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Functional Loss and Mortality in Randomized 
Clinical Trials for Amyotrophic Lateral 
Sclerosis: To Combine, or Not to Combine— 
That is the Estimand
Ruben P.A. van Eijk1,2,*, Kit C.B. Roes3, Inez de Greef- van der Sandt4, Leonard H. van den Berg2 and  
Ying Lu1

Amyotrophic lateral sclerosis is a rapidly progressive disease leading to death in, on average, 3– 5 years after first 
symptom onset. Consequently, there are frequently a non- negligible number of patients who die during the course of 
a clinical trial. This introduces bias in end points such as daily functioning, muscle strength, and quality of life. In this 
paper, we outline how the choice of strategy to handle death affects the interpretation of the trial results. We provide 
a general overview of the considerations, positioned in the estimand framework, and discuss the possibility that not 
every strategy provides a clinically relevant answer in each setting. The relevance of a strategy changes as a function 
of the intended trial duration, hypothesized treatment effect, and population included. It is important to consider this 
trade- off at the design stage of a clinical trial, as this will clarify the exact research question that is being answered, 
and better guide the planning, design, and analysis of the study.

Amyotrophic lateral sclerosis (ALS) is a relatively rare and rap-
idly progressive disease causing loss of voluntary muscle function 
and leading to death in, on average, 3– 5 years after first symptom 
onset.1,2 A key challenge in clinical trials for ALS is the extensive 
clinical heterogeneity between patients,3,4 where survival time 
may range from a few months to over 20  years.5 Traditionally, 
increasing the patient’s life expectancy has been the primary ob-
jective of randomized clinical trials in ALS. Such studies require, 
however, relatively long study durations and large sample sizes.6,7 
In more recent clinical trials, supported by the patient commu-
nity,8 a shift can be observed toward studies with a shorter fol-
low- up.9 In these settings, where study durations commonly range 
from 6 to 12 months, showing an improvement in overall survival 
has become impractical.10 This has changed the primary focus of 
ALS clinical trials to intermediate end points such as daily func-
tioning, muscle strength, or quality of life.

Nevertheless, even in these shorter clinical trials, frequently a non- 
negligible number of patients die during the course of the study.11,12 
Although randomization protects the treatment comparison before 
or at randomization, the occurrence of death after randomization 
is directly related to the patient’s disease progression5,13,14 and may 
be influenced by the treatment itself. As such, these associations 
with death could introduce bias in study end points that are based 
on function. At a patient level, we are often left wondering what 
would have happened had the patient not died: Would ALS have 
progressed functionally; would the treatment have protected the 

patient from further progression; or would death have occurred had 
the patient been randomized to a different arm.

In the past, there have been extensive discussions about how 
to handle death in common end points such as the Amyotrophic 
Lateral Sclerosis Functional Rating Scale– Revised (ALSFRS- R) 
or vital capacity.12,13 Proposed solutions range from simple im-
putations to complex algorithms which simultaneously integrate 
death with the end point of interest. An often overlooked aspect, 
however, is that the choice of how we address death alters the re-
search question and impacts the clinical interpretation of the study 
results. Therefore, prior to the discussion about which strategy for 
handling death may be “best” or “most optimal,” there is a need to 
define the exact research question that we seek to answer.15– 17

The question to be answered may not always be straightfor-
ward.17 A patient, for example, may be most interested in how 
treatment improves their daily functioning during life. The strat-
egy to address death, therefore, must reflect a method that provides 
the “unbiased” effect of treatment on the patient’s daily function-
ing during life. In contrast, a physician, payer, or regulator may be 
much more interested in the totality of the treatment effect. As 
such, a preferred strategy would be a method that summarizes the 
total treatment effect on daily functioning and survival, for ex-
ample, by using a composite end point. Both strategies answer a 
fundamentally different research question, namely: “What is the 
effect of treatment on daily functioning during life?” vs. “What is 
the effect of treatment on daily functioning and survival?” The 
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answer to each of these questions may be different, possibly leading 
to different conclusions from the same study results. Clarifying the 
exact scientific objective of a study will not only help guide the dis-
cussion about which strategy is required to handle death, but also 
direct the planning, design, and analysis of clinical trials, and the 
definition of primary and secondary objectives.

