mm3. The acquired matrix had the following dimen-

sions: 132 x 26 x 132, voxel size: 1.75 x 1.75 x 1.75 mm3. The functional session was split in 2

parts (torso/arm/hand and head/leg, Fig 9). These 2 parts were recorded during 2 separate

runs each (run I: 237 functional scans, run II: 191 functional scans), resulting in 428 functional

scans for each part (i.e. 856 functional scans for both parts) per participant. For participant 1,

the reconstruction of run II failed at the scanner. Therefore, only run I was analyzed for this

participant. Following the functional sessions, a T1-weighted volume of the whole brain (0.8 x

0.8 x 0.8 mm3, FOV = 238 x 238 x 238) and a whole-brain proton density volume (0.98 x 0.98

x 1.0 mm3, FOV = 256 x 256 x 190) were acquired.
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4.4 Image processing

The T1-weighted volume was divided by the proton density volume in order to correct for

macroscopic field inhomogeneities present in the T1-weighted volume [97]. The corrected

T1-weighted volume was used to construct 3D surface meshes of the white matter and pial sur-

faces using Freesurfer (http://surfer.nmr.mgh.harvard.edu/, [98]). The functional volumes

were corrected for slice time acquisition, head movements, and geometric distortions using

Fig 9. Scanner instructions. Top row shows the images presented throughout the task for the hand/arm/torso run

(left) and face/leg-run (right). Middle and bottom rows show examples of the flexion-extension cues for the elbow

(left) and knee (right).

https://doi.org/10.1371/journal.pcbi.1009955.g009
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the FSL functions Slicetimer, Mcflirt, and Top-up, respectively [99]. Afterwards, the prepro-

cessed functional volumes were projected onto the Freesurfer surface meshes, where only

those voxels were selected that overlapped with estimated cortical grey matter. This procedure

resulted in a timeseries per surface vertex (sometimes also referred to as ‘surface nodes’). The

timeseries from both runs (i.e. torso/arm/hand and head/leg) were concatenated, high-pass fil-

tered with a cut off at 0.01 Hz and rescaled to percent BOLD signal change.

The non-rigid and conventional pRF analyses (see below) were performed in subject space

(i.e. on the surface mesh generated per subject). However, the pRF analyses’ output was pro-

jected on an average subject surface mesh generated with Freesurfer. The average subject sur-

face mesh was also used to draw regions of interest (ROI). We used the Brodmann area atlas

supplied by Freesurfer [100] to draw the borders of M1 (BA4a, BA4p) and S1 (BA3a, BA3b,

BA1). The borders of other cortical areas were less strictly defined, although PMd, PMv, iPC

and sPC were primarily based on the Destrieux atlas [101], while areas SMA simply covered

the medial side of the left hemisphere and area insula covered the cortical region enclosed by

the lateral sulcus ranging from frontal to parietal operculum. These regions were selected spe-

cifically for their relation to motor control.

4.5 Non-rigid pRF analysis

For the main analysis, we developed a novel population Response Field (pRF) model that does

not assume reciprocal relations between body parts, unlike more conventional pRF methods.

The non-rigid pRF model does not try to fit a Gaussian function over a rigid functional dimen-

sion of e.g. body parts, rather it keeps the Gaussian function constant and finds the best fit of

body parts within:

g xið Þ ¼ exp �
ðx0 � dxiÞ

2

2 � s2

� �

; xi 2 N; x0 ¼ 0; s ¼ 1; dxi 2 fR�0jR�10g ð1Þ

Where N is the list of body parts indexed from 1 to 18. Parameters “x0 = 0” and “σ = 1” are

the center and size of the Gaussian response field respectively and are, thus, held constant. The

placing of the body parts within this Gaussian shape is controlled through dxi, which denotes

the distance of each body part xi to the center of its response field (x0 = 0). This means that a

body part with a distance of dxi = 0 is at the center of a neuronal population’s response field.

