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Abstract: An increasing number of pathology laboratories are now fully digitised, using whole
slide imaging (WSI) for routine diagnostics. WSI paves the road to use artificial intelligence (AI)
that will play an increasing role in computer-aided diagnosis (CAD). In melanocytic skin lesions,
the presence of a dermal mitosis may be an important clue for an intermediate or a malignant
lesion and may indicate worse prognosis. In this study a mitosis algorithm primarily developed
for breast carcinoma is applied to melanocytic skin lesions. This study aimed to assess whether
the algorithm could be used in diagnosing melanocytic lesions, and to study the added value in
diagnosing melanocytic lesions in a practical setting. WSI’s of a set of hematoxylin and eosin (H&E)
stained slides of 99 melanocytic lesions (35 nevi, 4 intermediate melanocytic lesions, and 60 malignant
melanomas, including 10 nevoid melanomas), for which a consensus diagnosis was reached by
three academic pathologists, were subjected to a mitosis algorithm based on AI. Two academic and
six general pathologists specialized in dermatopathology examined the WSI cases two times, first
without mitosis annotations and after a washout period of at least 2 months with mitosis annotations
based on the algorithm. The algorithm indicated true mitosis in lesional cells, i.e., melanocytes, and
non-lesional cells, i.e., mainly keratinocytes and inflammatory cells. A high number of false positive
mitosis was indicated as well, comprising melanin pigment, sebaceous glands nuclei, and spindle
cell nuclei such as stromal cells and neuroid differentiated melanocytes. All but one pathologist
reported more often a dermal mitosis with the mitosis algorithm, which on a regular basis, was
incorrectly attributed to mitoses from mainly inflammatory cells. The overall concordance of the
pathologists with the consensus diagnosis for all cases excluding nevoid melanoma (n = 89) appeared
to be comparable with and without the use of AI (89% vs. 90%). However, the concordance increased
by using AI in nevoid melanoma cases (n = 10) (75% vs. 68%). This study showed that in general
cases, pathologists perform similarly with the aid of a mitosis algorithm developed primarily for
breast cancer. In nevoid melanoma cases, pathologists perform better with the algorithm. From this
study, it can be learned that pathologists need to be aware of potential pitfalls using CAD on H&E
slides, e.g., misinterpreting dermal mitoses in non-melanotic cells.
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1. Introduction

Digital pathology is a dynamic, image-based environment that enables the acquisition,
management, and interpretation of pathology information generated from a digitised
glass slide, i.e., whole slide images (WSI), that can be assessed on a computer screen.
Digital pathology offers all kinds of benefits, including digital archiving, consultation, and
showcasing at tumour boards [1,2]. It is an innovation committed to the improvement
of operational efficiency, including decreasing turn-a-round times with the reduction of
laboratory expenses [2,3]. Since several WSI scanners are approved in Europe, given
the European Conformity mark, in the United States of America by the Food and Drug
Administration, and in Japan, by the Pharmaceuticals and Medical Devices Agency [4],
enormous opportunities have arisen to analyse the sheer amount of slides with visual
quantitative computer techniques, i.e., computational pathology (CP), based on machine
learning (ML) [2]. CP may aid in assessing WSI for pathology diagnosis, so called computer-
aided diagnosis (CAD). A range of different ML techniques are available of which in recent
years, algorithms based on convolutional neural networks appear to dominate [5].

Malignant melanoma is the most lethal form of skin cancer and its prevalence varies
among regions in the United States of America [6–9]. Research on CAD pathology has
focused on different applications, including prostate cancer tumour detection and Gleason
scoring [10–13] and breast cancer identification, grading (including assessing mitosis),
hormone immunohistochemical status, and lymph node metastases [13–24]. Concerning
CAD application in melanoma diagnostics, studies have been performed mainly on im-
munohistochemical (double) stains, e.g., phosphohistone H3, KI67, and/or MART1 [25,26].
Although diagnosing melanocytic lesion can be very challenging, CAD has not been stud-
ied extensively for melanoma pathology diagnostics on hematoxylin and eosin (H&E)
stained slides. The presence and foremost the enumeration of subtle cytomorphologic
and architectural features such as asymmetry of the lesion, cytological atypia, Pagetoid
involvement of the epidermis, lack of maturation, presence of ulceration, and mitosis can
make a major difference between a benign nevus, an intermediate lesion, or a malignant
melanoma. Finding a mitosis in a melanotic cell, situated either epidermal or dermal, is of
major importance as it implies the lesion might be intermediate or malignant [27]. It was
shown that dermal mitoses indicate worse prognosis for survival and increased occurrence
of sentinel node metastases [28–31].

