

SYSTEMATIC REVIEW

Differences in Symptom Presentation in Women and Men with Confirmed Lower Limb Peripheral Artery Disease: A Systematic Review and Meta-Analysis

Cindy P. Porras ^a, Michiel L. Bots ^a, Martin Teraa ^b, Sander van Doorn ^a, Robin W.M. Vernooij ^{a,c,*}

^a Julius Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht, Utrecht University, Utrecht, The Netherlands

^b Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands

^c Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, The Netherlands

WHAT THIS PAPER ADDS

Some studies have described differences in clinical presentation by sex in patients with lower extremity peripheral artery disease (PAD). To date, there has been no systematic review that has collected and pooled this information to confirm what is described by some authors. This systematic review provides evidence and corroborates sex differences in symptom presentation in patients with PAD. The meta-analysis suggests that women with PAD present less often with intermittent claudication and more often with rest pain than men.

Objective: To evaluate the differences in symptoms between men and women that present with lower limb peripheral artery disease (PAD).

Data Sources: Systematic review and meta-analysis using PubMed, EMBASE, and the Cochrane Library.

Review Methods: A systematic search of the literature to identify studies that examined PAD and its symptoms using PubMed, EMBASE, and the Cochrane Library, which were screened in duplicate by two reviewers. Information on study design, source of data, population characteristics, and outcomes of interest was extracted and used the Newcastle–Ottawa Scale and Cochrane risk of bias tool. Quality of evidence was rated using the GRADE methodology. Estimates of relative effects were pooled to generate pooled odds ratios (OR) and their 95% confidence interval (CI) using a random effects model.

Results: Thirteen cross sectional studies, six cohorts, one case control, and one randomised clinical trial, reporting on 1 929 966 patients with confirmed PAD (established by clinical history, clinical examination, and/ or ankle brachial index, or further tests) were included. Women presented less often with intermittent claudication than men (25.9% vs. 30.2%) OR 0.78 (95% CI 0.72 – 0.84, very low quality of evidence), while rest pain and atypical leg symptoms were more prevalent in women (12.8% vs. 9.2%) OR 1.40 (95% CI 1.22 – 1.60, very low quality of evidence) and (22.8% vs. 19.8%) OR 1.18 (95% CI 0.96 – 1.45, very low quality of evidence), respectively.

Conclusion: Women with PAD more often present with rest pain, while their prevalence of intermittent claudication is lower. They also tend to present more often with atypical leg symptoms. This study underlines that PAD symptom presentation differs between the sexes. Therefore, clinicians and researchers should not consider men and women as a single population and report their data separately.

Keywords: Atypical leg symptoms, Intermittent claudication, Peripheral arterial disease, Rest pain, Review, Sex

Article history: Received 21 July 2021, Accepted 28 December 2021, Available online 2 March 2022

© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Society for Vascular Surgery. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author. University Medical Centre Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands.

E-mail address: r.w.m.vernooij-2@umcutrecht.nl (Robin W.M. Vernooij).

1078-5884/© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Society for Vascular Surgery. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ejvs.2021.12.039

INTRODUCTION

Peripheral artery disease (PAD) is a progressive atherosclerotic disorder characterised by stenosis or occlusion of large and medium sized arteries, different to those supplying the heart and the brain. Based on the latest Global, regional, and national prevalence and risk factors for peripheral artery disease, published in 2015, 236.62 million people around the world were diagnosed with PAD.¹

PAD is often diagnosed using the ankle brachial index (ABI), and most of the studies define PAD as an ABI < 0.9. Patients with PAD are at long term risk of death and amputation, and although there is a reduction, the risk of death or amputation remains considerable after revascularisation.^{2,3} The long term mortality risk of patients with PAD is similar to that of patients diagnosed with acute myocardial infarction or stroke.⁴

PAD has traditionally been identified as a predominantly male disease; however, recent population studies on PAD have shown that women are affected at least as often as men.⁵ For instance, Schramm *et al.* and Teodorescu *et al.* reported a similar prevalence of PAD among women and men,^{6,7} which is consistent with studies showeding that the prevalence of PAD in young women (under 50 years) seems to be higher than in men, but for individuals aged 70 – 79 years, there is an equivalent prevalence of PAD among both sexes of approximately 11.5%.^{8,9}

Lower extremity PAD can be either asymptomatic or symptomatic. Symptoms may vary from intermittent claudication (IC), rest pain, or tissue loss, to atypical leg symptoms, or a combination of these symptoms.¹⁰ Around 50% of patients diagnosed with PAD are asymptomatic or have atypical leg symptoms. Typical IC, described as pain or weakness while walking that is relieved by rest, occurs in about 10% of all patients with confirmed PAD.⁸

Some studies have suggested that, compared with men, women with PAD have a greater tendency to be asymptomatic or have atypical leg symptoms.¹⁰ These characteristics could delay the diagnosis of PAD, and consequently, might increase the prevalence of more severe diseases, including chronic limb threatening ischaemia (CLTI) at the time of diagnosis.¹⁰ There is evidence that performance status, treatment options, and outcomes of endovascular interventions differ between women and men with PAD.¹⁰⁻ ¹³ However, a comprehensive review of the differences in the symptomatology between women and men with confirmed lower limb PAD is not available. The aim was to evaluate symptom presentation in patients with confirmed PAD and to compare the prevalence of symptoms between women and men. Finally, an attempt was made to identify factors that may be related to the sex symptom association.

MATERIALS AND METHODS

A review protocol describing the inclusion criteria, outcomes of interest, and the data analyses methods was previously specified and registered in PROSPERO (CRD42021242226). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)¹⁴ was used to ensure transparent reporting of review methods.

Selection criteria

Observational studies (cross sectional, cohorts, and case control) and randomised clinical trials reporting sex differences, symptom prevalence (Fontaine stage IIa. IIb. III, and Rutherford stage 1 - 4) and characteristics, and differences in treatment by sex in patients with confirmed PAD were considered for inclusion. Confirmed PAD was defined as lower limb PAD established by clinical history, clinical examination, and/ABI, or further studies.¹⁵

Only studies that reported symptomatic PAD were included. A study was eligible if (1) it included patients aged 18 years or older; (2) the patients had a diagnosis of PAD established either by questionnaires, ABI at rest, treadmill, or duplex; and (3) reported the symptom prevalence and presented the outcome (i.e., symptom prevalence in terms of IC; rest pain, Rutherford 4 or Fontaine stage III; and atypical leg symptoms, or lower extremity symptom that was not consistent with classic IC) separately for women and men.

Studies were excluded if they were review articles or case reports. For articles that used the same database, the article with most data available about symptoms by sex was chosen.

Search strategy

The search terms used were relevant keywords and MeSH terms relating to PAD, including "peripheral arterial disease", "peripheral artery disease", "arterial occlusive disease", and "peripheral vascular disease"; it combined with words related to sex, such as "sex", "gender", "sex specific", "gender specific", "women and men" and "female and male", and with words related to symptoms, including "intermittent claudication", "symptom", "claudication", "claudication intermittent", "rest pain", and "pain". The Boolean Operators "AND" or "OR" were applied to facilitate the search. The data sources used were MEDLINE (via PubMed), EMBASE (via Embase.com), and the Cochrane Library (via Cochrane review and CENTRAL). The search strategy was conducted on 15 February 2021. The search period was restricted to publications between January 2000 and February 2021. Additionally, the search was restricted to papers written in English. The detailed search strategy can be found in Supplementary Table S1.

Eligibility assessment, based on title/abstract and full text was performed independently by two reviewers (C.P., R.V.) using the Rayyan web tool. A third author acted as an arbitrator if there was disagreement between the reviewers (M.B.).

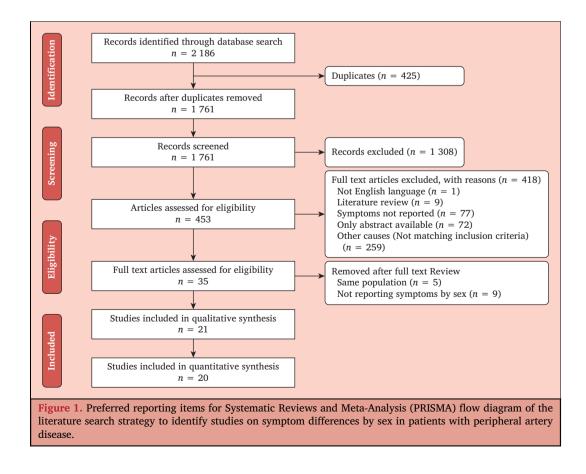
Data extraction and quality assessment

A data extraction sheet was developed using Excel. It was tested and adjusted accordingly. The information extracted from the studies was divided into four categories: (1) general information (year of publication, country, author, and title); (2) characteristics of the study (type of study, sample size, risk of bias, and inclusion criteria); (3) characteristics of the participants (mean age, percentage of women and men, smoking status, and prevalence of hypertension, diabetes and coronary heart disease or myocardial infarction); and (4) outcome data (prevalence of IC, rest pain, atypical leg symptoms). The first review author (C.P.) extracted the data from included studies, and the second author (R.V.) checked the data for correctness.

The risk of bias of the included studies was assessed by two independent authors (C.P., R.V.). The quality of observational studies was appraised using the Newcastle— Ottawa Scale (NOS) for cohort and case control studies and adjusted for cross sectional studies; the Cochrane Risk of Bias Collaboration's tool was used for assessing the risk of bias in randomised trials.^{16,17}

The GRADE approach was used to assess the quality of evidence as high, moderate, low, or very low based on risk of bias, inconsistency, indirectness, and imprecision.⁵⁵ Reasons to upgrade the quality of evidence, including large effect magnitude, dose response, or limited residual confounding, were not considered applicable to the body of evidence.

Outcomes and statistical analyses


The primary outcomes were the prevalence of IC, rest pain, and atypical leg symptoms. The combined results were expressed as odds ratios (ORs) for women *vs.* men (control group).

