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A B S T R A C T

Inpatient violence is a common and severe problem within psychiatry. Knowing who might become violent can
influence staffing levels and mitigate severity. Predictive machine learning models can assess each patient’s
likelihood of becoming violent based on clinical notes. Yet, while machine learning models benefit from having
more data, data availability is limited as hospitals typically do not share their data for privacy preservation.
Federated Learning (FL) can overcome the problem of data limitation by training models in a decentralised
manner, without disclosing data between collaborators. However, although several FL approaches exist, none
of these train Natural Language Processing models on clinical notes. In this work, we investigate the application
of Federated Learning to clinical Natural Language Processing, applied to the task of Violence Risk Assessment
by simulating a cross-institutional psychiatric setting. We train and compare four models: two local models, a
federated model and a data-centralised model. Our results indicate that the federated model outperforms the
local models and has similar performance as the data-centralised model. These findings suggest that Federated
Learning can be used successfully in a cross-institutional setting and is a step towards new applications of
Federated Learning based on clinical notes.
Machine Learning (ML) methods promise to address these limitations,
developing fast and objective predictions based on patient data present
in Electronic Health Records (EHR).

In the psychiatry domain, a particularly promising ML approach is
1. Introduction

Inpatient violence is a serious problem in clinical psychiatry, caus-
ing short- and long-term damage to property as well as people (Havaei,
MacPhee, & Lee, 2019; Inoue, Tsukano, Muraoka, Kaneko, & Okamura,
2006; van Leeuwen & Harte, 2017; Nijman, Bowers, Oud, & Jansen,
2005). Violence Risk Assessment (VRA) has been used in mental health-
care to inform medical decisions and mitigation strategies (Conroy &
Murrie, 2012; Singh et al., 2014). Several manual VRA methods have
been proposed and evaluated (Almvik, Woods, & Rasmussen, 2000;
Douglas et al., 2014; Ogloff & Daffern, 2006), yet these methods are
time-consuming and subjective, and some of them require advanced
training to use (Webster, Nicholls, Martin, Desmarais, & Brink, 2006).
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Natural Language Processing (NLP), since EHRs contain large amounts
of unstructured clinical notes written by nurses and psychiatrists. The
information in these notes could be employed in decision-support
systems to aid psychiatrists in predicting aggression, diagnosing pa-
tients, predicting side-effects from medication, and predicting suicide
attempts, among others. The information is reported in subtle and
nuanced ways, and often includes typographical errors, abbreviations
and technical terms. Not surprisingly, a common problem encoun-
tered by ML researchers in the clinical domain are datasets that are
small (Pestian, Nasrallah, Matykiewicz, Bennett, & Leenaars, 2010) or
too specific (Suchting, Green, Glazier, & Lane, 2018). Thus, increasing
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dataset size and diversity is desirable for performance of ML models, in
particular NLP models used in psychiatry.

Combining datasets from multiple departments and institutions
would be a natural way to enlarge datasets for various tasks. Yet,
medical institutions are usually not allowed to combine their data (Flik-
weert et al., 2020). Thus, instead of sharing data, machine learning
models can be shared amongst institutions, using local data for training
and/or fine-tuning.

This is the basis of Federated Learning (FL) (McMahan, Moore,
Ramage, & y Arcas, 2016). Through FL, multiple parties collaborate in
solving an ML task under the coordination of a central server, where
data are never allowed to leave a party’s device (Kairouz, McMahan,
Avent, Bellet, et al., 2021). Though some losses are expected with
respect to a data-central approach, it has been shown that these could
be quite small and acceptable given the gain in privacy (Sheller, Reina,
Edwards, Martin, & Bakas, 2019). FL has been gaining traction in
recent years, and applications within the medical domain are slowly
emerging (Deist et al., 2020; Kairouz et al., 2021). However, none of
the clinical applications of FL so far employ clinical texts.

In this work, we employ clinical texts for FL, examining violence risk
assessment. We seek to find how FL compares to centrally- and locally
trained models. For this comparison, we use free texts in EHRs. Since
we do not have access to data from multiple institutions, we use ‘‘mock"
institutions, created from the data of a single location using nursing-
ward-based partitioning. We train four machine learning models: a
federated model, a data-centralised model and two local models (A and
B). Here, A and B are the names of the mock institutions we created.
Then, we compare the performance of these four models on institutions
A and B separately and on the combined test dataset.