In recent years, the development of computer-aided mitosis detection has increased
significantly, which is partly due to publicly released training data sets for mitosis detec-
tion [32–35]. In a previous study, Tellez et al. trained a convolutional neural network (CNN)
to detect individual mitotic figures in breast carcinoma WSI’s with high accuracy [18]. The
current study aimed to assess if a mitosis algorithm developed for breast cancer (1) can be
used in the detection of mitosis in cutaneous melanocytic tumours, and (2) can improve the
accuracy of the diagnosis of melanocytic lesions in a practical setting.

2. Materials and Methods
2.1. Case Selection and Study Design

In this study we used WSI of 102 H&E stained cases from a previous study, evaluating
the potential added value of z-stack scanning in diagnosing melanocytic lesions [36]. The
cases were obtained from the archive of the Pathology Department of the Radboud UMC in
Nijmegen, The Netherlands, and concerned 35 benign nevi, 5 intermediate lesions (so-called
melanocytomas or melanocytic tumours of unknown malignant potential; MELTUMP), and
62 malignant melanomas, including 10 nevoid melanomas. The set of WSI assessed by the
study pathologists contained 99 cases for which consensus could be achieved by 3 academic
pathologists based on the glass slides (35 benign melanocytic lesions, 4 intermediate
cases, and 60 melanomas, including 10 nevoid melanomas) [36]. The cases, scanned with
a Pannoramic 250 flash II scanner (3D Histech, Budapest, Hungary), were re-randomized
and submitted for evaluation to 8 pathologists that participated in the previous study
(2 academic and 6 general pathologists). All WSI were assessed twice, first without and
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second with help of a mitosis detection algorithm, with a washout period of at least
2 months in between. The WSI cases were presented on a computer with a calibrated
high resolution 4K LCD screen. Cases were offered with concise clinical information (age,
gender, and location on the skin) and could be classified by the pathologists as either
benign, malignant, or intermediate. For lesions classified as malignant or intermediate, the
presence of dermal mitotic activity had to be reported. In addition, lesions classified as
intermediate could be stratified into low risk and high risk. During the second assessment
the pathologists were also asked to indicate which mitoses identified by the algorithm were
helpful in making the diagnosis including cases that they classified as benign. More details
on the study design are provided in our previous study [36].

2.2. Mitosis Algorithm

The mitosis algorithm used in this study was developed for automated detection of mi-
toses in breast carcinomas and is based on CNNs [18]. Therefore, in cutaneous melanocytic
lesions false positive mitosis diagnoses were to be expected, because of different back-
ground stroma, colour, texture and the potential presence of melanin pigment. Before the
start of the current study, a small pilot study was done to see if the algorithm was capable
of detecting mitoses in 10 melanocytic cases. From these cases it was learned that mitoses
could be identified correctly (Figure 1), although false positive mitoses were indicated by
the algorithm as well (mostly consisting of melanin pigment, sebaceous gland nuclei, and
spindle cell nuclei such as stromal cells and neuroid differentiated melanocytes) (Figure 2).
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Figure 1. Examples of correctly indicated lesional and non-lesional mitoses by the algorithm (×800 mag-
nification). (a–c) Dermal mitosis in a melanocyte. (d–f) Epidermal mitosis in a melanocyte. (g) Dermal
mitosis in an inflammatory cell. (h,i) Epidermal mitosis in a (pigmented) keratinocyte. Classification of
indicated mitoses and type of cell origin was performed by an experienced pathologist (BS).
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Figure 2. (×800 magnification). Examples of incorrectly indicated mitoses by the algorithm. (a) Ker-
atin granules. (b) Melanin pigment. (c) Formalin pigment. (d) Nucleus of a sebaceous cell. (e) Spindle
cell nucleus of a melanocyte. (f) Squeezed nucleus of a lymphocyte.

In order to assess the algorithm’s practical use in assisting pathologists to find mitoses
in the current study, a selection of candidate mitoses was made (BS) before the annotated
cases were offered to the participating pathologists. The selection excluded non-nucleated
objects and nuclei of sebaceous glands specifically.

Application of the mitosis CNN was limited to a manually defined region of interest
(ROI), using freely available ASAP software (version 1.8.1). The ROI was defined by
an experienced pathologist (BS) and delineated the melanocytic lesion.

