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Abstract

Randomized response (RR) is an interview technique that can be used to protect the privacy of the re-
pondents when faced with sensitive questions. This paper describes how to measure change in time
when a binary RR question has been asked on several time points. In cross-sectional research settings,
often new insights gradually become available. In our setting, a switch to another RR procedure oc-
curred and it necessitated the development of a trend model that estimates the effect of the covariate
time when the dependent variable is measured by different RR designs. Additionally, we show that
it is possible to deal with the presence of self-protective responses, thereby accommodating our trend
model with the latest developments in the analysis of RR data. The model proposed is not limited to
change in time, but generalizes to every cross-classification of a RR variable with a categorical variable.

keywords: linear trend, longitudinal data, misclassification, randomized response, repeated cross-
sections, self-protective responses

1 Introduction

Randomized response (RR) is an interview technique that can be used when sensitive questions have
to be asked and respondents are reluctant to answer directly (Warner, 1965; Chaudhuri and Mukerjee,
1988). Examples of sensitive questions are questions about fraud, alcohol consumption or sexual behav-
ior. A recent meta-analysis study showed that randomized response designs lead to more valid answers
compared to other conventional question-and-answer methods (Lensvelt-Mulders et al., 2005b). An RR
design can be defined in various ways, but all designs have in common that a specified probability
mechanism protects the privacy of the individual respondent. The resulting RR variables represent
misclassified responses on categorical variables where conditional misclassification probabilities are
fixed by design (van den Hout & van der Heijden, 2004). The true status of the individual respondent
is not revealed because his or her observed answer depends not only on the true status but also on the
misclassification design.

Besides the randomized response setting, misclassification probabilities occur in several other fields
of research. Most related to randomized response is the post randomization method (PRAM, Kooiman,
Willenborg & Gouweleeuw, 1997), where values of categorical variables are misclassified after the data
have been collected to protect the privacy of the respondents. PRAM can be considered as applying
RR after the data collection. Misclassification also plays a role in medicine and epidemiology with the
probabilities to be correctly classified as a case (sensitivity) or as a non-case (specificity), see Chen, 1989;
Copeland, Checkoway, McMichael, & Holbrook, 1977; Greenland, 1980, 1988; Magder & Hughes, 1997.
Misclassified data can be analyzed with loglinear models or the general framework of latent variable
models and latent class models (see for example, Haberman, 1979; Hagenaars, 1990, 1993; Rabe-Hesketh
& Skrondal, 2007; Skrondal & Rabe-Hesketh, 2004; van den Hout & van der Heijden, 2002; Walter, Irwig
& Glasziou, 1999)

This paper proposes a model to measure change in time when RR is used to ask a sensitive question
at several time points. The model will be illustrated with data from a Dutch repeated cross-sectional
study on non-compliance to rules in the area of social benefits. Data have been collected every two years
since 2000, and given that measures to prevent regulatory non-compliance have been intensified during
this period, the question rises whether the prevalence of regulatory non-compliance has changed over
the years and how the change can be modeled.

Considering time as a covariate, we propose a new approach to measure the effect of this covari-
ate when the dependent variable is measured by randomized response. Several aspects of this cross-
sectional study make it impossible to use standard analysis methods and necessitate a new approach
in the field of the analysis of randomized response data, to be able to deal with this type of research
questions. First, the fact that RR variables represent misclassified responses on categorical variables
precludes the use of, for example, the linear logit model (Agresti, 2002, p. 180), to test for a linear trend.
The trend tests proposed in this paper take into account the misclassification induced by the RR design,
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using the framework of Van den Hout and Van der Heijden (2004) and the results obtained by Maddala
(1983) and Scheers and Dayton (1988). Second, as a consequence of increasing knowledge about the
efficiency of randomized response designs, a change in the design occurred during the cross-sectional
study. We show in this paper how to accommodate the trend model for design changes. Third, ac-
counting for self-protective responses (SP) being a new development in the field of the analysis of RR
data (Böckenholt & van der Heijden, 2007; Cruyff et al., 2007), we also show a way to incorporate the
presence of SP into the trend model.