Our main contributions are:

• We demonstrate that FL applied to NLP models and trained on
clinical texts has similar performance as a centralised model, and
better than locally trained models.

• We highlight the potential of FL for clinical psychiatry.

The remainder of this paper is structured as follows. Section 2
discusses related work regarding FL in the medical domain. Section 3
describes the dataset, and explains the method for obtaining the em-
pirical results. Sections 4 and 5 state and discuss the empirical results.
Finally, Section 6 provides the conclusions drawn from the results.

2. Related work and background

Multiple Machine Learning (ML) methods have been proposed to
tackle the problem of Violence Risk Assessment (VRA). Bader and Evans
(2015) attempted to differentiate between patients perpetrating severe
and repeated aggression and non-aggressive patients, using common
risk factors as predictor variables. In a retrospective study, Raja and
Azzoni (2005) found some factors that seemed to correlate with inpa-
tient violence. Menger, Spruit, van Est, Nap, and Scheepers (2019), Le,
Montgomery, Kirkby, and Scanlan (2018), and Cook et al. (2016)
exploited the abundant free text in EHRs to employ Natural Language
Processing (NLP) to this task. Beyond VRA, Pestian et al. (2010) used
NLP to classify suicide notes as legitimate or elicited.

Two limiting factors in the development of fair and accurate ML
models for the healthcare domain are dataset size and diversity. Of the
studies mentioned above, only one had more than a few thousand data
points (Le et al., 2018). Its limitation, however, was that they predicted
existing VRA instrument scores, not real violence incidents. Suchting
et al. (2018) had nearly 30 thousand data points, yet they report being
limited both by dataset diversity (due to the nature of their facility)
and by dataset size (due to the imbalanced nature of the dataset,
as most patients do not engage in violence). Aggregating data from
multiple institutions would tackle both problems. However, as medical
data often resides in secure data silos across institutions (Lehne, Sass,
2

Essenwanger, Schepers, & Thun, 2019), aggregating these data is not
possible.

Federated Learning (FL) is a novel technique for training ML models
on decentralised data (Konečný et al., 2016). It began with the question
of how one can train an ML model in a setting where data is unevenly
distributed across a large number of devices, and the data cannot
be shared among devices or with the central server. FL provides a
solution to this question through decentralised training, orchestrated
by a central server. The server initialises and sends a model to each
participating institution or data silo. Each institution trains the model
on their own data, and shares the updated model’s parameters with
the central server. The server then aggregates all models and creates
a new global model. A widely used algorithm for creating a new
model is FedAvg (McMahan et al., 2016), which performs a weighted
average over the parameters of all models to create a new model. Other
algorithms have been proposed to allow the use of adaptive optimisers,
such as FedAdagrad, FedYogi, and FedAdam (Reddi et al., 2021).

FL has brought promising results in recent literature, where feder-
ated models perform nearly on par with data-centralised models for
medical classification tasks, such as brain tumour segmentation (Li
et al., 2019; Sheller et al., 2019) and in-hospital mortality predic-
tion (Choudhury et al., 2019). The technique has been applied on
private medical data as well by utilising the Personal Health Train
(PHT), for classifying post-treatment survival chances in lung cancer
patients, by collaborating with eight medical institutions (Deist et al.,
2020). PHT is a platform aiming to provide healthcare data from
various sources to researchers while ensuring privacy protection. FL has
also been used to predict suicidal ideation in online social care texts (Ji
et al., 2019). During the literature search conducted at time of study, no
applications of FL on models employing clinical texts were identified.
Table 1 shows all the aforementioned methods, together with their
goals and limitations.

To bring FL to the psychiatric domain, a Natural Language Pro-
cessing (NLP) task is chosen for this study. Clinical notes have been
written about admitted patients on a daily basis for many years across
medical institutions. This means that local datasets are available for
research at these institutions. Issues with these clinical texts are that
they are semi-structured, and sometimes contain thousands up till tens
of thousands of words for a single admission period, making feature
extraction a difficult task. Menger, Scheepers, and Spruit (2018) com-
pared various methods to convert texts into vectorial representations,
including bag-of-words, TF–IDF, Word2Vec and Doc2Vec. Following
previous work (Mosteiro et al., 2021), in this paper we use Doc2Vec (Le
& Mikolov, 2014), which generates a fixed-length vector for a piece
of text of arbitrary length. In this study’s context, a document is the
collection of notes of one admission period of a patient. Through this
method, the vector representations aims to keep the semantics within
each document intact. The representations can then be fed into an ML
model such as a neural network for a classification task.

