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ABSTRACT
BACKGROUND: Transcriptome studies have revealed age-, disease-, and region-associated microglial phenotypes
reflecting changes in microglial function during development, aging, central nervous system homeostasis, and
pathology. The molecular mechanisms that contribute to these transcriptomic changes are largely unknown. The
aim of this study was to characterize the DNA methylation landscape of human microglia and the factors that
contribute to variations in the microglia methylome. We hypothesized that both age and brain region would have a
large impact on DNA methylation in microglia.
METHODS: Microglia from postmortem brain tissue of four different brain regions of 22 donors, encompassing 1
patient with schizophrenia, 13 patients with mood disorder pathology, and 8 control subjects, were isolated and
assayed using a genome-wide methylation array.
RESULTS: We found that human microglial cells have a methylation profile distinct from bulk brain tissue and
neurons, and age explained a considerable part of the variation. Additionally, we showed that interindividual factors
had a much larger effect on the methylation landscape of microglia than brain region, which was also seen at the
transcriptome level. In our exploratory analysis, we found various differentially methylated regions that were related to
disease status (mood disorder vs. control). This included differentially methylated regions that are linked to gene
expression in microglia, as well as to myeloid cell function or neuropsychiatric disorders.
CONCLUSIONS: Although based on relatively small samples, these findings suggest that the methylation profile of
microglia is responsive to interindividual variations and thereby plays an important role in the heterogeneity of
microglia observed at the transcriptome level.
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Microglia are the resident population of immune cells of the
brain parenchyma. They are derived from myeloid progenitors
in the yolk sac and populate the brain early during embryo-
genesis (1). In response to environmental insults, microglia are
involved in initiating and regulating inflammatory responses in
the central nervous system. They have also emerged as key
players in neurodevelopment and neuronal functioning in
adulthood (2). Microglia dysfunction has therefore been hy-
pothesized to play a critical role in neurodevelopmental dis-
orders, as well as in neurodegenerative and neuropsychiatric
disorders (3,4), motivating increasing research into the role of
microglia in health and disease.

Thus far, most studies have analyzed microglial phenotypes
and changes at the level of gene expression. Using genome-
wide transcriptome analyses and targeted quantitative poly-
merase chain reaction, it was shown that microglia show brain
region–specific phenotypes (5–7). This was also observed for
rodent and human microglia at the protein level (6,8). The
microglial transcriptome has further been shown to be influ-
enced by sex and aging (9–14). Disease-associated
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transcriptome alterations have been previously reported in
microglia isolated from postmortem brain tissue of patients
with Alzheimer’s disease (15–18) and multiple sclerosis (19,20)
and corresponding animal models (21,22). Taken together,
these studies suggest that microglia form a heterogeneous
population of cells across brain regions, sexes, age ranges,
and diseases. It is thought that these are reflections of intrinsic
properties of different subtypes of microglia with specialized
functions in health and pathology (22–25).

The molecular mechanisms that contribute to the hetero-
geneity of microglia that is observed at the transcriptome level
are not yet clear. Epigenetic mechanisms are important regu-
lators of gene expression, with DNA methylation being the
most stable and long-lasting epigenetic mechanism of gene
regulation (25–27). DNA methylation modifications are trans-
mitted to daughter cells and therefore are important for
providing a specific and stable profile of gene expression in
different tissues and their specific cell types. Most of these
DNA methylation patterns are generated during development.
In addition, adjustments in DNA methylation patterns occur in
atry. This is an open access article under the
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response to specific molecular triggers, which allows the cell to
adapt gene expression to a dynamic environment. Mutations
and variants in genes that regulate DNA methylation have been
associated with several psychiatric disorders (27). In addition,
DNA methylation of blood and bulk brain tissue has been
related to psychiatric pathology and the response of patients
with psychiatric disorders to medication (28–32).