Statistical analyses were performed using the Cochrane Collaboration's software for preparing and maintaining Cochrane reviews, RevMan 5.4. Dichotomous outcomes such as IC, rest pain, and atypical leg symptoms (yes/no) were calculated, and the relationships between women and men were reported as ORs with 95% confidence interval (CI). Statistical significance was defined as a two sided $\alpha < .05$. Given that clinical heterogeneity was suspected in patients

and symptom characteristics across the included studies, a random effect model was applied for all outcomes.

Previous evidence showed that smoking, diabetes, and hypertension are risk factors associated with PAD. These characteristics could potentially explain the heterogeneity. Therefore, subgroups were defined based on mean proportion of smokers (\leq 50%, \geq 50%), hypertension (the cut off point for subjects with hypertension was higher [\leq 70%, \geq 70%] because in only two studies that reported hypertension, was the prevalence < 50%), and diabetes (\leq 50%, > 50%) in the overall population. In addition, a subgroup analysis was performed according to the year of publication (2000 - 2005, 2006 - 2010, 2011 - 2021), with the rationale that the reporting and contribution of women in subsequent studies may have changed over time. These subgroup analyses were performed for all outcomes. To explore differences in studies reporting IC, a subgroup analysis was conducted based on the stage of IC.

Finally, sensitivity analyses were conducted to assess the contribution of each study to the pooled estimate for each outcome. Individual studies with the largest population were excluded one at a time and the pooled OR estimates for the remaining studies were calculated. Thus, for IC, the studies by Lo *et al.*, Peters *et al.*, and Behrendt *et al.* were excluded one at the time. For rest pain, Peter *et al.* and Haine *et al.* were excluded, and for atypical leg symptoms, McDermott *et al.* was excluded.

RESULTS

Literature search results

A total of 2 186 studies were identified in the different databases, of which 425 were excluded as being duplicate publications. After reviewing titles and abstracts, 453 studies were assessed for eligibility; and finally, 35 articles were selected for full text review. Figure 1 presents a flow diagram for the PRISMA process used to identify the included studies.

During the full text review, 14 studies were discarded: five because they studied the same population, $^{18-22}$ and

nine because they did not stratify the symptoms by sex but by either PAD status, race, or a different factor.²³⁻³¹ Supplementary Table S2 gives the characteristics of the studies excluded.

Study and population characteristics

A total of 13 cross sectional,³²⁻⁴⁴ six cohort,⁴⁵⁻⁵⁰ one case control study,⁵¹ and one randomised clinical trial⁵² met the inclusion criteria and were selected for detailed analysis. Together these studies report on 1 950 169 patients (1 929 966 with confirmed PAD). The studies were

Author	Publication year	Country	Study design	Inclusion criteria	NOS/Cochrane risk of bias	Sample size – <i>n</i>	Confirmed PAD – n
McDermott <i>et al.</i> ³²	2003	United States	Cross sectional	Patients with ABI < 0.90	7	460	460
Dang et al. ³⁶	2013	China	Cross sectional	Elderly with DM2	7	323	323
Smolderen <i>et al.</i> ⁴²	2009	The Netherlands	Cross sectional	Patients with $ABI < 0.90$	7	628	628
Collins et al. ³⁵	2006	United States	Cross sectional	People > 50 y	7	403	67
Brevetti <i>et al.</i> ³⁴	2008	Italy	Cross sectional	Patients with $ABI < 0.90$	8	231	231
Behrendt <i>et al</i> . ³³	2019	Germany	Cross sectional	PET of PAD	8	23 715	23 715
Kumakura <i>et al.³⁹</i>	2011	Japan	Cross sectional	Patients with $ABI < 0.90$	6	730	730
Gardner ³⁷	2002	United States	Cross sectional	Patients with Fontaine stage II	8	560	560
Murabito <i>et al</i> . ⁴⁰	2002	United States	Cross sectional	People > 40 years old	8	3 313	118
Vliegenthart <i>et al.</i> 44	2002	The Netherlands	Cross sectional	People > 55 years old	8	3 975	557
Krishnan <i>et al.</i> ³⁸	2017	India	Cross sectional	People \geq 20 and \leq 79 y	9	1 148	299
Sigvant <i>et al</i> . ⁴¹	2007	Sweden	Cross sectional	People \geq 60 and $<$ 90 y	9	5 080	914
Tekin <i>et al.</i> ⁴³	2011	Turkey	Cross sectional	Patients at a geriatric centre	6	507	30
Jelani <i>et al</i> . ⁴⁷	2020	Several countries	Cohort	Patients ABI < 0.90	7	1 243	1 243
Choi <i>et al</i> . ⁴⁶	2019	Korea	Cohort	Patients treated with EVT	7	3 073	3 073
Sartipy <i>et al</i> . ⁵⁰	2019	Sweden	Cohort	Patients ABI < 0.90	9	5 080	957
Lo <i>et al</i> . ⁴⁸	2014	United States	Cohort	Patients with PAD + revascularisation	8	1 797 885	1 797 885
Al-Zoubi <i>et al</i> . ⁴⁵	2019	Saudi Arabia	Cohort	Patients with DM2 + symptomatic PAD	6	364	364
Peters <i>et al.</i> ⁴⁹	2020	Germany	Cohort	Patients \geq 40 y + symptomatic PAD	8	83 867	83 867
Brevetti <i>et al</i> . ⁵¹	2004	Italy	Case-control	People \geq 40 and \leq 80 y	8	3 699	60
Haine <i>et al</i> . ⁵²	2020	International	RCT	Patients \geq 50 y with PAD	Low risk	13 885	13 885

NOS = Newcastle - Ottawa score; ABI = Ankle brachial Index; DM2 = diabetes mellitus type 2; PET = percutaneous endovascular treatment; EVT = endovascular treatment for symptomatic PAD; RCT = randomised clinical trial.

published between 2002 and 2020, with sample sizes ranging from 231 subjects in the smallest study to 1 797 885 in the largest study. Of the 21 included studies, 14 aimed to study sex differences in PAD patients, of which two focused primarily on sex differences in symptoms.^{32,33,35–37,39,41,45–50,52} The other studies included, although not focusing on sex differences, did report separate data for women and men with respect to symptoms as a secondary objective. Table 1 shows the studies general characteristics.

Overall, women represented 43.9% of the total population with confirmed PAD. Thirteen studies^{32-34,36,37,39,45-50,52} reported age by sex, but only $11^{32,34,36,37,39,45-47,49,50,52}$ reported mean and standard deviation. Women were slightly older with a mean difference 2.25 years (95% CI 0.13 - 4.37, p = .03, $l^2 = 100\%$). Of the studies that reported smoking status, women tended to smoke less often than men (16.9% vs. 23.7%) OR 0.52 (95% CI 0.40 - 0.68, p < .001, $l^2 = 96\%$). Prevalence of coronary heart disease (35.5% vs. 43.9%) OR 0.67 (95% CI 0.61 - 0.74, p < 0.55%

Table 2. Characteristics of the population from the 21 included studies on symptom differences by sex in patients with peripheral
artery disease (PAD)

artery disease (PAD)								
Author	Confirmed PAD – n	Female — %		Hypertension		CHD	Smoking	
			MD (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	
McDermott et al. ³²	460	40.7	1.70	NR	0.72	0.54	0.93	
			(0.14-3.26)		(0.48 - 1.08)	(0.35–0.84)	(0.59–1.46)	
Dang et al. ³⁶	323	23.5	5.95	NR	2.51	NR	NR	
10			(3.62-8.28)		(1.48–4.25)			
Smolderen <i>et al.</i> ⁴²	628	33.1	NR	NR	NR	NR	NR	
Collins <i>et al.</i> ³⁵	67	49.3	NR	1.88	1.21	NR	0.78	
1.34	001	00.4	0.70	(0.49-7.15)	(0.46-3.16)	0.71	(0.27-2.24)	
Brevetti <i>et al.</i> ³⁴	231	29.4	2.70	1.42	2.78	0.71	0.75	
Behrendt <i>et al.</i> ³³	00.715	20.7	(-0.05 - 4.45)	(0.61-3.32)	(1.53–5.04)	(0.40–1.27)	(0.41–1.37)	
Benrenat et al.	23 715	39.7	NR	NR	0.67 (0.61–0.72)	NR	NR	
Kumakura <i>et al.</i> ³⁹	730	20.3	2.70	1.42	1.52	0.78	0.07	
Kumakura et ut.	750	20.3	2.70 (0.75-4.65)	(0.98 - 2.08)	(1.05-2.21)	(0.53 - 1.13)	(0.05–0.11)	
Gardner <i>et al.</i> ³⁷	560	12.9	-2.00	1.45	0.92	(0.33–1.13) NR	0.96	
Gurdifer et ul.	500	12.7	(-2.251.75)	(0.85 - 2.47)	(0.53 - 1.58)	i vit	(0.58–1.58)	
Murabito <i>et al.</i> ⁴⁰	118	49.2	NR	1.38	0.58	0.22	0.62	
				(0.64-2.96)	(0.26-1.31)	(0.08-0.64)	(0.30 - 1.29)	
Vliegenthart <i>et al.</i> ⁴⁴	557	64.3	NR	NR	NR	NR	0.39	
0							(0.27-0.57)	
Krishnan <i>et al.</i> ³⁸	299	62.2	NR	NR	NR	NR	NR	
Sigvant <i>et al.</i> ⁴¹	914	58.4	NR	NR	NR	NR	NR	
Tekin <i>et al.</i> ⁴³	30	43.3	NR	NR	NR	NR	NR	
Jelani <i>et al</i> . ⁴⁷	1 243	38.0	0.70	1.91	1.18	0.73	1.04	
			(-0.40 - 1.80)	(1.40 - 2.60)	(0.93–1.51)	(0.57–0.92)	(0.82 - 1.32)	
Choi <i>et al.</i> ⁴⁶	3 073	18.0	2.00	1.40	1.37	1.08	0.18	
. 50			(1.05-2.95)	(1.12–1.75)	(1.13–1.66)	(0.81 - 1.45)	(0.13-0.24)	
Sartipy <i>et al.</i> ⁵⁰	957	59.6	0.50	1.06	0.61	0.45	0.29	
• • • • • • • • • • • • • • • • • • •	1 505 005	44.0	(-0.53 - 1.53)	(0.82-1.37)	(0.44-0.86)	(0.32-0.62)	(0.22-0.39)	
Lo et al. ⁴⁸	1 797 885	44.0	NR	1.28	0.90	0.71	NR	
Al-Zoubi <i>et al.</i> ⁴⁵	364	22.5	5.00	(1.28–1.29) 1.05	(0.89-0.90)	(0.70–0.71) 0.77	1.22	
Al-Zoubi et al.	304	22.5	(2.40-7.60)	(0.63 - 1.75)	—	(0.46–1.29)	(0.73 - 2.03)	
Peters <i>et al.</i> ⁴⁹	83 867	45.8	4.50	1.17	0.64	0.60	0.75	
releis et ul.	05 007	43.0	(4.63–4.64)	(1.12 - 1.21)	(0.62–0.66)	(0.59–0.62)	(0.72–0.78)	
Brevetti <i>et al</i> . ⁵¹	60	53.7	NR	NR	NR	(0.5) 0.02) NR	NR	
Haine <i>et al.</i> 52	13 885	28.0	1.70	1.27	1.12	0.66	0.71	
	10 000	_0.0	(1.38 - 2.02)	(1.16 - 1.40)	(1.04 - 1.21)	(0.61 - 0.72)	(0.66–0.77)	
Total	1 929 966	43.9	2.25	1.27	1.00	0.67	0.52	
			(0.13-4.37)	(1.19–1.35)	(0.85–1.16)	(0.61-0.74)	(0.40-0.68)	
p value			<.001	<.001	<.001	<.001	<.001	
$\hat{I}^2 - \%$			100	72	98	92	96	
Quality of evidence (GRADE)			$\oplus \bigcirc \bigcirc \bigcirc \bigcirc$					
			Very low*					