In this paper, therefore, we outline how our choice to handle 
death in the analysis may change the interpretation of the trial 
results, illustrated by clinical trials in ALS. We aim to provide a 
general overview of the main considerations together with a discus-
sion of the most commonly used strategies. We will position these 
discussions in the estimand framework.15,16,18

THE ESTIMAND FRAMEWORK
The estimand framework, as outlined in the ICH E9(R1) adden-
dum (International Council for Harmonization of Technical 
Requirements for Pharmaceuticals for Human Use Addendum 
on Estimands and Sensitivity Analysis in Clinical Trials to The 
Guideline on Statistical Principles for Clinical Trials, E9(R1)),19 
aims to help investigators define the exact research question and 
to align the trial objectives with the study design, including end 
points and analysis.20,21 The estimand, meaning “what needs to 
be estimated to address the research question,” can be conceptual-
ized as a systematic framework to phrase the different components 
of the research question. The estimand includes five attributes: (i) 
the treatment, i.e., a description of the intervention and its com-
parator, (ii) the population, i.e., the patients to whom the results 
should apply, (iii) the variable, i.e., the efficacy end point that is re-
quired to answer the research question, (iv) the strategy, i.e., a de-
scription of how to account for postrandomization events, and (v) 
the population- level summary, i.e., the summary statistic that re-
flects the treatment effect in the efficacy end point.22 An explicit 
term in the estimand framework is postrandomization event or 
“intercurrent event.” These are events that occur after treatment 
initiation, and affect either the interpretation or the existence of 
the measurements associated with the clinical question of inter-
est.18,23 Examples include use of concomitant treatments, changes 
in background treatments, treatment discontinuation, or the oc-
currence of terminal events, such as death.

The analytical strategy to account for these intercurrent events 
directly impacts the estimated treatment effect. Thus, based on the 
research question that we want to answer, we need to consider what 
strategy best aligns with our objectives. In general, the estimand 
framework distinguishes five different (example) strategies to ad-
dress intercurrent events: (i) treatment policy, (ii) hypothetical, 
(iii) composite, (iv) while on treatment (hereafter referred to as 
while alive), and (v) principal stratum.19 In the treatment policy 
strategy, one ignores the event and uses the data as is. An example 
is treatment discontinuation: We would use all available follow- up 
data of that patient, irrespective of whether the patient actually un-
derwent treatment or not (i.e., similar to the “intention- to- treat” 
principle). Strictly speaking, we should include the data on the 
variable of interest after the event. In case of death, however, such a 
strategy becomes infeasible as the data simply do not exist and we 
can’t ignore its occurrence.20,24,25 Accounting for death using the 
principal stratum strategy, thereby targeting the patients in whom 

death does not occur and estimating counterfactual outcomes be-
tween treatment arms, is hardly ever used.26 In this paper, there-
fore, we will focus primarily on the following strategies to account 
for death in ALS clinical trials: (i) the hypothetical strategy, en-
visaging a hypothetical world where death does not occur, (ii) the 
while- alive strategy, summarizing the treatment effect while the 
patient is alive, and (iii) the composite strategy, making death part 
of the primary end point of the study.

THE HYPOTHETICAL STRATEGY
In Table 1, we provide an overview of all randomized controlled 
clinical trials in ALS published between 2018 and 2021, together 
with the strategy applied to account for death when evaluating 
the ALSFRS- R, the most commonly used efficacy end point in 
ALS.9 In 6 of the 14 studies (43%), a hypothetical estimand was 
targeted. The treatment effect being estimated is the expected 
improvement in ALSFRS- R at the end of the trial, if the patient 
survives the treatment period. If death rates are low, this estimand 
has clinical value from a patient perspective, e.g., “If you continue 
to take the treatment and survive the coming X months, you can 
expect an efficacy response of Y points in your ALSFRS- R total 
score at month X.” In this case, the population- level summary is 
the mean difference in ALSFRS- R total score between treatment 
and placebo at month X. In order to estimate this effect size, how-
ever, all patients must complete the trial. The key challenge for 
this estimand is, therefore, that the occurrence of death is seen as 
a missing data problem, and we need to make an assumption for 
patients who died prior to the end of the study. Importantly, we 
must assume that the time of death is independent of treatment 
in order for the estimand to be clinically relevant. In fact, the rel-
evance of this estimand may be the real “hypothetical” part: Can 
we act hypothetically as if death did not occur and still answer a 
clinically relevant research question?