The aim of this study was to analyze the DNA methylation
landscape of human microglia and factors that contribute to
variation in microglia DNA methylation profiles. Based on
previous studies, we hypothesized that age and brain region
are important drivers of the variance in human microglia DNA
methylation patterns. We isolated microglia from the medial
frontal gyrus (MFG), superior temporal gyrus (STG), sub-
ventricular zone (SVZ), and thalamus (THA) and performed a
genome-wide methylation array. By including microglia iso-
lated from four different brain regions with a wide spectrum of
ages from donors with and without psychiatric disorders, we
were able to analyze the contribution of region, age, sex, and
disease status on the microglia methylome. As an exploratory
analysis, we also investigated DNA methylation patterns be-
tween microglia isolated from cases with mood disorders and
nonpsychiatric control subjects. We further analyzed RNA
sequencing (RNA-seq) data of 50 microglia samples that are
also in the methylation dataset to investigate how DNA
methylation variation and mood disorder related–changes are
related to gene expression levels.

METHODS AND MATERIALS

Donors

Fresh postmortem brain tissue from the MFG, STG, SVZ, and
THA was obtained from the Netherlands Brain Bank (http://
www.brainbank.nl). Permission to collect human brain mate-
rial was obtained from the Medical Ethical Committee of the
VU University Medical Centre, Amsterdam, The Netherlands.
All donors had provided informed consent for the use of brain
tissue and clinical information for research purposes prior to
death. Demographic and clinical characteristics of the donors
are summarized in Table 1 and described more extensively in
Table S1 in Supplement 2. The microglia samples that were
used in this study were isolated as part of a larger initiative to
characterize microglia across different ages and brain regions,
as well as in relation to genotype (33). We included different
Table 1. Demographics by Psychiatric Diagnoses for All Brain D

Demographics
Total,
N = 22

Con
Subjects

Regions, No. of Donors

Medial frontal gyrus 16 6

Superior temporal gyrus 14 5

Subventricular zone 15 4

Thalamus 11 5

Age, Years, Mean 6 SD (p Value)a 68.4 6 23.3 79.1 6

Sex, Female/Male (p Value)b 14/8 6/

Postmortem Delay, Minutes, Mean 6 SD (p Value) 454 6 116 450 6
ap Value compared with control subjects (t test).
bp Value compared with control subjects (c2 test).
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brain regions because there is evidence for a heterogeneous
phenotype of microglia across regions, especially for white
versus gray matter, cortical versus subcortical regions, and
cerebellum versus cortical regions (5,8,20,34–36). The brain
regions of interest in this study, the MFG, STG, SVZ, and THA,
were selected based on these previous studies, the fact that
they have been related to affect circuits in mood disorders
before (37,38), as well as possibilities to obtain larger pieces of
fresh brain tissue from the Netherlands Brain Bank.

Human Primary Microglia Isolation

Because microglia are only a smaller subpopulation (2%–8%)
of cells in the human brain (39,40), most of the methylation
signals derived from microglia are probably lost when per-
forming bulk brain tissue analysis of DNA methylation. We
therefore used human primary microglia isolated from fresh
postmortem brain tissue as described previously (41–43).
Briefly, fresh postmortem brain tissue from these four brain
regions was mechanically and enzymatically dissociated in a
glucose-potassium-sodium buffer (8.0 g/L NaCl, 0.4 g/L KCl,
1.77 g/L Na2HPO4 $ 2H2O, 0.69 g/L NaH2PO4 $ H2O, 2.0 g/L D-
(1)-glucose, 0.3% bovine serum albumin [Merck]; pH 7.4) and
supplemented with collagenase type I (3700 units/mL; Wor-
thington Biochemical) and DNase I (200 mg/mL; Roche) at 37
�C for 60 minutes while shaking. Because the composition of
SVZ is different from the other regions with more white matter,
this tissue was digested using an alternative protocol of 0.2%
trypsin (Invitrogen) for 30 minutes while shaking. A Percoll
(Amersham, Merck) gradient was generated to separate the
microglia from myelin and cellular debris. The middle layer
enriched for microglia was washed twice, and microglia were
pulled down with CD11b-conjugated magnetic beads (Miltenyi
Biotec). Microglia were either lysed using 200-mL RLT buffer
(Qiagen) for RNA-seq analysis or centrifuged and the cell pellet
stored for DNA methylation analyses.