The larger dxi becomes, the further away it is from the response field’s center. Please note, that

we only fit body parts in 1 side of the Gaussian function (i.e. positive values only). We could

have allowed dxi to be negative, but with a symmetrical Gaussian it would have had no effect

on the estimated fit, but it does imply a left/right-hand side relationship that we cannot verify.

Hence, values of dxi� 0 are accepted during fitting. Furthermore, there was a limit applied to

the maximum value of dxi = 10 at which point the static Gaussian function with a standard

deviation of 1 has a value of near zero. The limit prevented conditions from reaching unneces-

sarily large dxi values. Afterwards, the Gaussian function g(xi) was multiplied by the 2-dimen-

sional movement task design matrix (body parts � time) and summed over the body parts (2):

rðtÞ ¼
P

i2Nsðxi; tÞ � gðxiÞ ð2Þ

Where r(t) is the effective timeseries, s(xi,t) is the movement task design matrix and g(xi) is

the non-rigid Gaussian model. The effective timeseries r(t) is then convolved with a canonical

hemodynamic response function (HRF) (3):

pðtÞ ¼ rðtÞ � hðtÞ ð3Þ
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Where p(t) is the predicted timeseries, r(t) the effective timeseries and h(t) is the canonical

HRF. Finally, the predicted timeseries p(t) is compared with the observed fMRI timeseries y(t):

yðtÞ ¼ b � pðtÞ þ � ð4Þ

Where y(t) is the observed fMRI timeseries of a given vertex, p(t) is the predicted non-rigid

pRF timeseries, β is a scalar, and ε is measurement noise. We used the Levenberg-Marquardt

algorithm (LMA), which is the least-square minimization algorithm [102] used to find the best

parameter fits (Fig 10).

Each vertex ‘v’ was assigned a pRF center, which was the index of the body part (ranging

from 1 to 18) with the lowest distance to the center x0. In case of multiple body parts with the

lowest distance to x0 (which occurred in less than 1% of all vertices), the pRF center was calcu-

lated as the mean index of the multiple body parts and rounded to the nearest whole integer:

pRFCðvÞ ¼ DðdxvÞ ð5Þ

D dxvð Þ ¼

minðdxvÞ; jminðdxvÞj ¼ 1

b

P
i�minðdxvÞ

i
jminðdxvÞj

c; jminðdxvÞj > 1
ð6Þ

8
><

>:

Where pRFC(v) is the pRF center for vertex v, dxv is the 18-element array of body part dis-

tances to the Gaussian response field center x0 estimated for vertex v. The function ‘min()’
returns the minimum value of an array and ‘|min()|’ returns the cardinality of elements with

the lowest value. The pRF size was estimated as the sum of normalized distances (P(dxv)) of

body parts that were in range of the full-width-at-half-maximum (FWHM) of the response

field:

pRFSðvÞ ¼
X

PðdxvÞ � FWHM=2 ð7Þ

P dxvð Þ ¼

ð� dxv þ dxmaxÞ
dxmax

; dxv � FWHM=2

0; dxv > FWHM=2

ð8Þ

8
><

>:

Where dxv is the 18-element array of relative distances to the response field center x0 esti-

mated at vertex v. dxmax is the maximum value that dxi could attain (i.e. dxmax = 10), and with

a static Gaussian standard deviation of σ = 1 the FWHM�2.355. Since body parts were only

fitted in one side of the Gaussian shaped response field, the pRF size is calculated as the spread

of body parts within the half width at half maximum (i.e. dxv� FWHM/2, see also Fig 11).