As can be seen in Table  1, a variety of suggestions has been 
proposed to impute patient outcomes after death, all leading 
to potentially different estimates of the treatment effect. In 
the most simplistic case, we could simply ignore the data of de-
ceased patients and solely use the data from patients who survive 
until month X (“survivor” or “complete case” analysis). For the 
population- level summary to be valid, however, we have to assume 
that the patients who die are not different from patients who sur-
vive, and that outcomes would have been similar at the end of the 
trial. Apart from the fact that this assumption could be contested 
in ALS, another disadvantage is that one uses only the data from 
survivors, which leads to loss of statistical power in an already 
rare disorder. As an alternative, we could attempt to impute the 
missing observations at month X for deceased patients, where two 
common methods include (i) last observation carried forward, or 
(ii) worst score imputation. In the first strategy, we assume that 
if the patient hadn’t died during our study, the patient’s condi-
tion would not have progressed after their last follow- up visit. In 
the second strategy we assume that all deceased patients would 
have had the worst ALSFRS- R score observed among surviving 
patients at month X.

The disadvantage of the above- mentioned methods is that one 
either makes a group- level assumption, e.g., all patients who die 
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receive score Z at month X, or that we make a too simplistic indi-
vidual assumption in a known progressive and highly heterogenous 
disorder. As we will discuss next in “the while- alive strategy,” mixed 
models for repeated measures (MMRM) partially overcome these 
limitations. The MMRM assumes that a patient who dies would 
have had similar outcomes at month X compared with a patient 
with similar ALSFRS- R scores up to the time of death, but who 
survived.27

THE WHILE- ALIVE STRATEGY
The critical issue with the hypothetical estimand is the fact that it 
loses its relevance when death rates increase, irrespective of which 
method is chosen. For example, if only 50% of the patients survive 
until month X, how relevant is it for a patient to know their expected 
improvement in ALSFRS- R at month X if they are unlikely to be 
alive at that time anyway? Therefore, as an alternative, we could es-
timate the treatment effect while the patient is alive. This changes 
the information communicated to the patient. For example: “If you 
continue to take the treatment while you are alive, you can expect an 
efficacy response of Y% reduction in your ALSFRS- R progression 
rate after X months or until death (whichever occurs first).” In this 
case, the population- level summary has changed from a mean dif-
ference at month X in the hypothetical estimand to a percent reduc-
tion in progression rate after X months or until death (whichever 
occurs first). Note that we also switch in the while- alive strategy to 
progression rates rather than the actual value of our end point, and 
the effect size is no longer linked to any particular timepoint. As a 

consequence, the treatment effect applies to a patient who survives 
X months, but also to a patient who dies prior to that time.

From Table 1 we can observe that the while- alive estimand 
was targeted in 36% of the ALS clinical trials. Regression mod-
els are a helpful method for estimating the average progression 
rate in the treatment and placebo arm. The treatment effect, 
subsequently, can be simply summarized as either an absolute or 
relative reduction in the disease progression rate compared with 
placebo. In general, there are currently two main methods for cal-
culating the average progression rate: a two- stage approach, cal-
culating, for each patient, their individual progression rate and 
averaging rates across patients (e.g., Ludolph, 2018, Table 1), or 
a one- stage approach, defining a random- slopes model with ran-
dom effects per patient (e.g., Benatar, 2018, Table 1).

The difference between the two methods is illustrated in 
Figure 1 for a hypothetical patient. The disadvantage of the two- 
stage approach is that when only a few data points are available, 
this could lead to extreme estimates (e.g., Figure 1d). Moreover, 
while the patient who dies will provide far less information over-
all, when estimating the group average rate of decline, a deceased 
patient and a patient who survives contribute equally. The one- 
stage approach using a random- slopes model improves on this by 
adjusting, or shrinking, the estimated patient- specific regression 
line toward the population mean, based on the amount of infor-
mation available. The MMRM is similar to the random- slopes 
model, with the main difference being an MMRM models time 
as categorical variable. As a consequence, the MMRM provides 

Table 1 Overview of strategies to handle death in randomized clinical trials in ALS between 2018 and 2021

Author (Year) Phase Drug Sample size No. deaths (%)
Duration  
(weeks) Method Strategy