DNA Methylation

DNA was extracted with QIAamp DNA Micro Kit (Qiagen).
Genomic DNA was bisulfite converted (Zymo Research), and
CpG methylation was determined using Illumina Infinium EPIC
Human Methylation BeadChip microarrays, as described pre-
viously (44). Data and quality control (QC) analyses were per-
formed using R language 4.0.3 (45), an environment for
statistical computing, and Bioconductor 2.13 (46). Raw data
onors

trol
, n = 8

Major Depressive
Disorder, n = 10

Bipolar
Disorder, n = 3

Schizophrenia,
n = 1

8 1 1

7 1 1

8 2 1

4 1 1

17.1 59.6 6 26.1 (.33) 73.3 6 25.1 (.044) 55

2 6/4 (.50) 3/0 (.48) 1/0

104 469 6 125 (.37) 458 6 152 (.46) 335
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files (.idat) were processed by minfi package (47). For all
samples assayed, .97% probes passed detection call rates (p
, .00005) (Figure S1A in Supplement 1). Sex QC analysis did
not identify any samples to be mislabeled relative to reported
sex (Figure S1B in Supplement 1). For QC sample tracking of
different brain regions, we used the 59-single nucleotide
polymorphism probes included in the EPIC 850 bead array,
confirming that individuals with multiple sample specimens
across multiple brain regions grouped together (Figure S1C in
Supplement 1).

Multidimensional scaling (MDS) was used for visualizing
clustering of the DNA methylation data across various factors
(i.e., age, brain regions, diagnosis). DNA methylation levels in
beta values were transformed to M-values (logit transformation
of beta values) and used in subsequent analyses. To quantify
the contributions of different factors to overall DNA methyl-
ation levels, we performed principal component analysis (PCA)
on the M-value matrix, which was linear adjusted for age and
sex, and selected the top 20 principal components (PCs),
which accounted for .99.9% of total variability within the
methylation data. For every PC, we used analysis of variance
to quantify the variance contributed by each factor. Percent
variance reported for each factor was derived from the ratio of
variances for each PC divided by the total variance summed
across the 20 PCs. To identify differentially methylated regions
(DMRs) between cases with mood disorder diagnosis and
controls, we applied a linear mixed model with donor as
random effect and age, sex, and brain region as fixed effect
covariates using the dream method (48) as implemented in the
variancePartition package (49) implemented in R. We obtained
t statistics and associated p values for each CpG site. For each
brain region separately, we also performed diagnostic com-
parisons using a linear model with sex and age as covariates.
Quantile-quantile plots were generated for each model tested
to check for p value inflation. We performed p value correction
by multiplying these with lambda if necessary (Figures S2 and
S3 in Supplement 1). The adjusted pointwise p values were
then used for the identification of DMRs using the combined p
values (comb-p) tool (50). Significant DMRs using Sidak
correction (51) for multiple testing correction were reported.

To determine how the methylation profiles of microglia
compare with other neural cell types, we combined publicly
available EPIC 850K methylation data (52) (accession number
GSE111165) from bulk brain tissue, as well as isolated
neuronal (NeuN1) and glial (NeuN2) cells with our microglia
dataset; applied surrogate variable analysis on the M-value
matrix using R package surrogate variable analysis to adjust
for batch effects; and visualized the sample clustering via
MDS.
RNA Sequencing