The outline of the paper is as follows. The next section explains the randomized response design as
a misclassification design and shows how to deal with changes in the randomized response design over
time. Section 3 introduces the trend model for RR variables with an additional procedure to account
for self-protective responses. Section 4 shows an application of the model and section 5 ends the paper
with a discussion.

2 The randomized response design

RR designs use a randomizing device that perturbs the answers of the respondents. The basic idea
behind RR is that the perturbation induced by the misclassification design protects the privacy of the
respondent. At the same time, the researcher knows the nature of the perturbation and this allows for a
correct analysis of the observed data where the misclassification is taken into account. There are several
randomized response designs (cf. Fox & Tracy, 1986, Chapter 2). Two of these designs are used in the
application of this paper and will be discussed below. Each design uses a different randomizing device,
namely playing cards and dice.

For Kuk’s randomized response design (Kuk, 1990), the randomizing device consists of two stacks
of cards. The idea of using a randomizing device is to generate binary outcomes, i.e. the yes and no
answers, according to two Bernoulli distributions with known parameters. A way to elicit the required
binary outcomes it to use two stacks of cards with varying proportions of red cards. Assume answering
yes to the sensitive question is associated with the color red, the Kuk design can be implemented by
creating a stack that contains more red cards than black cards, 8

10 and 2
10 , respectively. The other stack,

representing the no answer contains more black cards than red cards, with a proportion of 2
10 of red

cards. After shuffling each stack, the respondent is asked to draw a card at random from each stack.
Instead of answering yes or no, the respondent expresses the answer yes by naming the color of the
card that came from the right stack (the one with the higher proportion of red cards), or if he wishes
to express the answer no, by naming the color of the card from the left stack (the one with the higher
proportion of black cards). More details about the implementation of the Kuk design are available in
Van der Heijden et al. (2000).

The forced response design (Boruch, 1971) uses dice as the randomizing device. The binary re-
sponses are kow generated according to the known distribution of the sum of the outcomes of two dice.
After the sensitive question is asked, the respondent throws two dice and keeps the outcome hidden
from the interviewer. If the outcome of the two dice is 2, 3 or 4, the respondent answers yes. If the
outcome is 5, 6, 7, 8, 9 or 10, he answers according to the truth. If the outcome is 11 or 12, he answers no
(for the implementation of the forced response method, see Lensvelt-Mulders et al., 2006).

In the RR design by Kuk, violations are associated with the color red (expressing the answer yes). As
a result, the probability to be correctly classified is 8/10 both for respondents who violated regulations
and for those who did not. The RR matrix that contains the conditional misclassification probabilities

pij = P(category i is observed| true category is j) (1)

is therefore given by

PPPKuk =
(

p11 p12
p21 p22

)
=
(

8/10 2/10
2/10 8/10

)
. (2)

Similarly, the forced response design yields the following transition matrix

PPPFR =
(

11/12 2/12
1/12 10/12

)
. (3)
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As an illustration, given the forced response design with the transition matrix of Equation 3, the prob-
ability of a forced yes is equal to p12 = 1

6 , the probability of a forced no is p21 = 1
12 and the prob-

ability of a truthful answer is 1 − (p12 + p21) = 3
4 . The probability of an observed yes response is

π∗
1 = p12 + (1− (p12 + p21))π1. Taking the observed proportion of yes answers as an estimate π̂∗

1 of π∗
1 ,

an estimate of π1 can be obtained with:

π̂1 =
π̂∗

1 − p12

1 − (p12 + p21)
(4)

and the estimated variance of π̂1 is given by (cf. Fox & Tracy, 1986, p.21):

σ̂π̂1 =
π̂∗

1 (1 − π̂∗
1 )

N(p12 + p21)2 . (5)

The general form of RR designs is (Chaudhuri & Mukerjee, 1988; van den Hout & van der Heijden,
2002):