The total at the bottom gives the pooled data across studies. MD = mean difference; CI = confidence interval; OR = odds ratio; NR = not reported; CHD = coronary heart disease.

* The quality of this evidence was downgraded due to serious inconsistency (high I^2 statistic test), and serious indirectness.

.001, $l^2 = 92\%$) and diabetes were also lower in women (44.3% vs. 47.2%); however, the latter was not significant: OR 1.00 (95% CI 0.85 - 1.16, p = .96, $l^2 = 98\%$). On the other hand, hypertension was reported more often in women (57.3% vs. 51.3%): OR 1.27 (95% CI 1.19 - 1.35, p < .001, $l^2 = 72\%$). The quality of the evidence was considered very low, downgraded due to inconsistency and indirectness. A complete description of the baseline characteristics can be found in Table 2.

Quality of the included studies

Quality among the observational studies was assessed using the Newcastle—Ottawa score. There was significant heterogeneity in sample size, setting, and inclusion criteria. The only randomised study had a low risk of bias (see also Table 1).

Symptom prevalence

For IC, 20 studies involving 1 929 429 patients were included. The study by Gardner *et al.*³⁷ was excluded from the quantitative analysis because one of its inclusion criteria was that all the included participants were classified as Fontaine stage II (i.e., (a) a positive Rose questionnaire for IC, (b) IC elicited during a graded treadmill test, and (c) an ABI at rest < 0.90). As the entire population of this study had IC, their inclusion would have biased the results.

The included studies showed that among the symptomatic patients, women had a lower prevalence of IC (25.9%) than men (30.2%) with OR 0.78 (95% CI 0.72 – 0.84, p < .001). Significant heterogeneity between studies was identified ($l^2 = 86\%$) (Fig. 2). These results were consistent in subgroup analyses by smoking and diabetes prevalence (Fig. 3). The quality of evidence was considered very low, downgraded due to inconsistency and indirectness (Supplementary Table S3).

In studies with more than 70% of the population having hypertension, IC was also observed less frequently in women, OR 0.79 (95% CI 0.72 – 0.85, p < .001, $l^2 = 89\%$). The subgroup analysis by year of publication was consistent with women having less IC in all three periods, but with an increase in the later years with OR 0.41 (95% CI 0.20 – 0.83, p = .010, $l^2 = 71\%$) in the studies from 2000 to 2005 to OR 0.82 (95% CI 0.76 – 0.89, p < .001, $l^2 = 90\%$) in the studies from 2011 onwards. All these subgroup analyses were considered as very low quality of evidence due to inconsistency and indirectness (Supplementary Fig. S1).

Finally, four studies^{36,46,47,52} described the grades of IC among women and men. Mild claudication was reported less often in women OR 0.74 (95% CI 0.61 – 0.91, p = .003, $l^2 = 0\%$), and considered very low quality of evidence due to imprecision and indirectness. The subgroup analyses for moderate and severe claudication were not statistically significant, and the quality of evidence was considered very low due to inconsistency and indirectness (Supplementary Fig. S1).

Nine of 20 studies reported on rest pain.^{32–} ^{34,36,39,42,46,49,52} In these studies, women more frequently reported to have rest pain than men (12.8% vs. 9.2%) OR 1.40 (95% Cl 1.22 – 1.60, p < .001, $l^2 = 72\%$) (Fig. 4A). The quality of evidence was considered very low, downgraded due to inconsistency and indirectness.

Separate subgroup analyses were performed by grouping the studies according to the proportion of subjects with

	Women		N	Men		Odds ratio for intermittent claudication	Odds ratio	
Study	Events	Total	Events	Total		M–H, Random, 95% CI	M–H, Random, 95% CI	Weight
Gardner <i>et al.</i> ³⁷	72	72	488	488			Not estimable	
Brevetti <i>et al.</i> ⁵¹	20	32	27	28	←		0.06 [0.01, 0.51]	0.1%
Murabito <i>et al</i> . ⁴⁰	8	58	25	60			0.22 [0.09, 0.55]	0.7%
Brevetti <i>et al.</i> ³⁴	53	68	146	163			0.41 [0.19, 0.88]	0.9%
Al–Zoubi <i>et al</i> . ⁴⁵	19	82	107	282			0.49 [0.28, 0.87]	1.6%
Kumakura <i>et al.</i> ³⁹	86	148	418	582			0.54 [0.37, 0.79]	3.3%
Vliegenthart et al.44	22	358	21	199			0.55 [0.30, 1.04]	1.4%
Choi et al. ⁴⁶	308	550	1 731	2 523		-	0.58 [0.48, 0.70]	8.3%
Sigvant et al. ⁴¹	163	534	163	380		- - -	0.58 [0.44, 0.77]	5.3%
Smolderen <i>et al.</i> ⁴²	34	208	104	420			0.59 [0.39, 0.91]	2.6%
Sartipy <i>et al.</i> ⁵⁰	166	587	154	393			0.61 [0.47, 0.80]	5.4%
Dang et al. ³⁶	37	76	141	247			0.71 [0.43, 1.19]	1.9%
Jelani <i>et al.</i> ⁴⁷	461	470	762	773			0.74 [0.30, 1.80]	0.7%
McDermott et al. ³²	54	187	96	273			0.75 [0.50, 1.12]	2.9%
Tekin <i>et al.</i> ⁴³	6	13	9	17			0.76 [0.18, 3.24]	0.3%
Lo et al. ⁴⁸	189 224	791 069	281 808	1 006 816		•	0.81 [0.80, 0.81]	17.0%
Peters et al.49	20 051	38 431	25 274	45 436		•	0.87 [0.85, 0.89]	16.7%
Behrendt <i>et al.</i> ³³	5 591	9 415	8 643	14 300			0.96 [0.91, 1.01]	15.8%
Krishnan <i>et al.</i> ³⁸	21	186	13	113			0.98 [0.47, 2.04]	1.0%
Haine <i>et al.</i> ⁵²	2 993	3 888	7 645	9 997		+	1.03 [0.94, 1.12]	13.9%
Collins et al. ³⁵	3	33	2	34			1.60 [0.25, 10.25]	0.2%
Total (95% CI)		846 465		1 083 524		•	0.78 [0.72, 0.84]	100.0%
Total events	219 392		327 777					
Heterogeneity: $Tau^2 =$	0.01; Chi ²	= 140.28,	df = 19					
$(p < .001); I^2 = 86\%$	-				-			
Test for overall effect: 2	Z = 6.58 (n)	<.001)			0.01	0.1 1 10	100	
	Test for subgroup differences: Not applicable					Favours women \Leftrightarrow Favours men		

Figure 2. Forest plot of 20 studies reporting intermittent claudication (IC) differences by sex in patients with peripheral artery disease. OR = odds ratio; M-H = Mantel-Haenszel; CI = confidence interval.