Among the 52 microglia samples from subjects with mood
disorders, 50 have been sequenced via RNA-seq as part of our
microglia genomics atlas initiative (33). Total RNA was
extracted with the RNeasy mini kit (Qiagen) in combination with
an RNase-Free DNase Set (Qiagen) for additional DNA
removal, according to manufacturer’s protocol. RNA library
preparations and sequencing reactions were conducted at
GENEWIZ. SMART-Seq v.4 Ultra Low Input Kit for Sequencing
574 Biological Psychiatry March 15, 2022; 91:572–581 www.sobp.org
was used for full-length complementary DNA synthesis and
amplification (Clontech), and Illumina Nextera XT library was
used for sequencing library preparation. Briefly, complemen-
tary DNA was fragmented and adapter was added using
transposase, followed by limited-cycle polymerase chain re-
action to enrich and add index to the complementary DNA
fragments. The final library was assessed with Agilent
TapeStation. The sequencing libraries were multiplexed and
clustered on a flowcell. After clustering, the flowcell was
loaded on the Illumina HiSeq instrument according to manu-
facturer’s instructions. The samples were sequenced using a
2 3 150 paired end configuration. Image analysis and base
calling were conducted by HiSeq Control Software. Raw
sequence data (.bcl files) generated from Illumina HiSeq were
converted into fastq files and demultiplexed using Illumina’s
bcl2fastq 2.17 software. RNA-seq data were processed using
the RAPiD pipeline (53). RAPiD aligns samples to the hg38
genome build using STAR (54) (v.2.7.2a) using the GENCODE
v.30 transcriptome reference and calculates QC metrics using
Picard (55). RNA-seq QC was performed by applying filters to
remove samples meeting the following criteria: 1) samples with
,10 million reads aligned from STAR, 2) samples with .20%
of the reads aligned to ribosomal regions, and 3) samples with
,10% of the reads mapping to coding regions.

The voomWithDreamWeights function in the R package
variancePartition was used to get log counts per million (CPM)
matrix, where the design matrix consists of age, sex, diag-
nostic status, and brain region as fixed effect and donor as
random effect. Based on the mean-variance trend plot of
logCPM generated from the voomWithDreamWeights function
(48), we empirically chose the threshold of 1 to filter out un-
detected genes (defined as mean logCPM $ 1) in both diag-
nostic groups. To quantify contributions of different factors
toward variation of microglia gene expression profiles, ana-
lyses were performed similarly as described for DNA methyl-
ation data above. Differential gene expression analysis was run
parallel to methylation analysis with the same model settings.

RESULTS

We used the EPIC 850K array to characterize DNA methylation
profiles of microglia isolated from a total of 56 sample speci-
mens obtained from 22 individuals across four different brain
regions. Individual cases included patients with major
depressive disorder (MDD), bipolar disorder, or schizophrenia,
as well as individuals without any neurologic or neuropsychi-
atric disorder (Table 1; Table S1 in Supplement 2). The distri-
bution of the samples across disorders and regions is depicted
in Figure 1A. Using a publicly available methylation dataset, we
showed that microglia display a distinct methylation profile
compared with bulk brain tissue, isolated neurons, and mixed
glial populations (Figure 1B).

Influence of Age and Sex on Microglia Methylome

The ages of the samples ranged from 21 to 103 years
(Table S1 in Supplement 2), as shown in the age distribution
plot in Figure 2A. As expected, we found that microglia DNA
methylation patterns track with chronological age
(Figure 2B). In addition, as expected, sex chromosomes
show distinct DNA methylation profiles, wherein individual
/journal
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A B Figure 1. (A) Sample distribution across disease
status and brain region used in DNA methylation
assays. (B) Multidimensional scaling plot to visualize
clustering of microglia compared with previously
published DNA methylation data from bulk brain,
neuron, and glia samples (accession number
GSE111165) using the Illumina HumanMethylation
EPIC platform. Samples from different datasets were
first combined and adjusted for batch effect using
surrogate variable analysis and subsequently used
to generate a multidimensional scaling plot. MDD,
major depressive disorder; MFG, medial frontal gy-
rus; SCZ, schizophrenia; STG, superior temporal
gyrus; SVZ, subventricular zone; THA, thalamus.
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cases separated based on reported sex (Figure S1B in
Supplement 1), but following removal of sex chromosomes,
no such sex separation was observed within autosomal
chromosomes (Figure 2C). To quantify the contribution of
age and sex on DNA methylation patterns, we performed
PCA, and in line with previous studies in other cell types and
tissues (52), we found that age has a much larger impact on
the microglial methylome, explaining 21.7% of the variability,
than sex, with only 2.1% (Figure 2D; Figure S4 in
Supplement 1). However, the individual subject effect
appeared to be strongest, explaining 36.5% of the variability
in the DNA methylation data.
A B

C D
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Influence of Region, Psychiatric Pathology, and
Individual on Microglia Methylome