3. Method

In this section, we outline the method for conducting the FL experi-
ment for predicting inpatient violence. First the data and the processing
steps are described in Sections 3.1 and 3.2, respectively. Then the setup
and training procedure are described in Section 3.3, and the method
for validation of the classification models is given in Section 3.4.
Thereafter, more detail is provided regarding the implementation of FL
in the experiment in Section 3.5.

3.1. Data

The data made available by the psychiatry ward of UMC Utrecht for
this study is the violence incident dataset prepared for violence risk as-
sessment within admitted patients by Mosteiro et al. (2020, 2021). Each
data point corresponds to an admission period of a patient, and contains
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Table 1
Previous studies described in Section 2. None of the studies focused on clinical texts
employ FL, or vice versa. Limitations are listed, where applicable. Generalisability means
that the performance reported has been shown or is expected not to generalise to data
from new institutions.

Paper FL NLP Clinical Limitations
texts

Violence Risk Assessment

Bader and Evans (2015) Small cohort
Raja and Azzoni (2005) Retrospective study
Menger et al. (2019) X X Generalisability
Le et al. (2018) X X Predicts other instruments
Suchting et al. (2018) Generalisability

Suicide Prediction

Ji et al. (2019) X X
Cook et al. (2016) X
Pestian et al. (2010) X X Small cohort

Other work

Sheller et al. (2019) X
Li et al. (2019) X
Choudhury et al. (2019) X
Deist et al. (2020) X

Table 2
Dataset characteristics. Each data point is an admission period, i.e., the period that a
patient spends while admitted to a given nursing ward of the psychiatry department.
Age refers to the age of the patients in the nursing ward. Positive and Negative data
points are defined by whether the patient is involved in a violence incident during the
first 27 days after the first day of the admission period.
Nursing ward Age Description Positive Negative Total

A1 > 40 Affective & psychotic disorders 25 734 759
A3 15–35 Diagnosis & early psychosis 130 696 826
A2V > 18 Acute & intensive care 167 1710 1877
A2J 12–18 Acute & intensive care 103 715 818

Total – – 425 3855 4280

the concatenation of clinical notes of a maximum of 28 days before up
until and including the 1st day after admission. Based on the next 27
days following the first day of admission, the data points are labelled
by whether a violence incident took place or not (positive/negative
outcome). The clinical notes, which are written in Dutch, have been
vectorised using Doc2Vec (Le & Mikolov, 2014), with a feature vector
dimensionality of 300. No structured features such as gender or age
were used, as they did not provide significant discriminatory power in
previous work (Mosteiro et al., 2020). There are four nursing wards in
the psychiatry department at the UMC Utrecht, and each data point
belongs to one nursing ward. The characteristics of the dataset are
shown on Table 2.

3.2. Data processing

To simulate two institutions (A & B) based on one dataset, and to
allow for hyper-parameter tuning, a data processing procedure was de-
signed to ensure the split-up datasets meet the following requirements.
First, each of the four nursing wards is assigned to either institution
A or B, in such a way that makes the numbers of data points in A
and B as even as possible. Second, both datasets are split up into
a train/validation and test set. The train/validation set is split up
into 5 folds for cross-validation (CV). Third, between cross-validation
folds themselves, and between the train/validation set and the testing
set, no patient IDs may overlap; overlapping patient IDs could result
in validating/testing on training data. This overlap sometimes occurs
when a patient is moved to a different nursing ward, and the new
nursing ward copies the notes taken from the previous nursing ward.
Fourth, it should be possible to combine the folds between institutions
to form patient-independent folds for federated and data-centralised
training. Fifth, both testing sets may only include new data based on the
3

Fig. 1. The data processing procedure of the violence risk assessment dataset.

admission timestamp, to ensure we test the final models on new data
points exclusively. These requirements are visualised as a top-down
procedure illustrated in Fig. 1.