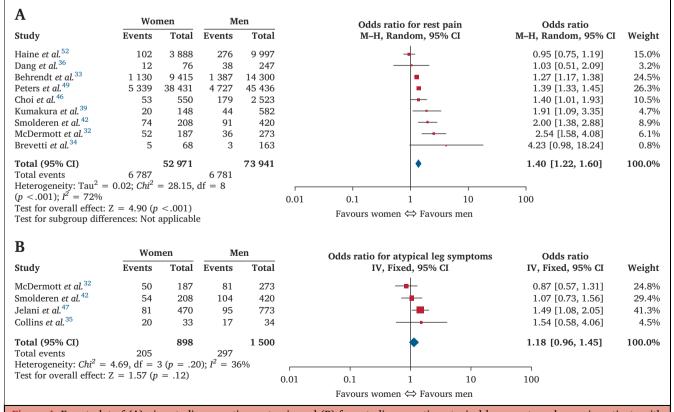
Α	Wo	men	м	en			
Study	Events	Total	Events	Total	Odds ratio for intermittent claudication M–H, Random, 95% CI	Odds ratio M–H, Random, 95% CI	Weight
\geq 50% of population smokes	Lvents	Total	Lvents	Total	M-II, Ruidolli, 5570 Cl	M-11, Rundolli, 5570 Ci	weight
	0	50	05	60			0.00/
Murabito <i>et al.</i> ⁴⁰ Al–Zoubi <i>et al.</i> ⁴⁵	8	58	25	60		0.22 [0.09, 0.55]	2.8%
AI–Zoubi et al. ³⁹ Kumakura et al. ³⁹	19 86	82 148	107 418	282 582		0.49 [0.28, 0.87] 0.54 [0.37, 0.79]	5.7% 9.3%
Sartipy et al. ⁵⁰	166	587	154	393		0.61 [0.47, 0.80]	9.3% 12.0%
Subtotal (95% Cl)	100	875	134	1 317		0.52 [0.40, 0.69]	29.8%
Total events	279	0/ 5	704	1 51/	•	0.02 [0.40, 0.09]	27.070
Heterogeneity: $Tau^2 = 0.03$; <i>Ch</i> Test for overall effect: $Z = 4.65$	$i^2 = 4.52,$		= .21); I	$^{2} = 34\%$			
\leq 50% of population smokes							
Brevetti et al.34	53	68	146	163		0.41 [0.19, 0.88]	3.7%
Vliegenthart <i>et al.</i> ⁴⁴	22	358	21	199		0.55 [0.30, 1.04]	5.0%
Choi <i>et al.</i> ⁴⁶	308	550	1 731	2 523	+	0.58 [0.48, 0.70]	14.5%
Jelani <i>et al.</i> ⁴⁷	461	470	762	773		0.74 [0.30, 1.80]	2.9%
McDermott <i>et al.</i> ³²	54	187	96	273		0.75 [0.50, 1.12]	8.6%
Peters <i>et al.</i> ⁴⁹	20 051	38 431	25 273	45 436	•	0.87 [0.85, 0.89]	17.8%
Haine <i>et al.</i> ⁵²	2 994	3 888	7 638	9 997	†	1.03 [0.95, 1.13]	17.0%
Collins <i>et al.</i> ³⁵	3	33	2	34		1.60 [0.25, 10.25]	0.7%
Subtotal (95% CI) Total events	23 946	43 985	35 669	59 398	•	0.78 [0.65, 0.92]	70.2%
Heterogeneity: $Tau^2 = 0.03$; <i>Ch</i> Test for overall effect: $Z = 2.91$	$i^2 = 39.00$			$I^2 = 82\%$			
Total (95% CI)		44 860		60715	•	0.68 [0.58, 0.80]	100.0%
Total events	24 225		36 373	50,10	Ť	5100 [0100] 0100]	
Heterogeneity: $Tau^2 = 0.04$; Ch	$i^2 = 64.18$	df = 11					
$(p < .001); I^2 = 83\%$				0.01	0.1 1 10	100	
Test for overall effect: $Z = 4.62$				0.01		100	
Test for subgroup differences: C	$hi^2 = 5.77$, df = 1			Favours women ⇔ Favours men		
$(p = .020); I^2 = 82.7\%$							
В	Wo	men	м	en			
	110	men	141	cn	Odds ratio for intermittent claudication	Odds ratio	
Study	Events	Total	Events	Total	Odds ratio for intermittent claudication M–H, Random, 95% CI	Odds ratio M–H, Random, 95% CI	Weight
•	Events						Weight
\geq 50% of population with DM	Events	Total	Events	Total		M–H, Random, 95% CI	
\geq 50% of population with DM Brevetti <i>et al.</i> ³⁴	Events I 53	Total 68	Events	Total		M–H, Random, 95% CI 0.41 [0.19, 0.88]	1.0%
\geq 50% of population with DM	Events	Total	Events	Total		M–H, Random, 95% CI	
\geq 50% of population with DM Brevetti <i>et al.</i> ³⁴ Al–Zoubi <i>et al.</i> ⁴⁵	Events 1 53 19	Total 68 82	Events 146 107	Total 163 282		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87]	1.0% 1.7% 9.2% 0.2%
\geq 50% of population with DM Brevetti <i>et al.</i> ³⁴ Al-Zoubi <i>et al.</i> ⁴⁵ Choi <i>et al.</i> ⁴⁶ Collins <i>et al.</i> ³⁵ Subtotal (95% CI)	Events 1 53 19 308 3	Total 68 82 550	Events 146 107 1731 2	Total 163 282 2 523		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70]	1.0% 1.7% 9.2%
≥ 50% of population with DM Brevetti <i>et al.</i> ³⁴ Al-Zoubi <i>et al.</i> ⁴⁵ Choi <i>et al.</i> ⁴⁶ Collins <i>et al.</i> ³⁵ Subtotal (95% CI) Total events	Events 1 53 19 308 3 383	Total 68 82 550 33 733	Events 146 107 1731 2 1986	Total 163 282 2 523 34 3 002		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25]	1.0% 1.7% 9.2% 0.2%
≥ 50% of population with DM Brevetti <i>et al.</i> ³⁴ Al-Zoubi <i>et al.</i> ⁴⁵ Choi <i>et al.</i> ⁴⁶ Collins <i>et al.</i> ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; <i>Ch</i> Test for overall effect: Z = 6.40	Events 1 53 19 308 3 $i^2 = 2.19,$ (p < .001)	Total 68 82 550 33 733 df = 3 (p	Events 146 107 1731 2 1986	Total 163 282 2 523 34 3 002		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25]	1.0% 1.7% 9.2% 0.2%
≥ 50% of population with DM Brevetti <i>et al.</i> ³⁴ Al-Zoubi <i>et al.</i> ⁴⁵ Choi <i>et al.</i> ⁴⁶ Collins <i>et al.</i> ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; <i>Ch</i> Test for overall effect: Z = 6.40 ≤ 50% of population with DM	Events 1 53 19 308 3 $i^2 = 2.19,$ (p < .001) 1	Total 68 82 550 33 733 df = 3 (p	Events 146 107 1 731 2 1 986 = .53); I	Total 163 282 2523 34 3002 $^2 = 0\%$		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68]	1.0% 1.7% 9.2% 0.2% 12.1%
≥ 50% of population with DM Brevetti <i>et al.</i> ³⁴ Al-Zoubi <i>et al.</i> ⁴⁵ Choi <i>et al.</i> ⁴⁶ Collins <i>et al.</i> ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; <i>Ch</i> Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito <i>et al.</i> ⁴⁰	Events 1 53 19 308 3 $i^2 = 2.19,$ (p < .001) 1 8	Total 68 82 550 33 733 df = 3 (p 58	Events 146 107 1731 2 1986 = .53); F 25	Total 163 282 2523 34 3 002 $2^{2} = 0\%$ 60		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.22 [0.09, 0.55]	1.0% 1.7% 9.2% 0.2% 12.1%
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; <i>Ch</i> Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹		Total 68 82 550 33 733 733 733 733 733	Events 146 107 1731 2 1986 = .53); <i>I</i> 25 418	Total 163 282 2 523 34 3 002 $2^2 = 0\%$ 60 582		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.22 [0.09, 0.55] 0.54 [0.37, 0.79]	1.0% 1.7% 9.2% 0.2% 12.1%
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹ Sartiby et al. ⁵⁰		Total 68 82 550 33 733 df = 3 (<i>p</i>) 58 148 587	Events 146 107 1731 2 1986 = .53); F 25 418 154	Total 163 282 2 523 34 3 002 $2 = 0\%$ 60 582 393		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68]	1.0% 1.7% 9.2% 0.2% 12.1% 0.7% 3.6% 5.9%
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹ Sartipy et al. ⁵⁰ Dang et al. ³⁶	Events 1 53 19 308 3 $i^2 = 2.19,$ (p < .001) 1 8 86 166 37	Total 68 82 550 33 733 df = 3 (p 58 148 587 76	Events 146 107 1731 2 1986 = .53); <i>I</i> 25 418 154 154 141	Total 163 282 2 523 34 3 002 $2^2 = 0\%$ 60 582 393 247		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.52 [0.09, 0.55] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹ Sartipy et al. ⁵⁰ Dang et al. ³⁶ Jelani et al. ⁴⁷	Events 1 53 19 308 3 $i^2 = 2.19,$ (p < .001) 1 8 86 166 37 461	$\begin{array}{c} \textbf{Total} \\ 68 \\ 82 \\ 550 \\ 33 \\ \textbf{733} \\ \textbf{df} = 3 \ (p \\ \\ 58 \\ 148 \\ 587 \\ 76 \\ 470 \end{array}$	Events 146 107 1731 2 1986 = .53); <i>I</i> 25 418 154 141 762	$\begin{array}{c} \textbf{Total} \\ 163 \\ 282 \\ 2523 \\ 34 \\ \textbf{3 002} \end{array}$ $^2 = 0\% \\ \begin{array}{c} 60 \\ 582 \\ 393 \\ 247 \\ 773 \end{array}$		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19] 0.74 [0.30, 1.80]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹ Sartipy et al. ⁵⁰ Dang et al. ³⁶	Events 1 53 19 308 3 $i^2 = 2.19,$ (p < .001) 1 8 86 166 37	Total 68 82 550 33 733 df = 3 (p) 58 148 587 766 470 187	Events 146 107 1731 2 1986 = .53); F 25 418 154 154 154 164 174 762 96	Total 163 282 2 523 34 3 002 $2^2 = 0\%$ 60 582 393 247		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.52 [0.09, 0.55] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹ Sartipy et al. ⁵⁰ Dang et al. ³⁶ Jelani et al. ⁴⁷ McDermott et al. ³²	Events 1 53 19 308 3 $i^2 = 2.19,$ (p < .001) 1 8 866 166 166 37 461 54	Total 68 82 550 33 733 df = 3 (p) 58 148 587 766 470 187	Events 146 107 1731 2 1986 = .53); F 25 418 154 154 154 164 174 762 96	$\begin{array}{c} \textbf{Total} \\ 163 \\ 282 \\ 2523 \\ 34 \\ \textbf{3 002} \end{array}$ $^2 = 0\%$ $\begin{array}{c} 60 \\ 582 \\ 393 \\ 247 \\ 773 \\ 273 \end{array}$		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19] 0.74 [0.30, 1.80] 0.75 [0.50, 1.12]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹ Sartipy et al. ⁵⁰ Dang et al. ³⁶ Jelani et al. ⁴⁷ McDermott et al. ³² Lo et al. ⁴⁸ Peters et al. ⁴⁹ Behrendt et al. ³³	Events 1 53 19 308 3 3 $t^2 = 2.19,$ (p < .001) 1 8 86 166 37 461 54 189 $22420.0515.591$	Total 68 82 550 33 733 df = 3 (p) 6 58 148 587 76 470 187 791 069 38 431 9 415	Events 146 107 1731 2 1986 = .53); <i>I</i> 255 418 154 141 762 96 281 808 25 273 8 643	Total 163 282 2 523 34 3 002 $2^2 = 0\%$ 60 582 393 247 773 273 1 006 816 45 436 14 300		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19] 0.74 [0.30, 1.80] 0.75 [0.50, 1.12] 0.81 [0.80, 0.81] 0.87 [0.85, 0.89] 0.96 [0.91, 1.01]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; <i>Ch</i> Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹ Sartipy et al. ⁵⁰ Dang et al. ³⁶ Jelani et al. ⁴⁷ McDermott et al. ³² Lo et al. ⁴⁸ Peters et al. ⁴⁹ Behrendt et al. ³³ Haine et al. ⁵²	Events 19 308 3 $i^2 = 2.19$, (p < .001) 1 8 86 166 37 461 54 189 22420 0515 5912 994	Total 68 82 550 33 733 df = 3 (p) 58 148 587 76 470 187 771 069 38 409 38 888	Events 146 107 1731 2 1986 = .53); I 25 418 154 154 141 762 96 281 808 25 273 8 643 7 638	Total 163 282 2523 34 3 002 $2^2 = 0\%$ 60 582 393 247 773 273 1 006 816 45 436 14 300 9 997		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19] 0.74 [0.30, 1.80] 0.75 [0.50, 1.12] 0.81 [0.80, 0.81] 0.87 [0.85, 0.89] 0.96 [0.91, 1.01] 1.03 [0.95, 1.13]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; <i>Ch</i> Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹ Sartipy et al. ⁵⁰ Dang et al. ³⁶ Jelani et al. ⁴⁷ McDermott et al. ³² Lo et al. ⁴⁸ Peters et al. ⁴⁹ Behrendt et al. ³³ Haine et al. ⁵² Subtotal (95% CI)	Events 1 53 19 308 3 $i^2 = 2.19,$ (p < .001) 1 8 86 166 166 166 37 461 54 189 224 20 051 5 591 2 994	Total 68 82 550 33 733 df = 3 (p) 6 58 148 587 76 470 187 791 069 38 431 9 415	Events 146 107 1731 2 1986 = .53); <i>I</i> 25 418 154 141 154 141 154 281 808 25 273 8 643 7 638	Total 163 