2.3. Statistical Analysis

For statistical analysis the four-tier scheme defined above was downsized to a three-
tier system by combining high-risk and low-risk intermediate lesions, as discrimination
of these lesions based on an H&E staining only without ancillary techniques is often not
feasible [37]. Concordance of pathologists with the consensus diagnosis was expressed as
the number and percentage of cases with identical diagnoses (in the three-tier system) for
every subclass as well as overall. As an overall measure of concordance of the pathologists
with the consensus diagnosis, Kappa statistics with 95% confidence intervals (CIs) were
calculated. Data from our previous study was used for analysing the variation over time.

3. Results

In total, 2868 objects (range 1–676 per case) were detected by the algorithm in 76 cases
that classified for a (candidate) mitosis. After manual selection, 825 (candidate) mitoses
were retained that were annotated in 61 cases comprising mainly epidermal and dermal
mitoses, i.e., lesional but also non-lesional mitoses in keratinocytes and inflammatory cells.
Furthermore, spindle cell nuclei, apoptotic cells and contused nuclei of e.g., lymphocytes,
were annotated as well.
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The overall concordance of the pathologists with the consensus diagnosis for all cases
excluding nevoid melanoma (n = 89) appears to be comparable with and without the use
of AI (89% vs. 90%), shown in Table 1. Agreement according to Cohen’s Kappa is at least
substantial with and without the mitosis algorithm, shown in Table 2, except for pathologist
PATH4 reaching at least moderate agreement with the consensus diagnosis.

Table 1. Concordance as a percentage (%) of cases identical with the consensus diagnosis based on
glass slides for all cases excluding nevoid melanoma (n = 89) and number of cases with reported
dermal mitosis (#DM) concerning intermediate lesions and melanoma (excl. nevoid melanoma)
(n = 54). a Glass; b WSI.

Pathologist

z-Stack Study [36]
Glass a/WSI b 1st Round WSI 2nd Round WSI

Algorithm

% #DM % #DM % #DM

EXP1 97 a 30 a 94 27 91 27

EXP2 93 a 22 a 91 26 89 27

PATH1 89 b 19 b 91 25 91 44

PATH2 89 b 22 b 96 25 94 35

PATH3 81 b 20 b 87 26 92 27

PATH4 75 b 17 b 84 27 76 40

PATH5 84 b 21 b 96 25 94 29

PATH6 90 b 18 b 84 21 84 21

Average 87 a,b 21 a,b 90 25 89 31
According to the consensus diagnosis, dermal mitoses are present in 28 cases. The table is intended to give
an overview of the concordance and number of reported dermal mitoses over time and doesn’t show if the
reported dermal mitoses are correct with respect to the consensus diagnosis.

Table 2. Kappa values (95% confidence interval) for all cases excluding nevoid melanoma (n = 89).
a Glass; b WSI.

Pathologist z-Stack Study
Glass a/WSI b 1st Round WSI 2nd Round

WSI Algorithm

EXP1 0.94 a 0.89 (0.80–0.98) 0.83 (0.73–0.94)

EXP2 0.88 a 0.83 (0.72–0.94) 0.79 (0.67–0.91)

PATH1 0.78 (0.66–0.90) b 0.83 (0.72–0.94) 0.83 (0.72–0.94)

PATH2 0.79 (0.67–0.91) b 0.92 (0.84–1.00) 0.89 (0.80–0.98)

PATH3 0.66 (0.51–0.79) b 0.76 (0.64–0.88) 0.85 (0.75–0.95)

PATH4 0.55 (0.39–0.70) b 0.70 (0.56–0.84) 0.55 (0.41–0.69)

PATH5 0.72 (0.58–0.83) b 0.92 (0.84–1.00) 0.90 (0.81–0.98)

PATH6 0.81 (0.69–0.91) b 0.73 (0.61–0.85) 0.73 (0.61–0.85)

In Table 1 the number of cases with reported dermal mitoses are presented as well.
According to the consensus diagnosis, in 28 cases out of a total of 54 malignant (excl.
nevoid melanoma) plus intermediate cases, dermal mitoses were present. All pathologists
excluding one academic pathologist reported more dermal mitoses with the mitosis algo-
rithm. Three pathologists reported a substantially higher number of cases with dermal
mitoses (PATH1, PATH2, and PATH4). After reviewing these cases (BS), it appeared that on
a regular basis, mitoses in infiltrates nearby the tumour front were interpreted as falsely
being mitoses from melanocytes (Figure 3). However, in three cases (cases 56, 73, and 100),
at least one pathologist reported a dermal mitosis by means of the algorithm that was
reconfirmed by the investigator (BS), and was discordant with the consensus diagnosis