3.3. Treatment design

In this study, four treatments are designed and compared to test all
scenarios derived from the research goals mentioned in Section 1, based
on Wieringa’s design cycle (Wieringa, 2014). Each treatment performs
a grid search with 5-fold cross-validation (CV) to search for the best
hyper-parameters for training a neural network on their respective
dataset. Based on this outcome, each treatment delivers a final model
by training on the data from all five folds, and is tested against a held-
out testing set. These four final models are compared as part of the
statistical difference-making experiment.

The difference between each treatment lies within the data it is
applied on, and the training method. Two treatments are trained on
data from the two simulated institutions A and B. The other two
treatments, data-centralised and federated, train on data from both
institutions. The data-centralised treatment trains on all data without
restrictions, to show how performance would be if privacy regulations
could be ignored. Therefore, it acts as a gold standard in terms of
performance, as we expect the nonrestrictive training environment to
deliver the best performance. The federated treatment trains a neural
network on both institutional data sets through FL.

3.3.1. Classification model
The classification model used across treatments is a feed-forward

neural network, consisting of an input layer, one hidden layer, and
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Fig. 2. The hyper-parameter tuning cycle of each treatment.
output layer. The size of the input layer corresponds to the number
of elements in the Doc2Vec vectors in the dataset (300). The hidden
layer size is given by the variable ℎ, whose values are optimised
through hyper-parameter tuning. Furthermore, the hidden layer uses
the Rectified Linear Unit (ReLU) activation function, chosen for its fast
computation time. The output layer has a single neuron with a sigmoid
activation function for providing the classification.

The model uses the Binary Cross Entropy (BCE) with logit loss
function to compute its gradients. We use mini batch gradient descent.
Eq. (1) is the average loss per data point for a single batch 𝑛, given
input 𝑥 and outcomes 𝑦.

𝑙(𝑥, 𝑦)𝑛 =
1
𝑇𝑛

𝑇𝑛
∑

𝑖=1
−[𝑝 𝑦𝑖 ⋅ log(𝜎(𝑥𝑖)) + (1 − 𝑦𝑖) ⋅ log(1 − 𝜎(𝑥𝑖))] (1)

Batch 𝑛 contains 𝑇𝑛 data points. For each data point 𝑖, we apply a
sigmoid activation function 𝜎 to the input 𝑥𝑖. To mitigate the issue of
class imbalance, when the binary outcome 𝑦𝑖 is positive, we multiply it
by a weight 𝑝 equal to the ratio of negative to positive samples in the
dataset.

An exponential learning rate scheduler is used for training, which
updates the learning rate through 𝑙𝑟 = 𝑙𝑟0 ⋅ 𝛾𝑛𝑒 , where 𝑙𝑟0 is the starting
learning rate, 𝛾 is the amount of decay, and 𝑛𝑒 is the number of the
current epoch. A 𝛾 of 0.975 is used for the experiment. This value causes
the learning rate to approximately be divided by 10 at epoch 100. It is
a relatively quick drop, but as there is a computational constraint in
the amount of epochs we can use, we aim for models with an initial
quick convergence, and use the remaining epochs for more fine-grained
model updates. The maximum number of epochs is 120.

An early stopping mechanism keeps track of the validation loss of
the model at each epoch. The mechanism saves a checkpoint of the
model whenever the validation loss decreases since the last overall
decrease in validation loss. It means that if the validation loss has not
decreased in the last seven epochs, the early stopping mechanism kicks
in and stops the training. It will then load the model checkpoint which
has the lowest validation loss. This checkpoint model is then used for
model evaluation.

3.3.2. Hyper-parameter tuning
Each treatment follows the hyper-parameter tuning cycle and test-

ing procedure as shown in Fig. 2. This aims to result in hyper-parameter
values optimal for training a treatment’s final model. The tuning hap-
pens through a process known as grid search in steps 1 through 4 in the
Figure, where for each possible combination from a fixed set of hyper-
parameters, a model is trained to reveal its respective performance.
To ensure a good error estimate, the grid search is performed through
5-fold CV. Thus, for each hyper-parameter combination, five models
are trained. To compute a performance measure of a combination, the
ground truth labels and the predicted labels from the five models are
concatenated and used as input for performance measure calculations.