π∗π∗π∗ = PπPπPπ, (6)

where in case of dichotomous items, π∗π∗π∗ =
(
π∗

1 , π∗
2
)′ is a vector with the probabilities of the observed

answers, πππ = (π1, π2)
′ is the vector of the probabilities of the latent status and PPP is the 2 × 2 matrix

defined in Equation 2 or Equation 3. If PPP is non-singular and the observed proportion of yes and no
answers are unbiased point estimates π̂∗π̂∗π̂∗ of π∗π∗π∗, πππ can be estimated by the unbiased moment estimator
(Chaudhuri & Mukerjee, 1988; Kuha & Skinner, 1997)

π̂̂π̂π = PPP−1π̂∗π̂∗π̂∗. (7)

However, in practice it is possible to obtain estimates that are outside the parameter space (0,1) when,
for example, the observed proportion of yes answers is very small. Van den Hout and van der Heijden
(2002) have demonstrated that the maximum likelihood estimator (MLE) is in general a good alterna-
tive to the moment estimator (ME) and, in case of boundary solutions, the authors propose to use the
maximum of the likelihood for point estimation and the bootstrap percentile method for confidence
intervals.

2.1 Repeated cross-sectional randomized response data and different RR designs

Estimation efficiency and perceived privacy protection In research settings with repeated measure-
ments, design changes can occur when more knowledge about the properties of the designs gradually
becomes available. For example, the repeated cross-sectional study on regulatory non-compliance that
serves as an illustration in the application section of this paper, uses two different RR designs: Kuk’s
method was used in 2000 and for the remaining years the forced response design was used. The switch
to the forced response design in 2002 follows from more insight into the advantages of this design.

The probabilities of the randomization device result from a compromise between estimation effi-
ciency and perceived privacy protection by the respondents. Fox and Tracy (1986, pp. 25-26) provide
an extensive discussion of this issue: to offer optimal protection to the respondents, the probability for
giving a truthful response should be as small as possible. However, the smaller the truthful response
probability, the larger the sampling variance of the estimator, leading to less efficiency because fewer
respondents provide relevant information about the sensitive behavior.

Increasing research findings suggest that the forced response design is more efficient (Lensvelt-
Mulders et al., 2005a), is comparatively easy for respondents to follow and, the probabilities of a forced
yes or no tend to be overestimated by the respondents (Moriarty & Wiseman, 1976). Kuk’s design has
the advantage that respondents answer the questions with colors instead of the more self-incriminating
yes answer, but it will not be able to give the same level of privacy protection, even if it is made as
efficient as the forced response design.

With regard to the perception of the privacy protection offered by the forced response design, the
choice of the value 3

4 for the probability of a truthful answer, as described in Section 2, does not seem to
be the smallest possible probability, but it follows from the results obtained by Moriarty and Wiseman
(1976) and Soeken and Macready (1982) who demonstrate that the probability of a truthful answer can
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be chosen between .7 and .8 without interfering with the perceived grade of anonymity. Given their
results, by choosing .75, there is a probability of .25 to be divided between the forced yes and the forced
no probability. The yes answer represents the acknowledgement of non-compliance and because of the
respondents’ reluctancy to admit non-compliance, the forced yes probability is twice as large as the
forced no answer to make the respondent more comfortable with answering yes. At the same time the
forced yes probability is approximately in the same range as the expected prevalence of the sensitive
topic in the population, as recommended by Clark and Desharnais (1998).

Accommodating changes in the RR designs Given the switch of RR design, the misclassification
probabilities can be arranged in such a way that it becomes possible to estimate prevalences for RR
variables that have been collected in a repeated cross-section. In our application (see Section 4), RR
variables were measured on three time points and the matrix of misclassification probabilities in (6)
can be generalized as follows. First, the probabilities of the observed answers have to be restructured.
The randomized response variable with two categories i = 1, 2 was observed on three time points
(t = 1, 2, 3), leading to the probabilities for the observed answers π∗

it. The 2× 3 table of observed answer
probabilities can be represented as a vector πππ∗ = (π∗