Diagnostics 2022, 12, 436 6 of 12

based on glass slides (Figure 4), although the consensus concerning the presence of a dermal
mitosis was not unanimous at the time. Furthermore, pathologist PATH4 had a significant
lower concordance rate with the mitosis algorithm, where the algorithm did aid in correctly
changing the diagnosis from benign to malignant in six cases versus incorrectly changing
the diagnosis four times. The lower concordance was mainly due to incorrectly changing
the diagnosis from benign to intermediate in eight cases in which two cases of dermal
mitosis was reported incorrectly with the mitosis algorithm.
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Figure 4. (row above ×6, row below ×800 magnification). Correct dermal mitosis discordant with the
consensus. Above overview with red indicates mitosis, below a detailed view of the indicated mitosis.
(a) Case 56; melanocytoma/intermediate lesion, high risk. (b) Case 73; desmoplastic melanoma.
(c) Case 100; melanocytoma/intermediate lesion, low risk.

In general, the pathologists appeared to have an advantage with the mitosis algorithm
in the nevoid melanoma cases (n = 10), as shown in Table 3 and example given in Figure 5,
although the number of cases with reported dermal mitosis on average kept constant with
and without the mitosis algorithm, i.e., five to six. If melanoma and intermediate diagno-
sis were grouped together, all but one pathologist performed better with the algorithm,
recognizing the nevoid melanoma cases as being at least potentially malignant.

Table 3. Concordance of nevoid melanoma (n = 10) as a percentage (%) of cases identical with the
consensus diagnosis based on glass slides and number of cases with reported dermal mitosis (#DM).

Pathologist
z-Stack Study WSI 1st Round WSI 2nd Round

WSI Algorithm

% #DM % #DM % #DM

EXP1 - - 70 7 70 5

EXP2 - - 80 4 90 4

PATH1 50 4 70 6 80 8

PATH2 70 6 90 9 90 8

PATH3 20 0 40 3 70 3

PATH4 10 1 50 7 90 7

PATH5 80 4 70 5 70 6

PATH6 80 3 70 4 40 3

Average 52 3 68 5,6 75 5,5
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Figure 5. (row above ×400, row below ×100 magnification). Example of nevoid melanoma with
two annotated correct lesional dermal mitoses. Case 71; two pathologists changed the diagnosis from
benign to malignant with the aid of the algorithm.

4. Discussion

The application of AI in routine pathology diagnostics is on the rise. This study is the
first, to the best of our knowledge, to actually use a CNN-based mitosis algorithm to aid
pathologists in assessing melanocytic lesions in a routine diagnostic setting. Former studies
have shown that a deep learning algorithm has the potential to improve diagnostic work-
flow in diagnosis i.e., nodular basal cell carcinoma, seborrheic keratosis, dermal nevus, and
melanoma [38,39]. Andres et al. presented a proof-of-principle of a computer-aided staging
support system for malignant melanoma [40]. Studies have shown that immunohistochemi-
cal markers i.e., PHH3, Ki-67, P16, HM45, and PRAME can aid pathologists in the diagnosis
of melanoma and may reduce observer variation [26,41–45]. However, for pathologists it
is more convenient to make all analyses, including CAD, on H&E WSI, mostly because
it is less time-consuming and expected to be less expensive than immunohistochemistry
in the coming years. Mitosis detection on H&E slides has been investigated thoroughly
for breast cancer histopathology, where mitotic density was shown to be prognostic and is
therefore part of the grading system and is of importance for patient management [19]. For
melanoma diagnosis, the performances of mitosis algorithms have been tested in skin tissue
with promising results [40,46]. Studies investigating tumour grading have reported that it
is difficult to establish a ground truth for mitotic cells. Criteria for defining a mitosis can be
given but in practice these criteria are difficult to follow in a strict manner by pathologists
because of doubtful instances where subjective interpretations must be made. Misinterpre-
tation of mitoses can occur due to similarity to, for example, apoptotic cells. As a result,
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a relatively large inter- and intra-observer variation in recognizing mitoses is a fact [19].
This is reflected in our previous study on the effect of z-stack scanning, where pathologists
reported dermal mitoses in a range from 17 to 30 cases (n = 54) [36]. Nevertheless, in the
current study, even without the algorithm, the range narrowed to 21–27. This may be
a result of more experience with assessing WSI’s by the pathologists, since the execution of
the former study was during the years 2016 and 2017.