To investigate the influence of these and other factors on the
microglial methylome, in subsequent analytic models, we
included age and sex as covariates. Visualizing the DNA
methylation data by brain region via an MDS plot (Figure 3A),
we showed that the samples did not cluster by region but
clustered by individual (Figure 3B). Specifically, DNA methyl-
ation patterns from different brain regions from the same in-
dividual often clustered together (Figure 3A, B). We also
visualized the DNA methylation data via MDS by diagnosis
status, and we showed that control subjects tend to cluster
Figure 2. (A) Sample age distribution. (B) MDS
plot labeled by age and (C) MDS plot labeled by sex,
using DNA methylation data from autosomal chro-
mosomes only. (D) Bar plot showing contribution of
different demographic factors, brain region, and
psychiatric diagnosis to observed DNA methylation
variability in top 20 principal components. MDS,
multidimensional scaling.
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Figure 3. Multidimensional scaling plots of DNA
methylation data adjusted for age and sex. (A) Brain
region. (B) Only individuals for whom we included
three or four regions from the same individual,
colored by individual ID. (C) Disease status,
including MDD, bipolar disorder, and SCZ. (D) MD,
including MDD and bipolar cases and excluding
SCZ. ctrl, control; ID, identification; MD, mood dis-
order; MDD, major depressive disorder; MFG,
medial frontal gyrus; SCZ, schizophrenia; STG, su-
perior temporal gyrus; SVZ, subventricular zone;
THA, thalamus.

Characterizing the Human Microglia Methylome
Biological
Psychiatry
separately from patients with either bipolar disorder or MDD,
but not schizophrenia (Figure 3C). This is further supported by
grouping bipolar disorder and MDD together in a mood dis-
order group in Figure 3D. To quantify the contributions of these
factors including brain region, diagnosis and other individual-
dependent variables, we performed PCA on all samples, as
well as on paired microglia samples from two different regions.
It should be noted that we adjusted DNA methylation levels (M-
values) for age and sex using a linear model, performed PCA
on the adjusted M-values, and calculated the percentage of
variance contributed by each variable in the top 20 PCs. In all
analyses, we found that individual-dependent variables
accounted for the largest variance components, ranging from
33.6% to 46.8% (Figure 4A–D). Brain region and diagnosis
explained between 4.7% and 12.9% of the variance
(Figure 4A–D). While we controlled for age and sex effects,
residual effects were detected.

Influence of Region, Diagnosis, and Individual on
the Transcriptome of Microglia

For 50 of the 52 microglial samples used for methylation, we
also had transcriptome data available. The distribution of these
samples is shown in Figure 5A. Visualization of these data via
MDS plots shows no separation by disease status or brain
region (Figure 5B, C). Similar to the methylome data, we found
that RNA transcript data from the same individual tend to
cluster together. This is quantified via PCA, which shows that
576 Biological Psychiatry March 15, 2022; 91:572–581 www.sobp.org
the influence of individual-dependent variables is also larger
than diagnostic state or brain region (Figure 5D).

DMRs in Microglia From Patients With Mood
Disorder

Because diagnosis state explained between 4.7% and 12.9%
of the variance of the microglial methylome, we performed an
exploratory analysis to identify DMRs between patients with
mood disorder and control subjects. We first analyzed DMRs
using all available samples, accounting for sex, age, and brain
region as covariates in the statistical models. Secondarily,
these analyses were also performed for the MFG, STG, and
SVZ brain regions separately. We did not analyze THA samples
separately because of the low sample size and a skewed
quantile-quantile plot. Results are summarized in Table 2, re-
sults for all DMRs identified are provided in Tables S2 and S3
in Supplement 2, and results for selected DMRs of interest are
plotted in Figures S5 and S6 in Supplement 1. DNA methyl-
ation regulates gene expression and is generally associated
with gene repression but can also have other effects, including
enhancement of gene expression (56). By using our RNA-seq
data, we therefore explored whether the identified DMRs are
related to expression of the annotated gene (Tables S2 and S3
in Supplement 2). Finally, for the across-tissue analysis, we
compared methylation and gene expression differences be-
tween the control and mood disorder groups in an exploratory
fashion for the 36 DMRs for which we detected gene
/journal
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Figure 4. (A) Bar plot showing contribution of
different factors to DNA methylation variability (M-
value matrix was first linear adjusted for age and sex)
in top 20 principal components using all samples.
(B–D) Bar plots using paired samples for which DNA
methylation data are available for two brain regions:
MFG and STG (B), MFG and SVZ (C), and STG and
SVZ (D), with all analyses adjusted for age and sex.
MFG, medial frontal gyrus; STG, superior temporal
gyrus; SVZ, subventricular zone.
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expression in microglia. After we filtered genes expressed in
microglia with mean logCPM$ 1 for each group, we found that
genes annotated to 5 of 36 DMRs were significantly differen-
tially expressed (pointwise p values , .05), including DST,
MSLN, UNC119B, CD79B, and HRH1. A correlation of
r = 20.1668 (p = .3381) was found between methylation and
gene expression levels (Figure S7 in Supplement 1). For pro-
moter DMRs only (n = 12), inverse correlation with gene
expression was greater (r =20.5531, p = .0622). The results for
the HRH1 locus are highlighted in Figure S8 in Supplement 1.
DISCUSSION