11, π∗
21, π∗

12, π∗
22, π∗

13, π∗
23), and similarly, we obtain

the vector πππ = (π11, π21, π12, π22, π13, π23). The transition matrix PPP in Equation 6 can be extended to a
block diagonal matrix PPP composed of blocks PPPt for time point t. The result is the following 6× 6 matrix:

PPP =

(
PPP1 000 000
000 PPP2 000
000 000 PPP3

)
(8)

To accomodate the different RR designs used in our application, which consists of a combination of
Kuk’s method and the forced response method, the block diagonal matrix can be changed in the fol-
lowing way: PPP1 is defined by the missclassification probabilities of the Kuk design in (2) and PPP2 and PPP3
are defined by the missclassification probabilities of the forced response design in (3).

3 Logit model for trend

We now return to our research question whether the prevalence of non-compliance has changed over
the years and how the change can be modeled. Consider the sensitive question as the dependent vari-
able and the time points as the independent variable with scores t = 1, 2, 3. If one expects a monotone
trend, this hypothesis can be tested with the linear logit model (cf. Agresti, 2002, p. 180):

π1t =
exp(β0 + β1t)

1 + exp(β0 + β1t)
(9a)

π2t =
1

1 + exp(β0 + β1t)
(9b)

where the category 1 refers to a yes answer. The independence model is the special case where β1 = 0.
An expansion of the model to include a quadratic trend is obtained by adding the term β2t2 to β0 + β1t.
The log likelihood is given by

`(βββ | n) = ∑
t

n1t log π1t + ∑
t

n2t log π2t, (10)

which can be expressed more concisely as

`(βββ | nnn) = uuu(nnn log πππ), (11)

where uuu is the unit vector.
When the dependent variable is an RR variable, the log likelihood must take into account the mis-

classification induced by the RR design. Using the misclassified observed frequencies n∗
it and the mis-
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classified observed probabilities π∗
it, the adaptation of the log likelihood in Equation 10 becomes:

`(βββ | nnn∗) = ∑
t

n∗
1t log π∗

1t + ∑
t

n∗
2t log π∗

2t.

In analogy to (11) the log likelihood can also be expressed in matrix algebra as:

`(βββ | nnn∗) = uuu(nnn∗ log πππ∗) = uuu(nnn∗ log PPPπππ), (12)

where elements π1t and π2t of vector πππ are defined in (9a) and (9b) and PPP is block diagonal matrix as in
(8). Maximizing the log likelihood in (12) over parameters βββ leads to estimated probabilities for the yes
and no answers on each time point, π̂1t and π̂2t.

A goodness-of-fit measure for the trend models can be obtained with the likelihood ratio statistic
using the log likelihood defined in (12). It allows for testing the hypotheses of no change (the indepen-
dence model) and linear or quadratic trend (the last named being only possible, of course, if there are
enough time points to leave degrees of freedom). It is well known that the use of the order in the time
points leads to more efficient estimates of πit as well as to more powerful tests (cf. Agresti, 2002, Section
6.4, p. 236). We note that the framework proposed here is not restricted to model changes in time of
an RR variable, and applies to each cross-classification of an RR variable with any categorical variable.
The R-code to fit the models described in this section is available from the authors.

3.1 Accounting for self-protective responses

Despite the fact that the repondents’ privacy is protected by the RR design, it is not always perceived as
such by the respondents. Because RR forces respondents to give a potentially self-incriminating answer
for something they did not do, it is susceptible to self-protective responses (SP), i.e. respondents answer
no although they should have responded yes according to the randomizing device (see for example,
Edgell, Himmelfarb, & Duchan, 1982). In our application, the online questionnaires were designed in
such a way that the outcome of the dice is not recorded and this fact was mentioned in the instructions
given to the respondents. As a result, the respondents were free to give a different answer than the
forced yes or no induced by the dice. Although RR performs relatively well, by eliciting more admissions
of fraud than direct-questioning or computer-assisted self-interviews (Lensvelt-Mulders et al., 2005b),
non-compliance probabilities might still be underestimated if SP is not taken into account.