The following set of hyper-parameters are used during the grid
search, resulting in 36 unique combinations. These values were chosen
during data exploration.
4

• Hidden Layer Size: [64, 128, 256, 512]
• Learning rate: [0.005, 0.001, 0.0005]
• Weight decay: [1e-3, 1e-4, 1e-5]

The performance measure used for fine-tuning is the F1-score, which
assigns importance to correctly classifying the positive class. As the
violence risk assessment dataset is strongly imbalanced and as correctly
classifying patients exhibiting violence is deemed to be more important
than correctly classifying patients who do not exhibit such behaviour,
being able to accurately evaluate true positives among the positive
predictions is key. When the combination with the best F1-score is
determined in step 5, the final model can be trained. It uses the best
hyper-parameters to train on the data from all 5-folds in step 6. After
training, it is ready to be evaluated on the held out testing data at
step 7.

3.4. Treatment validation

Each treatment is validated by testing its final model on the held out
testing data containing only new data points based on the admission
timestamp. It corresponds to the final step in the hyper-parameter
tuning cycle (Fig. 2). This is done by feeding the testing data from
institutions A, B, and the combination of the two sets into each treat-
ment’s final model. From here, performance measures per treatment
are computed. As each treatment uses the same set of testing datasets,
and each data point is fed in an identical order to each treatment, the
performance measures as well as the raw predictions can directly be
compared.

For each performance measure, confidence intervals are calculated
by bootstrapping the test set for 10 000 bootstraps. Bootstrapping is a
method for estimating the sample distribution for a certain statistic. It
is implemented by sampling the test set with replacement to produce
a new test set with a different distribution of the same size, this is
done 10 000 times. From here a bootstrapped mean and confidence
intervals can be calculated. The 95% confidence intervals are computed
for each performance measure, treatment, and test set combination.
These intervals are computed through percentiles, which is known as
the percentile bootstrap method, and are compared between treatments
and test sets, to provide insights into relative performance.

Each treatment’s bootstrapped performance measures are compared
against the federated measures by calculating the difference between
the measure scores for each bootstrapped sample. Computing this
difference is a method adapted from (Cumming & Finch, 2005). This
too will yield a distribution with 95% confidence intervals. If the confi-
dence interval whiskers exclude zero, then the difference is statistically
significant. An important side-note for this method is that bootstrapping
is ideally performed on the training set. Due to computational limita-
tions, we performed it on the test set to see how much our specific
trained models vary in their performance, when the test set is modified
slightly through bootstrapping.
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3.5. Federated learning implementation

The Python library PySyft is used for simulating a federated setting
on a single device. We simulate two institutional devices and a central
server. The training/validation algorithm implemented using PySyft is
shown below in Algorithm 1. First, a central model is initialised on the
server and a copy is sent to both institutions. Each institution trains
the model in batches of their full local dataset. For each batch passing
through the institutional models, the models are updated accordingly.
After a single pass over the full dataset, the resulting institutional
models are sent to the central server. Here they are aggregated by
averaging the weights and biases of each layer in the neural network.
The resulting averaged model is validated at each epoch to track the
validation loss and performance measures. This happens by sending a
copy of the averaged model back to the institutions and by feeding it
the local validation sets. This results in a set of predictions and ground
truth values from both institutions, which are in turn shared with
the central server. The central server then computes the performance
measures over the concatenation of the predicted and ground truth
values from both institutions.

Algorithm 1: Federated Learning implementation
Result: Model, performance

odel = initialise_model()
or 𝑛𝑒 in n_epochs do
for inst in institutions do

updated_model_inst = local_train_model(model, 𝑖𝑛𝑠𝑡)
model = average({updated_model_inst})
(performance, loss) = validate(model)
should_stop = early_stopping(loss) // Section 3.3.1

if should_stop then
break

return model, performance

Function validate(model):
for inst in institutions do

predictions_inst, labels_inst = local_validate_model(model,
𝑖𝑛𝑠𝑡)

predictions = concatenate({predictions_inst})
labels = concatenate({labels_inst})
performance, loss = get_performance_and_loss(predictions,
labels)
return (performance, loss)

unction local_train_model(model, 𝑖𝑛𝑠𝑡):
updated_model = model
for 𝑛𝑏 in n_batches do

updated_model = train(updated_model, dataset(𝑖𝑛𝑠𝑡))
return updated_model

unction local_validate_model(model, 𝑖𝑛𝑠𝑡):
predictions, labels = model(dataset(𝑖𝑛𝑠𝑡))
return (predictions, labels)

4. Experimental results

4.1. Data splitting

The violence risk assessment dataset contains a total of 4005 data
points after removing overlapping patients from the training/validation
set. The first split assigns 856 points to the testing set, and 3149 to the
5