We, additionally, performed the conventional pRF analysis for comparison purposes. The

only difference with the non-rigid pRF model is the Gaussian model function and the parame-

ters that are fitted with the LMA. Instead of function (1), function (9) is inserted in the pipe-

line:

g xið Þ ¼ exp �
ðx0 � xiÞ

2

2 � s2

� �

; xi2N; x0 2 R�1R�18

� �
; s 2 R>0f g ð9Þ

Here xi is the rigid indexation of a body part (1 = toes, 18 = tongue) and is not updated dur-

ing the fitting procedure. Parameter x0 is the pRF center, and σ denotes the pRF size of the

neuronal population. The best model fit for the conventional pRF model was obtained by con-

tinuously updating parameters x0 and σ from Eq (9).
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4.6 Graph theory

The non-rigid pRF analysis returns the following parameters for each surface mesh vertex v:
pRF center, pRF size, and the distance of all 18 body parts to the response field center (dxv).
For each vertex a goodness-of-fit F-statistic was calculated for the obtained pRF fit with respect

to the measured vertex’ fMRI timeseries. Only vertices showing a significant goodness-of-fit F-

statistic, false discovery rate (FDR) corrected, were selected for further analyses and were

mapped to the average subject surface mesh. Per cortical area, the mean response field of the

18 body parts was calculated as follows:

mdxi ¼
P

v2Vi

PðdxvÞ
jVij

; v 2 VijpRFCðvÞ ¼ if g ð10Þ

Where μdxi is the averaged 18-element array of normalized distances (P(dxv)) of a set of

vertices (Vi) where the pRF center is equal to body part xi (pRFC(v) = i). Thus, the averaged

distances array μdxi is calculated for each cortical area and each body part being at the center.

This results in 8x18 (ROIs x body parts) average response fields, each containing the relative

distance of the 18 body parts (see also Fig 6).

Fig 10. pRF fitting procedure. The schematic shows the different steps in the fitting procedure. The different body

parts are fitted in one half of a static Gaussian response field model (non-rigid pRF model), which is multiplied by the

motor task onset design matrix (Motor task). The multiplication generates the estimated pRF response amplitude for

each condition in time (pRF response), which is convolved with a canonical hemodynamic response function (HRF).

This results in predicted timeseries (Prediction), which is contrasted with the observed fMRI timeseries (Data). Using

the LMA, the position of the body parts in the non-rigid pRF model is updated in order to obtain the best fit.

https://doi.org/10.1371/journal.pcbi.1009955.g010

Fig 11. Non-rigid pRF timeseries. The non-rigid pRF fit (black line) with the timeseries of 2 surface vertices (colored dashed lines) are shown for 1 participant

(#6) in the upper and lower panels. Movement cues over time are presented at the horizontal axis. On the right, the fit of body parts within the static Gaussian

response field is shown, used to construct the timeseries fit. The FWHM/2 within the static Gaussian response field is depicted by the black dashed line. The

pRF size is determined on the number and spread of fitted body parts (mentioned on the horizontal axis) within the FWHM/2.

https://doi.org/10.1371/journal.pcbi.1009955.g011
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To construct weighted graphs of body parts, we calculated the 18x18 correlation matrix of

average response fields of each body part for each ROI separately. The Pearson correlation

coefficient served as the connection strength, or weights, between body parts. As a final step,

the correlation matrix needed to be thresholded to remove low and negative correlation coeffi-

cients. This is an arbitrary process, and we chose to include only positive values with a cut-off

at the lowest 5% of correlation coefficients per cortical area. Disregarding negative and the

lowest 5% of positive correlation coefficients resulted in connected graphs without islands,

while removing spurious connections [24,103]. At the end of this procedure, we have 8 (for

each ROI) weighted graphs with 18 nodes each. The 18 nodes represent the body parts.