Ahmadi (2018) II Nanocurcumin 54 5 (9%) 52 Last score Hypothetical

Aizawa (2021) II Perampanel 65 1 (2%) 48 MMRM Hypothetical

Benatar (2018) II Arimoclomol 38 13 (34%) 52 Mixed model While alive

Berry (2019) II Mesenchymal stem cells 48 0 (0%) 24 — — 

Chen (2020) II Tamoxifen 18 2 (11%) 52 MMRM Hypothetical

Cudkowicz (2021) III Levosimendan 496 44 (9%) 48 Joint rank Composite

de la Rubia (2019) II EH301 32 2 (6%) 16 Survivor 
analysis

Hypothetical

Kaji (2019) III Methylcobalamin 373 73 (20%) 182 Worst score Hypothetical

Ludolph (2018) III Rasagiline 252 75 (30%) 78 Linear 
regression

While alive

Meininger (2017) II Ozanezumub 303 14 (5%) 48 Joint rank Composite

Mora (2019) III Masitinib 394 33 (8%) 48 Zero score Composite

Paganoni (2020) II Phenylbutyrate- 
Taurursodiol

137 7 (5%) 24 Mixed model While alive

Statland (2019) II Rasagiline 80 9 (11%) 52 Mixed model While alive

van Es (2020) II Penicillin 
G- Hydrocortisone

16 6 (38%) 52 Joint model While alive

Vucic (2021) II Dimethyl fumarate 107 1 (1%) 36 Multiple 
imputation

Hypothetical

Randomized, placebo- controlled clinical trials, published between January 2018 and November 2021, which included at least 12 weeks of treatment. Crossover 
studies were excluded.
ALS, amyotrophic lateral sclerosis; MMRM, mixed model for repeated measures.
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the mean difference at a certain timepoint or visit, reflecting the 
hypothetical estimand, whereas a random- slopes model provides 
the difference in progression rates over a certain time period. 
Hence, the main benefit of the random- slopes model is that it 
provides an effect estimate applicable not only to patients who 
die prior to a certain timepoint but also to those who survive. 
In contrast, the MMRM provides an effect estimate applicable 
only to those patients who survive until a certain timepoint. A 
disadvantage of the random- slopes model is, however, that we 
not only need to make an assumption about the time trajectory 
(e.g., linear, quadratic, cubic) but also about the treatment effect 
over time, which is not required for the MMRM.

In Figure 1 we can see that the reason why data are missing, 
or the timing of death occurring do not affect the one- stage or 
two- stage approach. For the model, it simply does not matter 
whether the patient dies after the last observed data point, or 
whether they simply withdraw from the study. This may intro-
duce bias,28,29 and— also from a clinical perspective— it would 
be important to consider why the data are missing. This addi-
tional information can be incorporated by using a different class 
of models called shared- parameter or joint models.12,13,30 A joint 
model is identical to a random- slopes model, but rather than 
optimizing model parameters using only the ALSFRS- R data, it 
also incorporates information on survival time. As such, model 

parameters, including the individual trajectory of the patient, 
are estimated such that the model optimally represents both the 
ALSFRS- R and survival data.30,31 Due to this joint optimization 
process, the timing of death, or the reason for dropout, lead to 
different patient trajectories and may prevent bias when used 
appropriately.12,29

A SIMULATED COMPARISON
By means of simulation, we will illustrate the impact of each of 
the discussed methods in a hypothetical clinical trial setting. In 
this setting, treatment has no effect on the ALSFRS- R but pro-
duces harmful side- effects, doubling the hazard for death in the 
treatment arm. This results in a 12- month survival probability 
of 85% for patients allocated to placebo, and 75% for patients 
allocated to treatment. Suppose we enroll 100 patients per arm, 
where ALSFRS- R is collected at months 0, 1, 2, 4, 6, 8, 10, and 12. 
Furthermore, let us assume that, based on previous literature,13 
patients decline on average by 1.06 ALSFRS- R points per month, 
where each point loss in ALSFRS- R increases the immediate risk 
of death by 13%. Based on these settings, the change from base-
line is, on average, 12.72 ALSFRS- R points for both treatment 
arms. Table  2 provides the estimated mean per treatment arm, 
together with the treatment effect, for each method. For the sake 
of illustration, we made the while- alive estimand comparable to 

Figure 1 Comparison of different models for the estimated patient trajectory after death. Illustration of hypothetical patient data with varying 
reasons for and timing of dropout. The green line represents the overall population trajectory over time (e.g., the average of all patients in a 
well- defined cohort, or patients with ALS allocated to a treatment arm). (a) In the first scenario, the patient dies between Month 3 and Month 
4. As can be seen, in a random- slopes model (red), the patient’s individual regression line (black) is drawn or shrunk toward the population 
average, based on the amount of information available. (a– c) A joint model (blue) provides a similar estimate compared with the random- 
slopes model, but alters the shrinkage factor based on the reason and timing of dropout. The blue shaded area highlights the difference 
between the random- slopes and joint model. In scenario (d) we illustrate how the model estimates change if the last two observations prior to 
death are not observed. ALSFRS- R, Amyotrophic Lateral Sclerosis Functional Rating Scale– Revised.