Table 3
The distribution of positive and negative data points across institutional cross-validation
folds.
Treatment Institution A Institution B Combined

Label Negative Positive Negative Positive Negative Positive

Fold 1 257 26 313 34 570 60
Fold 2 277 22 295 36 572 58
Fold 3 265 18 311 36 576 54
Fold 4 263 17 307 43 570 60
Fold 5 234 31 329 35 563 66

Total 1296 114 1555 184 2851 298

Table 4
Grid search cross-validation F1-scores compared to the F1-score on a treatment’s own
testing set.
Treatment CV Min F1 CV Mean F1 CV Max F1 F1 own Test Set

Institution A 0.220 0.288 0.320 0.351
Institution B 0.351 0.374 0.388 0.335
Federated 0.334 0.346 0.362 0.388
Data-centralised 0.324 0.343 0.359 0.396

training/validation set. The test set is distributed to institutions A & B
based on nursing wards, giving institution A 347 and institution B 509
testing data points. Distributing the training/validation set based on
the same nursing ward split assigns 1410 (of which 114 positive) and
1739 (of which 184 positive) data points to institutions A and B, re-
spectively. Table 3 displays the distribution across the cross-validation
folds illustrating the class imbalance based on the training/validation
set. Nursing ward A2V is appointed to institution A, and nursing wards
A1, A2J, and A3 to institution B.

4.2. Grid search cross validation

Table 4 displays the relationship between cross-validation F1-scores
and the F1-scores of applying the treatments to the held-out test set.
The goal of the grid search is to find the combination giving the highest
F1-score (CV Max F1), and in this way it aims to find a combination
which has a comparably high F1-score on the held out testing set. For
the final models of the data-centralised, federated, and institution A
treatments, the F1-score on their own test set is higher than the CV
Max F1-score. This indicates that the hyper-parameters picked during
cross validation provides a decent F1-score on the held out test set. Only
for institution B the opposite was true as the F1-score on its own test
set is lower. In an ideal situation, a similar F1-score is preferred as the
cross-validation would then provide the most realistic carry-over value.

4.3. Performance measures

We observe in Table 5 that the federated and data-centralised
models perform much alike regardless of the performance measure
on our testing set. This indicates that the FL process has had no
large impact on the performance of the model. When comparing the
federated model to the local institutional models, we see a large gap in
terms of the F1-score for all testing sets; the federated model’s F1-score
was remarkably higher for each set. In addition, the federated model
achieves higher scores for most performance measures regardless of the
testing set compared to the local models, while achieving similar scores
compared to the data-centralised model. The data-centralised ROC-AUC
score on the combined test set is consistent with that found in previous
work (Mosteiro et al., 2021).

4.4. Bootstrapped F1-scores comparison

For a given performance measure, the confidence intervals are
calculated in two ways. Both methods rely on bootstrapping of the
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Table 5
Performance measures for each treatment tested on each testing set. Values in bold are the highest among a measure given
a specific test set across the four treatments. F1-score, recall, and precision use a classification threshold of 0.5.
Test set Test set Institution A Test set Institution B Test set Combined

Treatment Inst A Inst B Fed DC Inst A Inst B Fed DC Inst A Inst B Fed DC

ROC-AUC 0.803 0.744 0.777 0.774 0.740 0.755 0.759 0.762 0.764 0.742 0.765 0.765
PR-AUC 0.278 0.274 0.293 0.281 0.276 0.293 0.292 0.296 0.270 0.281 0.288 0.288
F1 0.351 0.339 0.419 0.417 0.325 0.335 0.366 0.382 0.336 0.337 0.388 0.396
Recall 0.459 0.757 0.703 0.676 0.306 0.516 0.516 0.532 0.364 0.606 0.586 0.586
Precision 0.283 0.219 0.299 0.301 0.345 0.248 0.283 0.297 0.313 0.233 0.290 0.299
Fig. 3. Comparison of Confidence Intervals (95%) based on bootstrapped F1-scores.
The 𝑥-axis refers to the test set. The centre points represent the mean of the
bootstrapped F1-scores.

ground truth labels and the predictions based on 10 000 resamplings
of the testing sets. The first method computes a performance mea-
sure for each bootstrapped sample. This results in a distribution of a
given measure’s scores with 10 000 data points. Then the two-tailed
confidence intervals are calculated using percentiles (CI: 95%). The
confidence intervals of this method using the F1-score as a performance
measure, are illustrated in Fig. 3(a). The second method compares the
bootstrapped distributions of the F1-scores between all non-federated
treatments compared to the federated treatment. Given two treatments,
the difference in a performance measure for each bootstrapped sample
is calculated. These differences for a given measure provide a new
distribution for which the confidence intervals are calculated (CI: 95%).
This method is illustrated in Fig. 3(b).
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Table 6
Confusion matrices of each treatment applied to the
combined test set.