Tabata et al. found that traditional light microscopy was measurably more accurate in
detecting mitoses than WSI [4]. This may be explained because of the omission of focussing
in different z-planes in WSI. Another explanation is that WSI’s are scanned on 20× objective
while in microscopy assessment mitoses are mostly found on 40× objective. Although
it is reported that in WSI less mitoses are detected compared to light microscopy, in our
study a larger amount of dermal mitoses was reported on WSI with the aid of the mitosis
algorithm. On a regular basis, these mitoses were attributed falsely by some pathologists
to mitoses of inflammatory cells and, to a lesser extent, to the difficulty of interpreting
mitoses as, for example in squeezed nuclei of lymphocytes, bizarre nuclei of melanomas or
apoptotic cells. However, in three cases at least one pathologist reported a dermal mitosis
by means of the algorithm that was discordant with the ground truth based on glass slides
underpinning the potential advantage of the algorithm.

Concerning the nevoid melanoma cases, a mitosis was found sporadically with the aid
of the algorithm, changing the diagnosis from benign to either intermediate or melanoma.
Remarkable is the fact that only two of the eight pathologists reported more dermal mi-
tosis in the nevoid melanoma cases with the mitosis algorithm, although it did not aid
significantly in recognizing nevoid melanoma. In case 16 and 71, respectively, three and
two pathologists changed their diagnosis from benign to malignant. In these two cases
pathologists reported, respectively, one and four dermal mitoses to be of aid for the diag-
nosis. After reviewing the reported mitoses these were dermal mitoses in melanocytes
(BS). On the other hand, in some nevoid melanoma cases, despite the awareness of the
presence of dermal mitoses by the pathologist, these melanocytic lesions were still falsely
interpreted by several pathologists as benign, reflecting the complex interpretation of this
class of malignant lesions.

Finally, in this study, a high number of false positive mitotic objects were indicated
by the algorithm, e.g., spindle cell nuclei of stromal and melanocytic cells and squeezed
nuclei of mainly inflammatory cells, which appeared time-consuming for the pathologists
to assess. These false positive objects were an expected finding as the CNN was not trained
for skin tissue and melanocytic tumours, mainly due to a shortage of resources to tune
the algorithm for this purpose. Although this is a limitation of our study design, we did
overcome this by a manual selection of (candidate) mitoses. Nevertheless, a CNN can
be optimized in finding mitoses while simultaneously discriminating similar objects that
are not of interest to the pathologist. A perfect mitosis algorithm will indicate all mitoses,
not limited to the cell of interest, in the study of the melanocyte. This points out another
limitation of the study, that the mitosis algorithm doesn’t discriminate between a mitosis
from a melanocyte, keratinocyte, lymphocyte, or other cell. Immunohistochemical double
stains (PHH3, Ki-67 and/or MART1) can overcome this uncertainty, although it is costly
and time-consuming. In daily practice, the cell of origin is mainly classified on the basis of
the location of the mitosis, i.e., in a lesional or non-lesional area. In order to effectively aid
pathologists in identifying mitosis in melanocytic lesions, an algorithm should preferentially
discriminate mitosis in a melanocytic cell and omit mitoses mainly from keratinocytes and
inflammatory cells, as well as difficult-to-interpret objects such as, for example, squeezed
nuclei. Therefore, optimization in the differentiation of mitosis (like) objects may be one of
the next objectives in CNN mitosis detection development, e.g., to discriminate areas of
interest in lesional epidermis, lesional dermis, and non-lesional stroma.
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5. Conclusions

Diagnosing melanocytic lesions is challenging and may have major implications on
patient management and wellbeing. This study shows that a mitosis algorithm that was
primarily developed for breast cancer can be applied to melanocytic skin lesions, although
it is not applicable in a practical setting due to a high number of false positive-indicated
mitoses. After a correction procedure for false positive (candidate) mitoses, it appeared that
in general cases, pathologists perform similarly with the aid of a mitosis algorithm in WSI.
However, pathologists perform better with the algorithm in nevoid melanoma cases, which
are notoriously difficult to recognise. From this study it can be learned that pathologists
need to be aware of potential pitfalls using computer-aided diagnosis on H&E slides, such
as misinterpreting dermal mitosis from non-melanotic cells, i.e., mainly inflammatory cells.
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