282 2 523 34 3 002 $2^2 = 0\%$ 60 582 393 247 773 273 1 006 816 45 436 14 300		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19] 0.74 [0.30, 1.80] 0.75 [0.50, 1.12] 0.81 [0.80, 0.81] 0.87 [0.85, 0.89] 0.96 [0.91, 1.01]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹ Sartipy et al. ⁵⁰ Dang et al. ³⁶ Jelani et al. ⁴⁷ McDermott et al. ³² Lo et al. ⁴⁸ Peters et al. ⁴⁹ Behrendt et al. ³³ Haine et al. ⁵² Subtotal (95% CI) Total events	Events 1 53 19 308 3 $i^2 = 2.19$, $(p < .001)$ 1 86 166 37 461 54 189 224 20 051 5 591 2 994 218 672	Total 68 82 550 33 733 df = 3 (p 58 148 587 76 470 187 791 069 38 431 9 415 3 888 844 329	Events 146 107 1731 2 1986 = .53); <i>I</i> 25 418 154 141 154 141 762 96 281 808 25 273 8 643 7 638 324 958	Total 163 282 2 523 34 3 002 $2 = 0\%$ $2 = 0\%$ 60 582 393 247 773 1 006 816 45 436 14 300 9 997 1 078 877		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19] 0.74 [0.30, 1.80] 0.75 [0.50, 1.12] 0.81 [0.80, 0.81] 0.87 [0.85, 0.89] 0.96 [0.91, 1.01] 1.03 [0.95, 1.13]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹ Sartipy et al. ⁵⁰ Dang et al. ³⁶ Jelani et al. ⁴⁷ McDermott et al. ³² Lo et al. ⁴⁸ Peters et al. ⁴⁹ Behrendt et al. ³³ Haine et al. ⁵² Subtotal (95% CI)	\overline{z} \overline{z} \overline{z} \overline{z} \overline{z} $z^{2} = 2.19, (p < .001)$ \overline{z} $z^{2} = 2.19, (p < .001)$ \overline{z} $z^{3} = 2.19, (p < .001)$ \overline{z} z	Total 68 82 550 33 733 df = 3 (p) 58 148 587 76 470 187 791 106 38 431 9 415 3 888 844 329 7, df = 9	Events 146 107 1731 2 1986 = .53); <i>I</i> 25 418 154 141 154 141 762 96 281 808 25 273 8 643 7 638 324 958	Total 163 282 2 523 34 3 002 $2 = 0\%$ $2 = 0\%$ 60 582 393 247 773 1 006 816 45 436 14 300 9 997 1 078 877		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19] 0.74 [0.30, 1.80] 0.75 [0.50, 1.12] 0.81 [0.80, 0.81] 0.87 [0.85, 0.89] 0.96 [0.91, 1.01] 1.03 [0.95, 1.13]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹ Sartipy et al. ⁵⁰ Dang et al. ³⁶ Jelani et al. ⁴⁷ McDermott et al. ³² Lo et al. ⁴⁸ Peters et al. ⁴⁹ Behrendt et al. ³³ Haine et al. ⁵² Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Ch Test for overall effect: Z = 4.08 Total (95% CI)	Events 1 53 19 308 3 $i^2 = 2.19$, $(p < .001)$ 1 86 166 37 461 54 189 224 20 051 5 591 2 994 218 672 $i^2 = 107.6$ $(p < .001)$	Total 68 82 550 33 733 df = 3 (p) 58 148 587 76 470 187 791 106 38 431 9 415 3 888 844 329 7, df = 9	Events 146 107 1731 2 1986 = .53); F 25 418 154 141 154 141 762 96 281 808 25 273 8 643 7 638 324 958 (p < .001	Total 163 282 2 523 34 3 002 $2 = 0\%$ $2 = 0\%$ 60 582 393 247 773 1 006 816 45 436 14 300 9 997 1 078 877		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19] 0.74 [0.30, 1.80] 0.75 [0.50, 1.12] 0.81 [0.80, 0.81] 0.87 [0.85, 0.89] 0.96 [0.91, 1.01] 1.03 [0.95, 1.13]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹ Sartipy et al. ⁵⁰ Dang et al. ³⁶ Jelani et al. ⁴⁷ McDermott et al. ³² Lo et al. ⁴⁸ Peters et al. ⁴⁹ Behrendt et al. ³³ Haine et al. ⁵² Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Ch Test for overall effect: Z = 4.08 Total (95% CI)	Events 19 308 3 $i^2 = 2.19$, (p < .001) 1 8 86 166 37 461 54 189 22420 0515 5912 994218 $672i^2 = 107.6(p < .001)219$ 055	Total 68 82 550 33 733 df = 3 (p) 58 148 587 76 470 187 791 0631 9 415 3 888 844 329 7, df = 9 845 062	Events 146 107 1731 2 1986 = .53); <i>I</i> 25 418 154 154 154 141 762 96 281 808 25 273 8 643 7 638 324 958 (<i>p</i> < .001 326 944	Total 163 282 2 523 34 3 002 $2^2 = 0\%$ $2^2 = 0\%$ 60 582 393 247 773 1 006 816 45 436 44 300 9 997 1 078 877); $I^2 = 92\%$		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19] 0.74 [0.30, 1.80] 0.75 [0.50, 1.12] 0.81 [0.80, 0.81] 0.87 [0.85, 0.89] 0.96 [0.91, 1.01] 1.03 [0.95, 1.13] 0.85 [0.78, 0.92]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti <i>et al.</i> ³⁴ Al-Zoubi <i>et al.</i> ⁴⁵ Choi <i>et al.</i> ⁴⁶ Collins <i>et al.</i> ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; <i>Ch</i> Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito <i>et al.</i> ⁴⁰ Kumakura <i>et al.</i> ³⁹ Sartipy <i>et al.</i> ⁵⁰ Dang <i>et al.</i> ³⁶ Jelani <i>et al.</i> ⁴⁷ McDermott <i>et al.</i> ³² Lo <i>et al.</i> ⁴⁸ Peters <i>et al.</i> ⁴⁹ Behrendt <i>et al.</i> ³³ Haine <i>et al.</i> ⁵² Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; <i>Ch</i> Test for overall effect: Z = 4.08 Total events Heterogeneity: Tau ² = 0.01; <i>Ch</i>	Events 19 308 3 $i^2 = 2.19$, (p < .001) 1 8 86 166 37 461 54 189 22420 0515 5912 994218 $672i^2 = 107.6(p < .001)219$ 055	Total 68 82 550 33 733 df = 3 (p) 58 148 587 76 470 187 791 0631 9 415 3 888 844 329 7, df = 9 845 062	Events 146 107 1731 2 1986 = .53); <i>I</i> 25 418 154 154 154 141 762 96 281 808 25 273 8 643 7 638 324 958 (<i>p</i> < .001 326 944	Total 163 282 2 523 34 3 002 $2^2 = 0\%$ $2^2 = 0\%$ 60 582 393 247 773 1 006 816 45 436 44 300 9 997 1 078 877); $I^2 = 92\%$		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19] 0.74 [0.30, 1.80] 0.75 [0.50, 1.12] 0.81 [0.80, 0.81] 0.87 [0.85, 0.89] 0.96 [0.91, 1.01] 1.03 [0.95, 1.13] 0.85 [0.78, 0.92]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti <i>et al.</i> ³⁴ Al-Zoubi <i>et al.</i> ⁴⁵ Choi <i>et al.</i> ⁴⁶ Collins <i>et al.</i> ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; <i>Ch</i> Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito <i>et al.</i> ⁴⁰ Kumakura <i>et al.</i> ³⁹ Sartipy <i>et al.</i> ⁵⁰ Dang <i>et al.</i> ³⁶ Jelani <i>et al.</i> ⁴⁷ McDermott <i>et al.</i> ³² Lo <i>et al.</i> ⁴⁸ Peters <i>et al.</i> ⁴⁹ Behrendt <i>et al.</i> ³³ Haine <i>et al.</i> ⁵² Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; <i>Ch</i> Test for overall effect: Z = 4.08 Total (95% CI) Total events Heterogeneity: Tau ² = 0.01; <i>Ch</i> (<i>p</i> < .001); <i>I</i> ² = 90%	Events 1 53 19 308 3 $i^2 = 2.19$, $(p < .001)$ 1 8 166 37 461 54 189 20 5 2994 218 $i^2 = 107.6$ $(p < .001)$ 219 219 55 $i^2 = 126.5$	Total 68 82 550 33 733 df = 3 (p) 58 148 587 76 470 187 791 069 38 431 9 415 3 888 844 329 7, df = 9 845 062 3, df = 1	Events 146 107 1731 2 1986 = .53); <i>I</i> 25 418 154 154 154 141 762 96 281 808 25 273 8 643 7 638 324 958 (<i>p</i> < .001 326 944	Total 163 282 2 523 34 3 002 $2^2 = 0\%$ $2^2 = 0\%$ 60 582 393 247 773 1 006 816 45 436 44 300 9 997 1 078 877); $I^2 = 92\%$		M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19] 0.74 [0.30, 1.80] 0.75 [0.50, 1.12] 0.81 [0.80, 0.81] 0.87 [0.85, 0.89] 0.96 [0.91, 1.01] 1.03 [0.95, 1.13] 0.85 [0.78, 0.92]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti et al. ³⁴ Al-Zoubi et al. ⁴⁵ Choi et al. ⁴⁶ Collins et al. ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito et al. ⁴⁰ Kumakura et al. ³⁹ Sartipy et al. ⁵⁰ Dang et al. ³⁶ Jelani et al. ⁴⁷ McDermott et al. ³² Lo et al. ⁴⁸ Peters et al. ⁴⁹ Behrendt et al. ³³ Haine et al. ⁵² Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Ch Test for overall effect: Z = 4.08 Total events Heterogeneity: Tau ² = 0.01; Ch (p < .001); l ² = 90%	Events 1 53 19 308 3 $i^2 = 2.19$, $(p < .001)$ 1 8 166 37 461 54 189 224 20 051 5 591 2 994 218 672 $i^2 = 107.6$ $(p < .001)$ 219 055 $i^2 = 126.5$ $(p < .001)$	Total 68 82 550 33 733 df = 3 (p) 58 148 587 76 48 587 76 187 791 069 38 431 9 415 3 888 844 329 7, df = 9 845 062 3, df = 1	Events 146 107 1731 2 1986 = .53); <i>I</i> 25 418 154 154 154 141 762 96 281 808 25 273 8 643 7 638 324 958 (<i>p</i> < .001 326 944	Total 163 282 2 523 34 3 002 $^2 = 0\%$ $^2 = 0\%$ 60 582 393 247 773 $1 006 816$ $45 436$ $14 300$ $9 997$ $1 078 877$); $I^2 = 92\%$ $1 081 879$	M-H, Random, 95% CI	M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19] 0.74 [0.30, 1.80] 0.75 [0.50, 1.12] 0.81 [0.80, 0.81] 0.87 [0.85, 0.89] 0.96 [0.91, 1.01] 1.03 [0.95, 1.13] 0.85 [0.78, 0.92] 0.80 [0.74, 0.87]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$
≥ 50% of population with DM Brevetti <i>et al.</i> ³⁴ Al-Zoubi <i>et al.</i> ⁴⁵ Choi <i>et al.</i> ⁴⁶ Collins <i>et al.</i> ³⁵ Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; <i>Ch</i> Test for overall effect: Z = 6.40 ≤ 50% of population with DM Murabito <i>et al.</i> ⁴⁰ Kumakura <i>et al.</i> ³⁹ Sartipy <i>et al.</i> ⁵⁰ Dang <i>et al.</i> ³⁶ Jelani <i>et al.</i> ⁴⁷ McDermott <i>et al.</i> ³² Lo <i>et al.</i> ⁴⁸ Peters <i>et al.</i> ⁴⁹ Behrendt <i>et al.</i> ³³ Haine <i>et al.</i> ⁵² Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; <i>Ch</i> Test for overall effect: Z = 4.08 Total (95% CI) Total events Heterogeneity: Tau ² = 0.01; <i>Ch</i> (<i>p</i> < .001); <i>I</i> ² = 90%	Events 1 53 19 308 3 $i^2 = 2.19$, $(p < .001)$ 1 8 166 37 461 54 189 224 20 051 5 591 2 994 218 672 $i^2 = 107.6$ $(p < .001)$ 219 055 $i^2 = 126.5$ $(p < .001)$	Total 68 82 550 33 733 df = 3 (p) 58 148 587 76 48 587 76 187 791 069 38 431 9 415 3 888 844 329 7, df = 9 845 062 3, df = 1	Events 146 107 1731 2 1986 = .53); <i>I</i> 25 418 154 154 154 141 762 96 281 808 25 273 8 643 7 638 324 958 (<i>p</i> < .001 326 944	Total 163 282 2 523 34 3 002 $^2 = 0\%$ $^2 = 0\%$ 60 582 393 247 773 $1 006 816$ $45 436$ $14 300$ $9 997$ $1 078 877$); $I^2 = 92\%$ $1 081 879$	M-H, Random, 95% CI	M–H, Random, 95% CI 0.41 [0.19, 0.88] 0.49 [0.28, 0.87] 0.58 [0.48, 0.70] 1.60 [0.25, 10.25] 0.57 [0.48, 0.68] 0.57 [0.48, 0.68] 0.54 [0.37, 0.79] 0.61 [0.47, 0.80] 0.71 [0.43, 1.19] 0.74 [0.30, 1.80] 0.75 [0.50, 1.12] 0.81 [0.80, 0.81] 0.87 [0.85, 0.89] 0.96 [0.91, 1.01] 1.03 [0.95, 1.13] 0.85 [0.78, 0.92] 0.80 [0.74, 0.87]	$\begin{array}{c} 1.0\%\\ 1.7\%\\ 9.2\%\\ 0.2\%\\ 12.1\%\\ \end{array}$