Predicted

Neg Pos

Ac
tu

al Neg 678 79
Pos 63 36

(a) Institution A

Predicted

Neg Pos

Ac
tu

al Neg 560 197
Pos 39 60

(b) Institution B

Predicted

Neg Pos

Ac
tu

al Neg 615 142
Pos 41 58

(c) Federated

Predicted

Neg Pos

Ac
tu

al Neg 621 136
Pos 41 58

(d) Data-centralised

4.5. Prediction comparisons

To provide a more in-depth comparison between each treatment’s
predictions, the confusion matrices and contingency tables are
displayed in Tables 6 and 7, respectively. We observe significant
differences between the predictions of the two local models and the
data-centralised and federated model. Comparing the predictions of
the data-centralised and federated models alone, reveals highly similar
predictions. Table 8 provides the extent to which all models agree on
each test sample. We observe that all models often agree with one
another on the same test samples. An interesting observation is that
the models also commonly misclassify a significant number of similar
test samples.

To provide more insights into the data structure and the classifica-
tions, t-SNE and PCA analyses were performed on the testing dataset of
the federated model. Fig. 4 shows the result of these analyses coloured
by the classification of the federated model. It reveals the difficulty of
the classification task as both the t-SNE and PCA show that the true
positive samples are scattered across the figures.

5. Discussion

5.1. Statistical significance

When tested on the combined testing data, the federated model
achieved an F1-score of 0.388 and the data-centralised achieved 0.397.
This is in line with our expectations that both models would perform
on par with one another. We also report on Table 5 the areas under
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Fig. 4. PCA and t-SNE visualisations on the combined test set. The data points are labelled by True Positives (TP), False Positives (FP), False Negatives (FN), and True Negatives
(TN), as predicted by the federated model.
Table 7
Contingency tables of each treatment applied to the combined
test set compared to the federated model.

Institution A

Correct Incorrect

Fe
d Correct 647 26

Incorrect 67 116

(a) Institution A compared to federated

Institution B

Correct Incorrect

Fe
d Correct 608 65

Incorrect 12 171

(b) Institution B compared to federated

Data-centralised

Correct Incorrect

Fe
d Correct 658 15

Incorrect 21 162

(c) Data-centralised compared to federated

Table 8
Commonly correct and commonly misclassified predictions. Common is
defined as having all models agreeing upon a single outcome.
Ground Truth Misclassified Correct

Neg (total nr: 757) 72 545
Pos (total nr: 99) 34 33

the Receiver Operating Characteristic (ROC-AUC) and precision–recall
curve (PR-AUC). These measures indicate performance without choos-
ing a classification threshold. On the combined test set, both models
had the same ROC-AUC (0.765) and PR-AUC (0.288). Furthermore,
there was not enough evidence to reject the null hypothesis that the
data-centralised and federated model were similar, with a significance
threshold of 0.05. While we cannot conclusively state that the federated
and data-centralised model perform on par, they did so on our test
dataset.

The F1-score of institution A, as observed on its own test set (0.351),
was much lower than the federated model (0.419). Even though the
observed differences from the experiment were large, the bootstrapped
confidence intervals could not prove a statistically significant differ-
ence, given a significance threshold of 0.05. However, we can state
that the federated model was better on our testing data. Analysing the
F1-scores of institution B on its own test set (0.335) compared to the
federated model (0.366), we see a smaller difference. For institution
B, we observed a statistically significant difference when tested on the
testing set from institution A and the combined set, but not when tested
7

on the set from institution B. Again, based on the bootstrapped mean
F1-scores we observe that the federated model outperformed the local
model, but we cannot state with statistical significance that federated
model is better.