(a) (b)

(c) (d)

-Slopes Model
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the hypothetical estimand by multiplying the estimated monthly 
progression rate by 12.

For the hypothetical estimand, the survivor analysis, last ob-
servation carried forward, and worst case imputation led to con-
siderable deviating estimates, falsely suggesting a beneficial or 
harmful effect on ALSFRS- R. The bias was reduced when using 
the MMRM, but underestimation of the mean change from base-
line remains. To put the observed differences into context: a 2.5- 
point difference after 24 weeks was considered to be sufficient to 
market a therapy for ALS in several countries.32 The one- stage and 
two- stage approaches resulted, in this simulation setting, in a closer 
approximation to the truth, though results may change when sim-
ulating different missing data mechanisms or nonlinear functional 
trajectories.33,34 Interestingly, the MMRM and random- slopes 
model rejected the null hypothesis of no effect slightly more often 
in favor of the treatment even though treatment has no effect on 
function and shortens survival time. Though the differences are 
small, these findings are comparable to a previous study12 and 
demonstrate the potential problems when our assumptions are not 
entirely accurate.

THE COMPOSITE STRATEGY
As an alternative to the while- alive and hypothetical strategy, we 
can integrate death with the variable of interest and make death 
part of the primary end point definition. Consequently, the com-
posite analytical strategy does not require data after death.35 An 
important objective is to define a composite with the ALSFRS- R 
in which the occurrence of death does not result in a “good” out-
come.24,25 A simple method, for example, is to score deceased 
patients worse than patients who survive prior to ranking their 
ALSFRS- R outcomes. As a consequence, however, the treatment 
effect that we estimate in a composite estimand no longer solely 
reflects the improvement in function but also contains the im-
provement in survival.

In ALS clinical trials, two common composite strategies in-
clude (i) giving all deceased patients the worst theoretical score 

on ALSFRS- R (0), or (ii) ranking patients based on their time of 
death and ALSFRS- R outcome. The first strategy scores all de-
ceased patients equally and does not distinguish when the patient 
has died during the study. Rank- based methods, such as the com-
bined assessment of function and survival (CAFS),11 or variants 
thereof,36 improve on this by giving the first patient who dies the 
lowest score, and the patient who survives with the best ALSFRS- R 
outcomes the highest score. This reduces the number of “tied” ob-
servations and increases statistical power.

Nevertheless, a disadvantage of rank- based methods, and 
composite strategies in general, is that the interpretation and 
quantification of the treatment effect is less straightforward.35 
For a rank test, we could express the effect size as a winning 
probability,37 reflecting the probability that a random patient 
in the treated arm has a better outcome than a random patient 
in the placebo arm. This probability, however, may be difficult 
to grasp for a patient, especially since the effect could be driven 
by either an improvement in function or survival, and it does 
not provide an exact quantity that is relatable to daily life. The 
time to a composite event end point, such as the time to a 6- 
point decrease in ALSFRS- R or death,38 could be considered as 
an alternative, and may be easier to interpret, as it reflects the 
probability of an unfavorable event in the following X months, 
regardless of survival.24 A composite event, however, considers 
each component to be of equal importance, which may not al-
ways be appropriate when the clinical impact of components 
differs significantly.