Whether or not node i was connected to node j, thus, depended on the correlation of average

response fields μdxi with μdxj.
Graph theory offers many metrics, of which some represent similar ideas. We chose the

commonly used metrics Connectivity, Clustering and Betweenness Centrality as measures of

body part information distribution. All graph metrics were calculated per subject, per graph

(i.e. ROI), per node (i.e. body part representation). The connectivity of node i in a weighted

graph is equal to its weighted degree (k):

kwi ¼
P

j�Nwij ð11Þ

Where N is the set of nodes in the graph (i.e. 18 body parts), and wij is the weight between

node i and node j. The weighted clustering coefficient measures segregation of nodes from the

network. First, the weighted geometric triangles (t) around node i are calculated:

twi ¼
1

2

P
j;h2NðWijWihWjhÞ

1
3 ð12Þ

The weighted clustering coefficient (C), then is calculated by normalization of the weighted

geometric triangles around node i using the weighted degree (k).

Cwi ¼
1

n
P

i2N
2twi

kwi ðkwi � 1Þ
ð13Þ

Finally, the betweenness centrality is assessed. The betweenness centrality coefficient

reflects the centrality of the position of nodes in the network on the basis of path length and

the fraction of shortest paths passing through a node. First, the shortest weighted path length

between any two nodes is assessed:

dwij
P

auv�gwi$j
f ðWuvÞ ð14Þ

Where f(Wuv) is a mapping function from weight to length. In our study the inverse of the

weight was used. Then, gwi$j is the shortest weighted path between nodes i and j. The shortest

weighted path was found through an extensive search of each graph. Now with the shortest

weighted path length, the weighted characteristic path length (L) is assessed for each node:

Lwi ¼
1

n
P

i�N

P
j�N;j6¼id

w
ij

n � 1
ð15Þ

PLOS COMPUTATIONAL BIOLOGY The relationship between body parts with non-rigid population response fields

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009955 April 4, 2022 22 / 31

https://doi.org/10.1371/journal.pcbi.1009955


The betweenness centrality coefficient (b) for node i is then calculated as follows:

bi ¼
1

ðn � 1Þðn � 2Þ

P

h; j 2 N

h 6¼ j; h 6¼ i; j 6¼ i

rhjðiÞ
rhj

ð16Þ

Where ρhj is the number of shortest paths through nodes h and j, and ρhj(i) is the number of

shortest paths through nodes h and j that also pass through node i. Last, Louvain modularity

was calculated as follows:

Qw ¼
1

lw
P

i;j2N wij �
kwi k

w
j

lw

� �

dmi;mj ð17Þ

Where the network is fully subdivided inmmodules,mi is the network containing node i,
and δmi,mj = 1 ifmi =mj and δmi,mj = 0 ifmi 6¼mj. wij is the number of edges between nodes i
and j and lw is the total number of edges in the graph. Modular structures are found by itera-

tively optimizing Qw.

4.7 Statistical analysis

Head motion parameters were estimated during the volume realignment with FSL Mcflirt.

These motion parameters were used to assess head motion following each of the 18 motor

cues. The first derivative of the 6 rigid body motion parameters (3 x translation and 3 x rota-

tion) were calculated and summed over the first 3 seconds following a motor cue. Using a

Welch t-test, we tested if any of the movement cues caused a significant increase in estimated

head motion relative to other movement cues. No data was removed on the basis of estimated

head motion.

The first test of fMRI data verified the presence of somatotopic structures. A somatotopic

structure is defined as a series of cortical body part representations that show a gradual shift in

cortical location. Only surface vertices with a significant goodness-of-fit F-statistic (FDR-cor-

rected) were selected for the statistical analyses (see also S3 Fig). The pRF center value was

used for this together with the x/y-coordinates of the flattened average subject cortical surface

mesh. For the majority of ROIs, it was not a priori known in which cortical direction, if any, a

somatotopy could be observed. To try to account for that, we automatically rotated each ROI,

so that the mean coordinate of vertices having the toes, ankle, or knee as pRF center pointed

south (i.e. low vertical coordinates) and the mean coordinate of vertices with the lip, jaw, or

tongue as pRF center pointed north (i.e. high vertical coordinates). Using a linear regression

per subject and ROI on the pRF center versus rotated vertical coordinates, we assess the exis-

tence of somatotopic structures: regression coefficients significantly larger than zero indicate a