5.2. Model differences

The confusion matrices of all models as displayed in Table 6 re-
veal the differences in correct and incorrect predictions between each
model. Institution A delivered the most accurate model giving the low-
est number of incorrect predictions (79+63 = 142). However, the model
also yielded the highest number of false negatives (63) and lowest
number of true positives (36), which is why it had the lowest F1-score
out of all models. The data-centralised model and federated model give
an identical number of false negatives (41) and true positives (58), while
differing only by six samples for true negatives and false positives. The
model of institution B yielded the highest number of true positives
(60) at the expense of the highest number of false positives (197). The
differences between institutions A and B remind us that the F1-score is
not the end of the story. It will also depend on whether a practitioner
favours a high number of false negatives over a high number of false
positives, or vice versa.

Contingency tables reveal the relative performance and agreement
of each model compared to the federated model on the combined data.
Tables 7a & 7b show that there is a significant disagreement between
the two local models compared to the federated model. Table 7c shows
that the highest level of agreement is between the data-centralised and
federated model, disagreeing only on 36 (21 + 15) data points.

To see the extent to which all models agree with one another,
Table 8 displays the number of commonly correctly classified and the
commonly misclassified test samples. Common, within this context, is
defined as a prediction for which all models agree with one another on
a given test sample. Out of all test samples (757 + 99 = 856), overall
common agreement (72 + 33 + 545 + 34 = 684) between models was as
high as 79.9%. A worrying detail is that all models misclassified 34 real
positive samples. This high number of common false negatives begs the
question of whether these data points have anything in common as to
be classified incorrectly.

5.3. Limitations

The first limitation of this study is concerning the Doc2Vec model.
The model was trained on all clinical notes present in the violence risk
assessment dataset. There are two issues with this approach. First, it
would have been more realistic to train this Doc2Vec model using FL;
currently it was trained with a data-centralised approach to create the
best Doc2Vec model we could with the limited size of the data set. For
a real life scenario, adding federated Doc2Vec training to the pipeline
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is a prerequisite, for the same reasons data-centralised training is not
allowed cross-institutionally. However, Doc2Vec is not compatible with
PySyft at the moment. The second issue is that the Doc2Vec model has
also been trained on clinical notes occurring in the testing set. When
making real life predictions, it is unusual to retrain the Doc2Vec model
to include the testing clinical notes and retrain the classification model.
Rather, one would use the existing Doc2Vec model to immediately
vectorise the newly acquired clinical notes to predict for violence. This
limitation will be addressed in future work.

Another limitation is that other privacy preserving technologies
were not investigated in this study. Models trained through FL can be
attacked like other machine learning models, and an attacker might be
able to infer details about the training data of the model. FL can be
combined with other privacy preserving techniques such as differential
privacy (Dwork, 2006), homomorphic encryption (Gentry, 2009), and
secure multiparty computation (Yao, 1982). These techniques might
alleviate additional privacy concerns, but could also negatively impact
model performance. To guarantee a high level of privacy to admitted
patients, combining FL with these techniques might be required.

Lastly, we observed a large variance in the performance measures
and believe this can be attributed to the small test set with a low
number of positive samples. Because of this, there is a high probability
that a bootstrapped sample contains a skewed class distribution, which
has a high impact on the variance of F1-scores.

6. Conclusions

Violence Risk Assessment (VRA), like many other clinical tasks, can
be tackled with Machine Learning methods. In the psychiatry domain,
NLP methods are particularly interesting thanks to the abundance of
clinical notes containing valuable information. NLP models benefit
enormously from bigger and more diverse datasets, as can be acquired
by working across multiple institutions. Since data sharing among in-
stitutions is not possible, we have developed a Federated Learning (FL)
pipeline for training an algorithm for VRA. We found no performance
loss from using FL, as opposed to a data-centralised approach. Also,
FL seems to improve the performance of locally trained models tested
on a different dataset. To the best of our knowledge, this is the first
application of FL and NLP on clinical texts.

The results suggest that there are benefits to using federated models
and this should be investigated further with cross-institutional datasets.
Not only would this provide insights into real-life deployment, it would
also lead to more data points for training and testing and could help to
decrease performance measure variance.

In future work, we plan to train document embeddings in a feder-
ated environment. Furthermore, we will investigate how FL can help
solve other clinical tasks, such as text de-identification. Finally, we
plan to investigate the possibility of adding other additional privacy-
preserving technologies, such as differential privacy.
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