Importantly, most of the composite methods use only part of 
the data: Patient outcomes are based on either their survival time 
or their ALSFRS- R score. This may not only lead to a suboptimal 
use of information, but could also “dilute” treatment effects if the 
components of the composite are contributing disproportionally. 
For example, if 20% of the patients die at the end of the trial, 80% 
of the ranking scores are based on ALSFRS- R data. If treatment 
selectively improves survival and not the ALSFRS- R, the treat-
ment effect that we observe on the composite end point can only 

Table 2 Estimated treatment effect on functional decline for a hypothetical randomized controlled trial with fatal side 
effects
Estimand

Mean placebo  
(at month 12)

Mean treatment  
(at month 12)

Mean difference  
(treated minus 

placebo)

One- sided rejection proportion

Difference ≤ 0 Difference ≥ 0

Truth (generated via joint model) −12.72 −12.72 0.000 0.0250 0.0250

Hypothetical estimand

Survivor analysis (complete case) −11.47 −10.64 0.838 0.0058 0.0771

Last observation carried forward −11.48 −10.58 0.900 0.0037 0.1028

Worst score imputation −15.01 −16.82 −1.813 0.1328 0.0024

Mixed model for repeated measures −11.56 −11.45 0.104 0.0193 0.0291

While- alive estimand

Regression model (two- stage) −12.85 −12.92 −0.070 0.0235 0.0256

Random- slopes model (one- stage) −12.66 −12.59 0.067 0.0219 0.0290

The while- alive estimand targeted the progression rate per month; results were multiplied by 12 to make them comparable. Results are based on 100,000 
iterations; the joint modeling framework was used to simulate conditional ALSFRS- R and survival data; treatment resulted in a hazard ratio of 2.0; simulation 
parameters are described elsewhere (100 patients per arm).13

ALSFRS- R, Amyotrophic Lateral Sclerosis Functional Rating Scale– Revised.
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be driven by 20% of the patients, while the remaining 80% of the 
patients provide no meaningful information for the effect estimate. 
Multivariate methods, such as a joint model that incorporates all 
available information for ALSFRS- R and survival, may provide a 
more powerful alternative,13 but this may be at the price of increas-
ing the risk of defining an erroneous model.39

TO COMBINE, OR NOT TO COMBINE?
Overall, each of the three strategies to address death have strengths 
and weaknesses, irrespective of which method is chosen (Table 3). 
For clinical trials with a longer follow- up duration, where death 
rates are expected to exceed 20– 30%,10 the hypothetical esti-
mand may be the least informative for patients and physicians as 
it reflects an imaginary world applicable to only a few patients. 
Nevertheless, the hypothetical estimand holds value for shorter 
studies with a negligible number of deaths as it may require fewer 
assumptions about the treatment effect than the while- alive esti-
mand, and its interpretation is more straightforward than for a 
composite. The primary choice for longer, pivotal clinical trials 
in ALS seems, however, to be composed of either the while- alive 
strategy or a strategy that combines the ALSFRS- R and mortality 
into a composite end point.

An argument in favor of the composite strategy is that it reflects 
the totality of the treatment effect. Especially in a disease such as 
ALS, for which there is an urgent and enormous unmet medical 
need, one may prioritize simple “yes/no” decisions about the suc-
cess of the new treatment over the exact interpretation of its bene-
fits.15 Suppose a treatment reduces the ALSFRS- R progression rate 
but at the same time affects an important prognostic mechanism 
that is not captured by the ALSFRS- R (e.g., weight loss or cogni-
tive decline). Solely measuring the ALSFRS- R would only partially 
capture the treatment response and may falsely discard an effica-
cious drug. In these settings, capturing the totality of the treatment 

effect on a composite of ALSFRS- R and survival holds clear advan-
tages over the while- alive strategy.

The success of the composite strategy, however, depends on how 
well one is able to capture the treatment effects on the individual 
components. If one of the components is nearly unquantifiable, the 
effect observed on the composite end point can only be driven by 
other components. The same holds true for the ALSFRS- R and 
survival: In a 6- month study on 100 patients, the expected number 
of deaths is 0 to 5.10 As such, any treatment effect on the composite 
is virtually solely driven by the ALSFRS- R. Under these circum-
stances, even if treatment improves additional prognostic mecha-
nisms, the disadvantages of using a composite may not outweigh 
the benefits of other strategies.

Thus, the choice to combine the ALSFRS- R and survival is a 
trade- off between the disadvantages and advantages of each strat-
egy. This is for an important part driven by the number of deaths 
and depends, therefore, on the underlying survival distribution and 
the duration of the study.10 This trade- off is illustrated in Figure 2 
for a while- alive strategy using a random- slopes model, and a com-
posite strategy using the CAFS in six hypothetical scenarios with 
different survival rates. In each scenario, treatment reduces the 
ALSFRS- R progression rate by 30%. In scenarios b, d, and f, treat-
ment additionally affects a prognostic mechanism not captured by 
the ALSFRS- R. As can be seen, even though the CAFS captures 
the totality of the treatment effect, this only leads to improved sta-
tistical power over the while- alive strategy in longer trials, or when 
death rates are high. On the other hand, if there is no additional 
prognostic benefit of treatment, or survival rates are low, the CAFS 
underperforms due to the loss of information.11– 13 As such, the de-
cision to use a composite strategy, especially when the primary goal 
is to find an efficacious drug, should be carefully weighed against 
the hypothesized treatment benefit, intended duration of the trial, 
and the targeted patient population.