gradual increase of pRF center with rotated vertical coordinates, which was tested with a stu-

dent’s t-test across subjects per ROI. We carried out the same linear regression analysis with

pRF size over rotated vertical coordinates to test for gradual changes in pRF size per cortical

location (i.e. pRF size gradients). Additionally, pRF size was also analyzed using a repeated

measures analysis of variance (ANOVA). The average pRF size per pRF center was calculated

first: i.e. an average of pRF size values across voxels with the same pRF center per ROI per sub-

ject. The pRF center and ROIs were added as factors in the repeated measures ANOVA, allow-

ing us to test for the effects of pRF center and ROI on pRF sizes across subjects.

The last analyses performed on the common pRF metrics center and size were a series of

correlation analyses. In the first analysis, the non-rigid pRF centers were correlated with the

non-rigid pRF sizes. The pRF center and size maps were averaged over the number of subjects,

creating 2 single maps with a value per surface vertex. These maps were correlated with each
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other using Pearson correlation, resulting in a single correlation value of which the statistical

significance was calculated with the number of non-zero surface vertices minus 2 as the

degrees of freedom (significance threshold was Bonferroni corrected). Similarly, correlation

values were calculated between the averaged non-rigid pRF center map and the averaged con-

ventional pRF center map, and the averaged non-rigid pRF size map with the averaged con-

ventional pRF size map.

For the average distance of body parts to the center of the response field (dxv), we first tested

if the estimated distances were affected by task design. For each vertex, we divided the body

part distances into two groups: either presented in the same run as the pRF center of the vertex,

or presented in the other run. Using a Welch t-test, we tested if body part distances differed

depending on the experimental design. Next, we tested whether there was an effect of body

part (i.e. the cortical homunculus ordering) on distance to the center of the response field. For

each body part being at the response field center, we averaged the distance of body parts that

were one step away on the homunculus ordering. Then, the distance of body parts that were

two steps away, and so until the maximum ordering distance of 17 body parts was reached.

Using a repeated measures ANOVA with a priori specified linear contrast we tested if the dis-

tance from the response field center would increase (linearly) with increasing distance regard-

ing the cortical homunculus.

Finally, we tested for significance of all graph theoretical metrics (connectivity, clustering

and betweenness centrality coefficients) separately, using a 2-way repeated measures ANOVA

per metric with nodes (body parts) and ROI as factors. Additionally, deviation contrasts were

defined beforehand, testing for significant differences of any node’s or ROI’s metric compared

to the averaged corresponding metric of all other nodes or ROIs. All statistical tests were per-

formed using JASP (https://jasp-stats.org).

Supporting information

S1 Fig. Non-rigid pRF goodness-of-fit F-statistic. Goodness-of-fit F-statistic for the non-

rigid pRF method is displayed on an average subject pial surface (left) and inflated surface

(right) from a lateral point of view (top) and medial point of view (bottom). Hypothesis and

error degrees of freedom for the calculation of the F-statistics were 19 and 837, respectively.

The ROIs are denoted by the lines drawn on the surfaces: primary motor cortex (M1), primary

somatosensory cortex (S1), supplementary motor area (SMA), dorsal premotor cortex (PMd),

ventral premotor cortex (PMv), Insula/Sylvian fissure (Insula), inferior parital cortex (iPC),

and superior parietal cortex (sPC).

(TIF)

S2 Fig. Conventional pRF center maps. The conventional pRF centers are shown on the aver-

age subject pial surface (left) and inflated surface (right) from a lateral point of view (top) and

medial point of view (bottom). Colors indicate the body part that was estimated as the pRF

center. The ROIs are denoted by the lines drawn on the surfaces: primary motor cortex (M1),

primary somatosensory cortex (S1), supplementary motor area (SMA), dorsal premotor cortex

(PMd), ventral premotor cortex (PMv), Insula/Sylvian fissure (Insula), inferior parital cortex

(iPC), and superior parietal cortex (sPC).