Figure 3. Forest plot of (A) 12 studies reporting intermittent claudication (IC) differences by sex in patients with peripheral artery disease in populations with \geq 50% or \leq 50% of smokers, and (B) 14 studies reporting IC in populations with \geq 50% or \leq 50% of people with diabetes mellitus (DM). OR = odds ratio; M-H = Mantel-Haenszel; CI = confidence interval.

diabetes and hypertension in their population. Rest pain in women was more prevalent in studies with a lower prevalence of diabetes (< 50%), OR 1.32 (95% CI 1.15 - 1.53, p < .001, $l^2 =$ 77%) with very low quality of evidence, and in those with < 70% of hypertension in their population, OR 1.43 (95% CI 1.19 - 1.72, p < .001, $l^2 = 18\%$) with very low quality of evidence because of imprecision and indirectness. The subgroup analysis on smoking was not possible because, in the studies reporting rest pain, less than 50% of the population included were smokers. Therefore, a subgroup analysis with a cut off of 25% smoking prevalence was performed. Rest pain was primarily found in women among studies with smoking prevalence < 25% OR 1.57 (95% Cl 1.19 - 2.07, p = .001, $l^2 = .001$, with very low quality of evidence due to inconsistency, imprecision, and indirectness.

Finally, four studies reported atypical leg symptoms. 32,35,42,47 Women more often had atypical leg symptoms (22.8% vs. 19.8%) OR 1.18 (95% CI 0.96 – 1.45), and the heterogeneity was low $I^2 = 36\%$. The quality of evidence was considered very low, downgraded due to inconsistency, indirectness, and imprecision (Fig. 4B).

Sensitivity analyses


For the outcome, IC symptoms, exclusion of the study by Lo *et al.*⁴⁸ resulted in a reduction of IC for women OR 0.72 (95% CI 0.65 - 0.81, p < .001, $l^2 = 81\%$). This procedure

was repeated and the study with the second largest population, Peters *et al.*,⁴⁹ was excluded, resulting in very similar findings; women reported less IC with an OR 0.71 (95% CI 0.64 – 0.79, p < .001, $l^2 = 85\%$). Finally, the study by Behrendt *et al.* was removed from the analysis,³³ and these results were also quite similar. This sensitivity analysis was also performed for the outcomes of rest pain and atypical leg symptoms. The quality of evidence in these subgroup analyses was very low due to indirectness and inconsistency.