Recently, several studies have focussed on the detection or estimation of SP in the setting of RR.
Clark and Desharnais (1998) showed that by splitting the sample into 2 groups and assigning each
group a different randomization probability, it is possible to detect the presence of SP responses and to
measure its extent. Böckenholt and van der Heijden (2007) use a multivariate approach to estimate SP
by proposing an item randomized-response model (IRR), where a common sensitivity scale is assumed
for a set of RR variables. Response behavior that does not follow the RR design is approached by
introducing mixture components in the IRR models with a first component consisting of respondents
who answer truthfully and follow an item response model, and a second component consisting of
respondents who systematically say no to every item in a subset of items. A similar approach is adopted
by Cruyff and co-authors (2007) who work out the same idea in the context of log linear models.

As we feel that this new development to correct RR estimates for SP responses is important, we
propose the following procedure to incorporate the existence of SP into the trend model. At the first
step we estimate the amount of SP on each wave using multivariate data consisting of three additional
RR questions about health conditions, which are part of the full data set. In a second step we use the
estimates of SP as external information in our trend analyses. Applying this approach, SP is estimated in
the first step using the Profile Likelihood method proposed by Cruyff et al. (2007). Given the estimates
of SP for each wave, a correction for SP is carried out by ignoring a percentage of the observed no
responses from the sample that is equal to the estimated amount of SP. In the second step, change in
time is modeled using the frequencies adjusted for SP.

The recent developments in the estimation of SP offer possibilities for longitudinal research settings.
It allows for adopting the misclassification probabilities in the RR design according to the proportion
of SP estimated on the previous time point, and, consequently, leading to a better balance between es-
timation efficiency and privacy protection (as discussed in Section 2.1). It should be noted that in the
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application we describe in this paper, methods to estimate SP were not available on the first and the sec-
ond time point, and, consequently, SP for the earlier time points could only be estimated retrospectively
and no changes could be made to the misclassification probabilities.

A drawback of the two-step approach we propose is that the uncertainty about the estimates of SP
in the first step is not automatically taken into account by the theoretical standard errors in the trend
model in the second step. Therefore, empirical standard errors are obtained for the regression coefficient
of the trend model using the non-parametric bootstrap (Efron & Tibshirani, 1993).

The details of the bootstrap procedure are as follows:

• For each of the time point, sample B times n respondents with replacement, where n is equal to
the sample size at each time point.

• For each of the time points estimate SP for each bootstrap sample. Adjust the bootstrap sample
frequencies for SP on each time point (first step of the two-step approach).

• Fit the independence model and the linear trend model to each of the B bootstrap samples. This
results in B estimates of the intercept in the independence model (or intercept only model) and B
estimates of the intercept and the slope in the linear trend model. The standard deviation of the
distribution of these B estimates for intercepts and slope yields the bootstrap estimates of standard
errors and the 95% bootstrap percentile intervals (second step of the two-step approach).

4 Application: prevalence of regulatory non-compliance in social
benefit area

4.1 The data
Dutch employees are obliged to be insured under the Invalidity Insurance Act and, provided certain
conditions are met, a formerly employed person is entitled to receive financial benefits, which can
amount to as much as 70% of the person’s last income. The welfare system being rather costly, the
Department of Social Affairs in the Netherlands monitors the prevalence of non-compliance to the rules
on a regular basis. After a pilot in 1998, three waves followed in the years 2000, 2002, and 2004. A
detailed description of the 2002 cross-sectional study is given in Lensvelt-Mulders et al. (2006). The
Department of Social Affairs has intensified the measures to prevent regulatory non-compliance during
these years and is interested in knowing whether the prevalence of regulatory non-compliance has
changed over the years and how the change can be modeled.