Table 3 Summary of the hypothetical, while- alive, and composite estimand for ALS clinical trials

Hypothetical strategy While- alive strategy Composite strategy

Example re-
search question

In patients with ALS who survive 
12 months, what is the between- group 
difference in mean daily functioning, 

as measured by the ALSFRS- R 
total score, between treatment 

and placebo, at 12 months after 
randomization?

In patients with ALS, what is 
the between- group difference 

in mean rate of functional loss, 
as measured by the ALSFRS- R 
total score, between treatment 
and placebo, over 12 months 

after randomization or until death 
(whichever occurs first)?

In patients with ALS, what is the 
probability that a random patient on 

treatment has a longer survival or better 
daily functioning, as measured by the 

ALSFRS- R total score, compared with a 
random patient on placebo, at 12 months 

of treatment?

Benefits • Clinically relevant and easy to 
explain to patient if survival prob-
ability is high

• Powerful strategy when death rates 
are low

• Clinically relevant and easy to 
explain to patient, irrespective 
of survival probability

• Depending on method, fewer assump-
tions and no need to extrapolate after 
death

• Estimates the totality of the treatment 
effect on both ALSFRS- R and survival

Disadvantages • Assumptions are needed about the 
patient- specific trajectory before 
and after death, which can intro-
duce bias in effect estimate

• Interpretation of and applicability to 
the intended population becomes 
complicated when death rates are 
high

• Assumptions are required 
about the patient- specific 
trajectory over time

• Assumptions are required 
about the response to treat-
ment over time

• Interpretation of the treatment effect 
is less straightforward and can be 
driven by each component

• Loss of information and/or power when 
death rates are low, or treatment af-
fects only one component

ALS, amyotrophic lateral sclerosis; ALSFRS- R, Amyotrophic Lateral Sclerosis Functional Rating Scale– Revised.
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FINAL REMARKS
In this paper, we have provided a general overview of the consider-
ations that play a role when addressing death in efficacy end points 
for ALS clinical trials. The key consideration is that the chosen 
strategy has a major impact on the research question being answered. 
Not every analytical strategy will necessarily provide a clinically rele-
vant answer; its relevance changes as a function of the intended trial 
duration, hypothesized treatment effect, and included population. 
Therefore, clarifying at the design stage exactly what the research 
question is that one aims to answer will guide the discussion about 
which analytical strategy for handling death is required and will bet-
ter direct the planning, design, and analysis of the study.

It is important to note that we have only discussed the strategy 
for addressing death. The estimand for other intercurrent events, 
e.g., treatment discontinuation due to adverse events or nonadher-
ence, require different strategies. In the end, the final estimand of 

a trial will be composed of different strategies to address each in-
tercurrent event individually.22,25 Moreover, in this paper we have 
discussed methods commonly used to address death in ALS clinical 
trials; we did not aim to provide an exhaustive list of all possible op-
tions, or provide an in- depth review of each method. Future work 
can play a major role in this regard. Innovative methods may over-
come the limitations of current analytical strategies and allow fur-
ther scrutiny of when a particular strategy might be most beneficial. 
The simulations provided in this paper are intended simply as an 
illustration, and the trade- off between strategies may change when 
alternating the expected treatment response, the relationship be-
tween function and mortality, and using different design settings.
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Figure 2 Empirical power of the while- alive and composite strategies. Data were simulated for a hypothetical randomized controlled clinical 
trial where treatment reduces ALSFRS- R progression rate by 30% (a, c, and e). In scenarios (b, d, and f), an additional treatment effect 
on survival, independent of the ALSFRS- R, was added with an HR of 0.63.40 The composite strategy was based on the CAFS (combined 
assessment of function and survival) end point;11 the while- alive strategy was approached using a random- slopes model. Each scenario was 
simulated 10,000 times; exact simulation details are provided elsewhere.13 HR, hazard ratio.
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