(TIF)

S3 Fig. Conventional pRF size maps. The conventional pRF size is shown on the average sub-

ject pial surface (left) and inflated surface (right) from a lateral point of view (top) and medial

point of view (bottom). Colors indicate the pRF size. The ROIs are denoted by the lines drawn

on the surfaces: primary motor cortex (M1), primary somatosensory cortex (S1),
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supplementary motor area (SMA), dorsal premotor cortex (PMd), ventral premotor cortex

(PMv), Insula/Sylvian fissure (Insula), inferior parital cortex (iPC), and superior parietal cortex

(sPC).

(TIF)

S4 Fig. Individual non-rigid pRF center maps. For each participant the non-rigid pRF cen-

ters projected on a flattened cortex reconstruction are shown with different colors representing

different body parts. The ROIs are denoted by the white lines and text on top of the maps.

(TIF)

S5 Fig. Individual non-rigid pRF size maps. For each participant the non-rigid pRF sizes pro-

jected on a flattened cortex reconstruction are shown. Darker hues represent smaller pRF sizes

and lighter hues represent larger pRF sizes. The ROIs are denoted by the white lines and text

on top of the maps.

(TIF)

S6 Fig. Non-rigid versus conventional pRF sizes. Comparison between non-rigid (blue) and

conventional (pink) pRF sizes across ROIs. The conventional pRF model returns smaller pRF

size estimates for areas M1 and S1, while the non-rigid pRF model returns smaller pRF size

estimates for the other cortical areas. The error bars denote the S.E.M. across subjects.

(TIF)

S7 Fig. Relationship pRF size and Connectivity (degree). Each dot shows the relationship of

pRF size (horizontal axis) with the Connectivity metric (vertical axis) of all 18 body part repre-

sentations (individual dots) for each subject. The different colors correspond to the 8 subjects,

for which the linear regression is shown by lines of the same color. Mean Pearson R across sub-

jects for each ROI is presented in the top right corner of each plot.

(TIF)

S8 Fig. Task design bias. The normalized distances (1 = pRF center) for all cued body parts

(horizontal axes) and all included surface vertices are shown, averaged over the estimated pRF

center for each body part (separate panels). The estimated center body part is presented by the

orange bar and by default is closest to the pRF center (i.e. highest normalized proximity value).

The body parts that were presented during the same run as the estimated pRF center are repre-

sented by the green bars, while the body parts presented in the different run as the pRF center

body part are shown by the purple bars.

(TIF)

S9 Fig. Equi-representational graph theory metrics. Whole-body-graphs are presented per

ROI (from left to right) and for the connectivity, clustering and betweenness centrality coeffi-

cients (from top to bottom). The colors of each node in the graphs correspond to a specific

body part given by the schematic at the far right. The number of surface vertices that contrib-

uted to each body part node was held equal. The connections between any 2 body part nodes

was calculated per ROI and shown here through the lines connecting the nodes. The thicker

the line the stronger the connection between body parts. (A) Connectivity values per body part

node and ROI are depicted. The size of the body part nodes presents the size of the connectiv-

ity value per node. (B) Clustering coefficients have the same layout and graphs as the connec-

tivity values. Here the size of the body part node reflects the strength of the clustering

coefficient. (C) The size of the body part nodes in the ROI graphs reflects the strength of the

betweenness centrality coefficient.

(TIF)
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S10 Fig. Equi-representational body part modules. For each ROI, different modules are rep-

resented by different colors. Each module was determined on the basis of an equal number of

surface vertices that contributed to the body part nodes. Note that the colors only define a clus-

ter of nodes within one graph, and any correspondence of colors between graphs is purely

accidental. The whole-body graph layout is presented at the outmost right indicating the

node-body part relationship.

(TIF)

S1 Text. Task design bias testing.

(DOCX)

S2 Text. Equi-representational graph theory methods.

(DOCX)
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