The application focusses on the following sensitive question concerning the health status of the
respondent: For periods of any length at all, do you ever feel stronger and healthier and able to work more
hours without informing the Department of Social Services of this change? If non-compliance is detected, it

Table 1: Observed weighted frequencies of yes (n∗
1) and no (n∗

2) answers, and estimated probabilities (π̂1)
with 95% confidence intervals of non-compliance corrected for the RR design for the cross-sectional data
on regulatory non-compliance, measured on three time points. Person weights were used to weight the
sample towards population characteristics (cf. Lensvelt-Mulders et al., 2006)

2000 2002 2004
(n=1308) (n=1760) (n=830)

n∗
1 388 466 197

n∗
2 920 1294 633

π̂1 0.16 0.10 0.07
95% CI [0.13, 0.19] [0.07, 0.13] [0.03, 0.11]
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Figure 1: Univariately estimated regulatory non-compliance probabilities (represented by the dots) with 95% confidence inter-
vals, and fitted trend line on the RR question For periods of any length at all, do you ever feel stronger and healthier and able to work more
hours without informing the Department of Social Services of this change?

can lead to sanctions and sometimes even to loss of invalidity insurance benefits. Given the sensitivity
of the topic, asking respondents directly whether they violate these obligations, will not yield valid
results (cf. Van der Heijden et al., 2000). Therefore, a randomized response design has been used at
each wave to ensure the confidentiality of the answers. For the question just described, Table 1 displays
the observed, misclassified, frequencies of yes (n∗

1) and no (n∗
2) answers for the three time points, as well

as the estimated probabilities of regulatory non-compliance corrected for the RR design (as explained
in section 2). A change of the randomized response design occurred at time point 2002, where the
Kuk’s design was replaced with the forced response design. Accordingly, the block diagonal matrix of
misclassification probabilities in (8) has been used to accommodate this change of RR design.

4.2 Results
Two models were fitted to the RR data: the independence model and the linear trend model. The
goodness-of-fit of the models was evaluated with the likelihood ratio statistic. Figure 1 shows that
the estimated regulatory non-compliance probabilities decrease monotonically over the time points,
and, accordingly, the estimated logistic regression parameter for the linear trend has a negative value
(see Table 2). The value of the likelihood ratio statistic L2 in Table 2 indicates that the independence

Table 2: Results trend analyses (the model of choice is in bold typeface)

Model L2 d f p β̂0 (σ̂β̂0
) β̂1 (σ̂β̂1

)

[1] Independence 10.415 2 .001 -2.09 (0.10)
[2] Linear 0.004 1 .95 -1.17 (0.28) -0.49 (0.16)

∆L2 ∆d f p
[1] - [2] 10.411 1 .001
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Table 3: Results trend analyses on univariately estimated regulatory non-compliance probabilities cor-
rected for SP with likelihood ratio statistics (L2), bootstrap estimates of standard errors (ŝB) and boot-
strap percentile confidence intervals

Model β̂ ŝB 95% CI

[1] Independence (L2 = 17.62, d f = 2, p = .00)
β̂0 -1.61 0.10 [-1.75, -1.41]

[2] Linear (L2 = 1.27, d f = 1, p = .26)
β̂0 -0.67 0.30 [-1.07, -0.09]
β̂1 -0.50 0.16 [-0.81, -0.26]

model does not fit (L2 = 10.415, d f = 2, p = .001), whereas the linear model produces good fit val-
ues: L2 = 0.004, d f = 1, p = .95. Testing the linear model against the independence model (see the
∆L2-values in the lower part of Table 2) leads to the conclusion that the linear trend model forms a sig-
nificant improvement. Also, both parameters of the linear trend model depart significantly from zero.
Summarizing, this means that among the persons entitled to receive social benefits, the proportion of
respondents who do not comply to the rule of informing the Department of Social Services about their
health improvement, has significantly decreased in the period from 2000 to 2004.