Because the quality assessment of some of the studies was moderate (NOS = 6), sensitivity analyses were performed, including observational studies with a NOS score of seven or higher and randomised clinical trials with a low risk of bias. The results were consistent with the previous findings. Women reported less IC OR 0.79 (95% CI 0.73 - 0.85), but conversely rest pain OR 1.37 (95% CI 1.20 - 1.58) and atypical leg symptoms OR 1.18 (95% CI 0.96 - 1.45) were more common in women. The quality of this evidence was very low. For IC and rest pain, due to inconsistency and indirectness, and for atypical leg symptoms due to inconsistency, indirectness, and imprecision (Table 3).

DISCUSSION

The reviewed data and meta-analysis of the included studies shows that women with PAD present less often with IC and more often with rest pain compared with men. These

Figure 4. Forest plot of (A) nine studies reporting rest pain and (B) four studies reporting atypical leg symptoms by sex in patients with peripheral artery disease. OR = odds ratio; M-H= Mantel-Haenszel; CI = confidence interval.

Table 3. Sensitivity analysis of the 21 studies on symptom differences by sex in patients with peripheral artery disease with exclusion of studies with the largest population one a time or with Newcastle–Ottawa score (NOS) < 7 or with moderate or high risk of bias

	Studies – n	Patients — n	OR (95% CI)	р	$I^2 - \%$	Quality of the evidence (GRADE)
Exclusion of studies with the largest po	pulation one a	time				
Intermittent claudication						
All studies ^{32–36,38–52}	20	1 929 429	0.78 (0.72–0.84)	<.001	86	⊕○○○ Very low*
Exclusion Lo <i>et al.</i> ⁴⁸	19	131 544	0.72 (0.65-0.81)	<.001	81	
Exclusion Peters et al.49	19	1 845 562	0.71 (0.64-0.80)	<.001	84	
Exclusion Behrendt et al. ³³	19	1 905 714	0.75 (0.70-0.81)	<.001	83	
Rest pain						
All studies ^{32–34,36,39,42,46,49,52}	9	126 912	1.40 (1.22–1.60)	<.001	72	⊕○○○ Very low*
Exclusion Peters et al.49	8	43 045	1.48 (1.18-1.86)	.008	72	
Exclusion Haine <i>et al.</i> ⁵²	8	113 027	1.46 (1.29-1.65)	<.001	62	
Atypical leg symptoms						
All studies ^{32,35,42,47}	4	2 398	1.18 (0.96–1.45)	.12	36	$\oplus \bigcirc \bigcirc \bigcirc$ Very low [†]
Exclusion McDermott et al. ³²	3	1 938	1.31 (1.03-1.66)	.03	0	
Exclusion of studies with NOS score <	7 or with mode	rate or high risk o	f bias			
Intermittent claudication						
$NOS \ge 7^{32 - 36, 38, 40 - 42, 44, 46 - 52}$	17	1 928 305	0.79 (0.73–0.85)	<.001	88	⊕○○○ Very low*
Rest pain						
$NOS \ge 7^{32-34,36,42,46,49,52}$	8	126 182	1.37 (1.20–1.58)	<.001	74	⊕○○○ Very low*
Atypical leg symptoms						
$NOS \ge 7^{32,35,42,47}$	4	2 398	1.18 (0.96–1.45)	.12	34	$\oplus \bigcirc \bigcirc \bigcirc$ Very low [†]

OR = odds ratio; CI = confidence interval.

* The quality of this evidence was downgraded due to serious inconsistency (high I^2 statistic test), and serious indirectness (the study outcome is a surrogate for a different outcome).

[†] The quality of this evidence was downgraded due to serious imprecision (small number of studies with few events), and serious indirectness (the study outcome is a surrogate for a different outcome.

effects are consistent across different subgroups. It is necessary to mention that the study by Lo *et al.*, with more than a million participants, had greater weight compared with the other studies; however, results remained similar after its removal in the sensitivity analyses.

The results are consistent with those described by other literature reviews without meta-analysis which report that women have lower rates of IC and, in contrast, tend to be asymptomatic or have atypical leg symptoms.^{5,8,10} However, the reasons for this remain unclear. Some authors suggest that women experience symptoms differently, are less physically active (therefore, do not experience IC),¹⁹ or that they may tend to report their symptoms less often than men.⁵³

Some studies have focused on the differences between sexes in PAD, but the existing systematic reviews focused on differences in mortality or long term cardiovascular outcomes.⁵⁴ Indeed, studies show that outcomes after endovascular interventions differ between women and men^{12,46} and it has also been reported that treatment strategies differ between the sexes.^{10,11} However, to date, there was no pooled information on sex related differences in symptomology. This systematic review adds that evidence to the literature by showing that the clinical presentation differs between women and men. Women present more often with atypical leg symptoms and rest pain but less frequently with IC. These results confirm that lower extremity PAD manifests differently among the sexes, which might be one of the contributing factors for the differences in outcome and treatment of PAD between women and men described by some authors. This systematic review corroborates that those women and men with lower extremity PAD should not be considered as a single population and that sex specific data on presentation, diagnosis, drug and interventional therapies, and prognosis should be studied and at least reported separately.

The strengths of this systematic review include the comprehensive search done in different databases that allowed the identification of 2 186 studies, the independence of the authors checking eligibility criteria, assessing the risk of bias, and the extraction of the data. Another strength of the review is the performance of different subgroup analyses and the quality assessment of the evidence using the GRADE approach.

This review also carries some limitations: first, there was substantial heterogeneity between the studies. Probably because, as explained above, some of the included studies did not specifically focus on sex differences in symptom presentation, but rather on sex differences in risk factors or prevalence of PAD. Second, although a broad search strategy was used, only studies written in English were analysed; therefore, studies with relevant information may have been missed because of the language. Finally, not all the studies reported the outcomes of interest; while 20 studies reported IC, and nine reported rest pain, only four reported atypical leg symptoms. The absence of agreement on the definition of atypical leg symptoms may affect how and whether this symptom was reported. The lack of reporting atypical symptoms limited some of the analyses; for example, subgroup analyses were not possible for this outcome. However, these limitations are unlikely to influence the results significantly since the lower prevalence of IC in women was consistent over several subgroups and in the sensitivity analyses; therefore, it is very likely that the observed effect reflects what is seen in clinical practice.

Conclusion

This systematic review and meta-analysis evaluated the literature on sex differences in symptom presentation in patients with lower limb PAD, which was consistent across several subgroups. Women with PAD present more often with rest pain, while their prevalence of IC is lower. They also tend to present more often with atypical leg symptoms. This study underlines that PAD symptom presentation differs between the sexes. Therefore, clinicians and researchers should not consider men and women as a single population and should study and report their data separately. Future studies are needed to understand the possible reasons for differences in clinical presentation in women and men with PAD, how this influences diagnosis, treatment, and ultimately, and most importantly, outcome.

CONFLICT OF INTEREST STATEMENT AND FUNDING

None.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejvs.2021.12.039.

REFERENCES

- 1 Song P, Rudan D, Zhu Y, Fowkes FJI, Rahimi K, Fowkes FGR, et al. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. *Lancet Glob Health* 2019;7:e1020–30.
- 2 Rac-Albu M, Iliuta L, Guberna SM, Sinescu C. The role of anklebrachial index for predicting peripheral arterial disease. *Maedica* (*Bucur*) 2014;9:295–302.
- **3** Baubeta Fridh E, Andersson M, Thuresson M, Sigvant B, Kragsterman B, Johansson S, et al. Amputation rates, mortality, and pre-operative comorbidities in patients revascularised for intermittent claudication or critical limb ischaemia: a population based study. *Eur J Vasc Endovasc Surg* 2017;54:480–6.
- **4** Vaartjes I, de Borst GJ, Reitsma JB, de Bruin A, Moll FL, Grobbee DE, et al. Long-term survival after initial hospital admission for peripheral arterial disease in the lower extremities. *BMC Cardiovasc Disord* 2009;**9**:43.