The aim of this study was to investigate the DNA methylation
landscape of human microglia and factors that contribute to
variation of the methylation landscape. As expected, we found
that human microglial cells have a distinct methylation profile
that is influenced by age. Furthermore, by isolating cells from
different brain regions of the same donors, we further showed
that interindividual factors had a much larger effect on the
methylation landscape of microglia than regional differences.
In exploratory analyses, comparing patients with mood disor-
der versus control subjects, we found a number of DMRs of
microglial-expressed genes that were associated with mood
disorder.
Biological Ps
Prior studies across multiple tissues and cell types have
shown that aging has a major impact on DNA methylation
(57,58). In fact, DNA methylation has been the most promising
molecular biomarker of the aging processes (57,59). Addi-
tionally, the microglia transcriptome has also been shown to be
influenced by aging (6,7,10,13,60). Therefore, it is not surpris-
ing that data from this study also showed a clear association
between microglia DNA methylation with age. These age-
related DNA methylation changes might play an important
role in age-related disorders because increasing evidence
points to a causal role of microglia in neurodegenerative dis-
eases, such as Alzheimer’s disease (61–63).

In disagreement with our hypothesis, we did not find a
major impact of brain region on the microglia methylome,
although this analysis was limited by the fact that samples of
a variable number of regions were available for the different
donors. Microglial samples from different regions of the
same individuals did not separate by region, but rather by
individual. These data suggest that interindividual factors
have a much higher impact on DNA methylation of microglial
cells than brain region. These data are in line with a recent
study of Rizzardi et al. (64) showing that the methylation
profile of neuronal but not non-neuronal cells, which include
microglial cells, differ across brain regions. In contrast to our
methylation data in human microglia, rodent studies have
shown clear region-specific microglia heterogeneity (5,36).
ychiatry March 15, 2022; 91:572–581 www.sobp.org/journal 577
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Figure 5. (A) Sample distribution across disease
status (control or MD) and brain region used in RNA-
seq (n = 50). (B, C) Principal component analysis
plot of top two principal components labeled by MD
diagnosis (B) and brain region (C). (D) Bar plot of
contribution of different factors to observed RNA
transcript variability (logCPM matrix was first linear
adjusted for age and sex) in top 20 principal com-
ponents in RNA-seq data. MD, mood disorder; MFG,
medial frontal gyrus; RNA-seq, RNA sequencing;
STG, superior temporal gyrus; SVZ, subventricular
zone; THA, thalamus.
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Such cross-species differences between human and animal
studies (6,65) may be attributed to the nature of experimental
animal models. Animals have the same genetic background,
are also largely exposed to the same environment (i.e., same
rearing conditions, same food, same pathogens), and have
the same cause of death with samples collected all in the
same batch. In our human cohort, these factors vary largely
among individuals but are the same within one individual. We
hypothesize that genetic background, medical history, cause
Table 2. Differentially Methylated Regions Related to Mood Dis

Group/Type of DMR Cross-Tissue Analysis

Control Subjects, No. of Samples 20 (derived from 8 donors)

Mood Disorder, No. of Samples 32 (derived from 13 donors)