Accounting for self-protective responses We now present the results of the trend analysis that takes
SP into account, using the two-step approach. It should be noted that it is not possible to model change
in time and SP behavior simultaneously, simply because multivariate RR data are needed to estimate
the probability of SP, whereas we have repeated univariate data here (note that at each time point a
distinct sample is used, see Table 1). At the first step we estimate the amount of SP on each wave using
multivariate data consisting of three additional RR questions about health conditions, which are part
of the full data set. In a second step we use the estimates of SP as external information in our trend
analyses. Applying this approach, the proportion of SP was estimated on the data in Table 1 with the
Profile Likelihood method proposed by Cruyff et al. (2007). The resulting proportion of SP-answers
for the three waves are: .13, .15, and .11, for the years 2000, 2002, and 2004 respectively. Adjusting
the observed frequencies for these SP proportions, yields the following estimates of regulatory non-
compliance probabilities π̂: .24, .17, and .11 for the years 2000, 2002, and 2004, respectively. Comparing
these SP-corrected non-compliance probabilities with the uncorrected probabilities in Table 1, clearly
shows that the SP-corrected probabilities are higher and that not accounting for SP leads to underesti-
mation of non-compliance probabilities.

In the second step, change in time is modeled by fitting the trend model to the observed frequencies
adjusted for SP, and leads to the results displayed in Table 3. The likelihood ratio statistic L2 is equal
to 17.62(d f = 2, p = .00) for the independence model, and for the linear trend model L2 = 1.27(d f =
1, p = .26). The model fit clearly improves after adding a parameter to account for linear trend. The
variability of the logistic regression parameters is estimated by bootstrap standard deviations, following
the bootstrap set-up explained in Section 3.1. The results are based on the observed frequencies of
yes/no responses in Table 1 and from three additional RR questions about health conditions for each of
the three waves. For each of the years 2000, 2002 and 2004, 1, 000 times n respondents were sampled
with replacement, where n is equal to the sample size 1308, 1760 and 830 for the years 2000, 2002 and
2004 respectively.

The 95% bootstrap confidence intervals (percentile method) show that both parameters of the linear
model depart significantly from zero, leading to the conclusion that the SP-corrected non-compliance
probabilities decrease monotonically over the three time points. This means that the proportion of
persons not complying to the rule of giving information about health improvement, has decreased in
the period between 2000 and 2004.
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5 Discussion

This paper showed how to measure the effect of the covariate time on repeated cross-sectional random-
ized response data and how to take into account RR design changes and the presence of self-protective
responses. Due to the misclassification design, traditional trend models cannot be used. One of the
key elements of the method proposed, is the construction of a block diagonal matrix with conditional
classification probabilities for each time point, which allows for using different RR designs over time.

The method is not limited to modeling changes in time and can be applied to each cross-classification
of an RR variable with a categorical variable. Consider for example a study where one is interested
whether residents of large city’s are more or less disposed to report non-compliance behavior than
residents of smaller communities. If the RR question has the two categories yes and no, and if population
size of the place of residence is measured in five categories, the result is a 2 × 5 factorial design. One
could use the method proposed in this paper to test whether the non-compliance probabilities change
monotonically according to the population size of the place of residence.

Despite the fact that the RR method offers protection of the respondents’ privacy, it does not entirely
exclude the presence of evasive response bias. As a result, non-compliance probabilities might still
be underestimated if self-protective responses are not taken into account. We showed in this paper
that it is possible to correct RR estimates for SP in the trend model, using a two-step procedure where
the amount of SP is estimated in the first step and the trend model is fitted on frequencies corrected
for the SP estimates in the second step. The new approach we propose, becomes a powerful tool in
longitudinal research settings when it is combined with estimates of the occurrence of SP, as it is now
possible to adjust the misclassification probabilities of the RR design according to the estimates of SP
on the previous time point, thereby offering a better balance between estimation efficiency and privacy
protection.

The two-step procedure has the disadvantage that it is computationally demanding, however, it
seems inevitable in the setting of repeated univariate data, where at each time point a distinct sample
is used. In this situation, it is not possible to model change in time and SP behavior simultaneously,
as shown in the recently developed methods to correct RR estimates for SP responses. It should be
noted that the two-step procedure uses the same data twice: to estimate the SP probabilities and to
fit the model with associated standard errors for the model parameters. A possible solution would
be to use cross-validation: estimating SP and fitting the model on the training set and obtaining the
variability estimates for the model parameters in the test set, although this would lead to a very complex
simulation set-up. Estimating SP is a recent development and requires further research.
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