- 5 Higgins JP, Higgins JA. Epidemiology of peripheral arterial disease in women. *J Epidemiol* 2003;**13**:1–14.
- 6 Schramm K, Rochon PJ. Gender differences in peripheral vascular disease. *Semin Intervent Radiol* 2018;35:9–16.
- 7 Teodorescu VJ, Vavra AK, Kibbe MR. Peripheral arterial disease in women. J Vasc Surg 2013;57(Suppl.):188–26S.
- 8 Patel T, Baydoun H, Patel NK, Tripathi B, Nanavaty S, Savani S, et al. Peripheral arterial disease in women: the gender effect. *Cardiovasc Revasc Med* 2020;**21**:404–8.
- 9 Pollak AW. PAD in women: the ischemic continuum. Curr Atheroscler Rep 2015;17:513.
- 10 Jelani QU, Petrov M, Martinez SC, Holmvang L, Al-Shaibi K, Alasnag M. Peripheral arterial disease in women: an overview of risk factor profile, clinical features, and outcomes. *Curr Atheroscler Rep* 2018;20:40.
- 11 Behrendt CA, Sigvant B, Kuchenbecker J, Grima MJ, Schermerhorn M, Thomson IA, et al. Editor's Choice – international variations and sex disparities in the treatment of peripheral arterial occlusive disease: a report from VASCUNET and the International Consortium of Vascular Registries. *Eur J Vasc Endovasc Surg* 2020;60:873–80.
- 12 Heidemann F, Kuchenbecker J, Peters F, Kotov A, Marschall U, L'Hoest H, et al. A health insurance claims analysis on the effect of female sex on long-term outcomes after peripheral endovascular interventions for symptomatic peripheral arterial occlusive disease. *J Vasc Surg* 2021;74:780–7.
- **13** Gardner AW, Parker DE, Montgomery PS, Khurana A, Ritti-Dias RM, Blevins SM. Gender differences in daily ambulatory activity patterns in patients with intermittent claudication. *J Vasc Surg* 2010;**52**:1204–10.
- 14 Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4:1.
- 15 Aboyans V, Ricco JB, Bartelink MEL, Björck M, Brodmann M, Cohnert T, et al. Editor's Choice - 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg 2018;55:305–68.
- 16 Lo CK, Mertz D, Loeb M. Newcastle-Ottawa Scale: comparing reviewers' to authors' assessments. BMC Med Res Methodol 2014;14:45.
- 17 Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 2011;343:d5928.
- **18** McDermott MM, Ferrucci L, Liu K, Guralnik JM, Tian L, Liao Y, et al. Leg symptom categories and rates of mobility decline in peripheral arterial disease. *J Am Geriatr Soc* 2010;**58**:1256–62.
- **19** McDermott MM, Greenland P, Liu K, Guralnik JM, Celic L, Criqui MH, et al. The ankle brachial index is associated with leg function and physical activity: the Walking and Leg Circulation Study [published correction appears in Ann Intern Med 2003;139: 306]. *Ann Intern Med* 2002;**13**:873–83.
- 20 McDermott MM, Greenland P, Liu K, Guralnik JM, Criqui MH, Dolan NC, et al. Leg symptoms in peripheral arterial disease: associated clinical characteristics and functional impairment. *JAMA* 2001;286:1599–606.
- 21 Roumia M, Aronow HD, Soukas P, Gosch K, Smolderen KG, Spertus JA, et al. Sex differences in disease-specific health status measures in patients with symptomatic peripheral artery disease: Data from the PORTRAIT study. *Vasc Med* 2017;22:103–9.
- 22 Sigvant B, Wiberg-Hedman K, Bergqvist D, Rolandsson O, Wahlberg E. Risk factor profiles and use of cardiovascular drug prevention in women and men with peripheral arterial disease. *Eur J Cardiovasc Prev Rehabil* 2009;**16**:39–46.
- **23** Dörenkamp S, Mesters I, de Bie R, Teijink J, van Breukelen G. Patient characteristics and comorbidities influence walking distances in symptomatic peripheral arterial disease: a large one-year physiotherapy cohort study. *PLoS One* 2016;11:e0146828.
- 24 Noyes AM, Abbott JD, Gosch K, Smolderen K, Spertus JA, Hyder O, et al. Association between health status and

sociodemographic, clinical and treatment disparities in the Patient-centered Outcomes Related to TReatment Practices in Peripheral Arterial Disease: Investigating Trajectories (PORTRAIT) registry. *Vasc Med* 2018;**23**:32–8.

- 25 Oka RK, Szuba A, Giacomini JC, Cooke JP. Gender differences in perception of PAD: a pilot study. *Vasc Med* 2003;8:89–94.
- **26** Okello S, Millard A, Owori R, Asiimwe SB, Siedner MJ, Rewbembera J, et al. Prevalence of lower extremity peripheral artery disease among adult diabetes patients in southwestern Uganda. *BMC Cardiovasc Disord* 2014;**14**:75.
- 27 Passos VM, Barreto SM, Guerra HL, Firmo JO, Vidigal PG, Lima-Costa MF. The Bambuí health and aging study (BHAS). Prevalence of intermittent claudication in the aged population of the community of Bambuí and its associated factors. *Arq Bras Cardiol* 2001;77:453–62.
- 28 Rucker-Whitaker C, Greenland P, Liu K, Chan C, Guralnik JM, Criqui MH, et al. Peripheral arterial disease in African Americans: clinical characteristics, leg symptoms, and lower extremity functioning. J Am Geriatr Soc 2004;52:922–30.
- 29 Vural T, Tan MN, Kartal M, Güldal AD. Detecting peripheral arterial disease in primary care: a population based study. *Korean J Fam Med* 2020;41:61–7.
- **30** Wang JC, Criqui MH, Denenberg JO, McDermott MM, Golomb BA, Fronek A. Exertional leg pain in patients with and without peripheral arterial disease. *Circulation* 2005;**112**:3501–8.
- **31** Weragoda J, Seneviratne R, Weerasinghe MC, Wijerayatne M, Samaranayaca A. A cross-sectional study on peripheral arterial disease in a district of Sri Lanka: prevalence and associated factors. *BMC Public Health* 2015;**15**:829.
- 32 McDermott MM, Greenland P, Liu K, Criqui MH, Guralnik JM, Celic L, et al. Sex differences in peripheral arterial disease: leg symptoms and physical functioning. J Am Geriatr Soc 2003;51: 222–8.
- 33 Behrendt CA, Bischoff MS, Schwaneberg T, Hohnhold R, Diener H, Debus ES, et al. Population based analysis of gender disparities in 23,715 percutaneous endovascular revascularisations in the metropolitan area of Hamburg. *Eur J Vasc Endovasc Surg* 2019;57: 658–65.
- 34 Brevetti G, Bucur R, Balbarini A, Melillo E, Novo S, Muratori I, et al. Women and peripheral arterial disease: same disease, different issues. J Cardiovasc Med (Hagerstown) 2008;9:382–8.
- 35 Collins TC, Suarez-Almazor M, Bush RL, Petersen NJ. Gender and peripheral arterial disease. J Am Board Fam Med 2006;19:132–40.
- 36 Dang Y, Xia Y, Li Y, Yu DC. Anemia and type 2 diabetes mellitus associated with peripheral arterial disease progression in Chinese male patients. *Clin Biochem* 2013;46:1673–7.
- 37 Gardner AW. Sex differences in claudication pain in subjects with peripheral arterial disease. *Med Sci Sports Exerc* 2002;3–4:1695–8.
- **38** Krishnan MN, Geevar Z, Mohanan PP, Venugopal K, Devika S. Prevalence of peripheral artery disease and risk factors in the elderly: a community based cross-sectional study from northern Kerala, India. *Indian Heart J* 2018;**70**:808–15.
- **39** Kumakura H, Kanai H, Araki Y, Kasama S, Sumino H, Ito T, et al. Sex-related differences in Japanese patients with peripheral arterial disease. *Atherosclerosis* 2011;**219**:846–50.
- 40 Murabito JM, Evans JC, Nieto K, Larson MG, Levy D, Wilson PW. Prevalence and clinical correlates of peripheral arterial disease in the Framingham Offspring Study. *Am Heart J* 2002;143:961–5.

- **41** Sigvant B, Wiberg-Hedman K, Bergqvist D, Rolandsson O, Andersson B, Persson E, et al. A population-based study of peripheral arterial disease prevalence with special focus on critical limb ischemia and sex differences. *J Vasc Surg* 2007;**45**:1185–91.
- **42** Smolderen KG, Hoeks SE, Pedersen SS, van Domburg RT, de Liefde II, Poldermans D. Lower-leg symptoms in peripheral arterial disease are associated with anxiety, depression, and anhedonia. *Vasc Med* 2009;**14**:297–304.
- **43** Tekin N, Baskan M, Yesilkayali T, Karabay O. Prevalence of peripheral arterial disease and related risk factors in Turkish elders. *BMC Fam Pract* 2011;**12**:96.
- 44 Vliegenthart R, Geleijnse JM, Hofman A, Meijer WT, van Rooij FJA, Grobbee DE, et al. Alcohol consumption and risk of peripheral arterial disease: the Rotterdam study. *Am J Epidemiol* 2002;155:332–8.
- 45 Al-Zoubi NA, Shatnawi NJ. Gender variation in symptomatic peripheral arterial occlusive disease among type-2 diabetic patients. SAGE Open Med 2019;7:2050312119840198.
- 46 Choi KH, Park TK, Kim J, Ko YG, Yu CW, Yoon CH, et al. Sex differences in outcomes following endovascular treatment for symptomatic peripheral artery disease: an analysis from the K-VIS ELLA registry. J Am Heart Assoc 2019;8:e010849.
- **47** Jelani QU, Mena-Hurtado C, Burg M, Soufer R, Gosch K, Jones PG, et al. Relationship between depressive symptoms and health status in peripheral artery disease: role of sex differences. *J Am Heart Assoc* 2020;**9**:e014583.
- 48 Lo RC, Bensley RP, Dahlberg SE, Matyal R, Hamdan AD, Wyers M, et al. Presentation, treatment, and outcome differences between men and women undergoing revascularization or amputation for lower extremity peripheral arterial disease. *J Vasc Surg* 2014;59: 409–18.
- 49 Peters F, Kreutzburg T, Rieß HC, Heidemann F, Marschall U, L'Hoest H, et al. Editor's Choice – Optimal pharmacological treatment of symptomatic peripheral arterial occlusive disease and evidence of female patient disadvantage: an analysis of health insurance claims data. *Eur J Vasc Endovasc Surg* 2020;60:421–9.
- 50 Sartipy F, Lundin F, Wahlberg E, Sigvant B. Cardiovascular longterm outcome and prophylactic treatment patterns in peripheral arterial disease in a population-based cohort. *Eur Heart J Qual Care Clin Outcomes* 2019;5:310–20.
- 51 Brevetti G, Oliva G, Silvestro A, Scopacasa F, Chiariello M. Peripheral Arteriopathy and Cardiovascular Events (PACE) Study Group. Prevalence, risk factors and cardiovascular comorbidity of symptomatic peripheral arterial disease in Italy. *Atherosclerosis* 2004;175:131–8.
- 52 Haine A, Kavanagh S, Berger JS, Hess CN, Norgren L, Fowkes FGR, et al. Sex-specific risks of major cardiovascular and limb events in patients with symptomatic peripheral artery Disease. *J Am Coll Cardiol* 2020;75:608–17.
- 53 Walker JP, Hiramoto JS. Diagnosis and management of peripheral artery disease in women. *Int J Womens Health* 2012;4:625–34.
- 54 Parvar SL, Thiyagarajah A, Nerlekar N, King P, Nicholls SJ. A systematic review and meta-analysis of gender differences in long-term mortality and cardiovascular events in peripheral artery disease. J Vasc Surg 2021;73:1456–65.
- 55 Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ* 2008;336:924–6.