DMR , .05 FDR, n 81

DMR Mapping to Promoter Regions of
Protein-Coding Genes, n

33

DMR Mapping to Genes Expressed in
Microglia, Mean Log CPM $ 1, n

36

DMRs Mapping to Genes With Potential
Gene Expression Differences
With a Liberal Pointwise p Value , .1, n

8 (DST, MSLN, UNC119B, CD79
HRH1, ARID1B, HDAC9,
FAM214A)

Other Genes of Interest PDK2, SPHK2, SLC29A3, TIAM
HOXA3, HOXA4, HOXA5,
HOXB7, ADCY9, TRADD

CPM, counts per million; DMR, differentially methylated region; FDR, fal
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of death, and other lifestyle factors all may contribute to the
observed variability in the methylation profile of microglia
between different donors, which limits the possibility to
detect regional-specific effects. Microglia are seen as the
sentinels of the central nervous system, which rapidly
respond to changes in the microenvironment over the life
span, and our data suggest that these may be more pro-
nounced than potential brain region–specific differences in
DNA methylation.
order Status

Medial Frontal Gyrus
Superior Temporal

Gyrus Subventricular Zone

6 5 4

8 9 10

30 71 24

7 27 11

13 32 10

B, 0 4 (FAM53A, TRIM14,
SPNS2, TRIOBP)

1 (MEIS1)

2, PER3, FIGNL1 LGALS8, TRAK1 HLADPA1, DDB2,
FGF20

se discovery rate.
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In our exploratory analysis, we identified various DMRs that
are correlated with mood disorder status. These include DMRs
annotated to several genes of interest, because the genes are
highly expressed in microglia and related to microglial immune
functions or neuropsychiatric disorders. Among these genes is
HRH1. We found a DMR in the promoter region of this gene, and
gene expression was significantly upregulated in mood disorder
cases. This gene encodes the histamine receptor H1, which has
been shown to be involved in microglia activation (66,67). Other
genes of interest include SLC29A3, SPHK2, PDK2, and TRADD,
which are all highly expressed in microglia and known to
modulate immune functions of myeloid cells including endo-
somal lysosomal function and inflammatory responses (68–74).
Additionally, we found DMRs annotated to several genes previ-
ously associated with psychiatric disorders including ARID1B,
ADCY9, and DIP2A (75–77), as well as MCF2L, and homeobox
genes including HOXA3, HOXA4, HOXA5, HOXB7, and MEIS1,
which have been reported to be associated with pathology of
Alzheimer’s disease (16,78). In our regional analysis, we identified
a DMR within the promoter of a circadian clock gene, PER3.
PER3 is recognized as a core component of the circadian rhythm
system that regulates various physiological functions. Dysregu-
lation of the clock genes has been linked to both bipolar disorder
and MDD (78–81).

This study has several limitations. As a human postmortem
study, the sample size is necessarily small. The technical
challenges for microglia isolation with the requisite access to
fresh autopsy brain tissue further compounded the limited
sample size. Nevertheless, with a total of 56 brain tissue
specimens, this represents the largest human microglia DNA
profiling study to date. While for such a small case-control
study, we did not expect to find significant methylation dif-
ferences by diagnostic state, we did find clustering of sample
individuals by mood disorder diagnosis relative to nonpsychi-
atric control subjects. In addition, although we did identify
significant DMRs in patients with mood disorder versus control
subjects, whether these are associated with mood disorder
diagnosis or related to confounders associated with disease
status, such as cause of death or medication, could not be
determined with this sample size. These potential covariates
could only be retrieved through retrospective chart review, and
with the limited information and limited sample size, we could
not control for these factors in our analysis; therefore, these
findings warrant replication in future studies.

In conclusion, findings from this study suggest that human
microglia respond to changes in their microenvironment via
transcriptional regulatory mechanisms and specifically DNA
methylation alterations. Because environmental exposures
contribute significantly to the risk of brain disorders, data from
this study are important in furthering our understanding of the
role of microglial cells in this process and support further
research toward understanding how the patterns of DNA
methylation of microglia are affected by changes in environment
and how this may translate to changes in microglia function.
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