
MOLECULAR CANCER RESEARCH | TUMOR MICROENVIRONMENTAND IMMUNOBIOLOGY

The Prognostic Potential of Human Prostate
Cancer-Associated Macrophage Subtypes as Revealed
by Single-Cell Transcriptomics
Joseph C. Siefert1,2, Bianca Cioni1, Mauro J. Muraro3,4, Mohammed Alshalalfa5, Judith Vivi�e3,4,
Henk G. van der Poel6, Ivo G. Schoots7, Elise Bekers8, Felix Y. Feng5, Lodewyk F.A. Wessels2,9,
Wilbert Zwart1,9, and Andries M. Bergman1,10

ABSTRACT
◥

Macrophages in the tumor microenvironment are causally
linked with prostate cancer development and progression, yet
little is known about their composition in neoplastic human tissue.
By performing single cell transcriptomic analysis of human pros-
tate cancer resident macrophages, three distinct populations were
identified in the diseased prostate. Unexpectedly, no differences
were observed between macrophages isolated from the tumorous
and nontumorous portions of the prostatectomy specimens.
Markers associated with canonical M1 and M2 macrophage
phenotypes were identifiable, however these were not the main
factors defining unique subtypes. The genes selectively associated
with each macrophage cluster were used to develop a gene signa-
ture which was highly associated with both recurrence-free and

metastasis-free survival. These results highlight the relevance of
tissue-specific macrophage subtypes in the tumor microenviron-
ment for prostate cancer progression and demonstrates the utility
of profiling single-cell transcriptomics in human tumor samples as
a strategy to design gene classifiers for patient prognostication.

Implications: The specific macrophage subtypes present in a
diseased human prostate have prognostic value, suggesting that
the relative proportions of these populations are related to patient
outcome. Understanding the relative contributions of these sub-
types will not only inform patient prognostication, but will enable
personalized immunotherapeutic strategies to increase beneficial
populations or reduce detrimental populations.

Introduction
Blood-derived monocytes reach the majority of the tissues in the

body, both cancer affected and normal, where they become tissue-
resident macrophages (1). However, not all tissue-resident macro-
phages arise from circulating monocytes, as resident macrophages are
present during embryonic development and persist during adult-
hood (2, 3). Consequently, as in other tissues, the prostate is composed

of both embryonic-derived and blood-derived macrophages, where it
remains unclear whether macrophages of distinct origins have distinct
functions (4).

Macrophages are extremely plastic and phenotypically heteroge-
neous immune cells, whose diversity is largely influenced by the
microenvironment in which they reside (5). Several studies showed
that in vitro blood monocyte-derived macrophages can acquire a large
spectrum of phenotypes depending on different stimuli present in the
cell culture (6, 7). However, these models do not capture the dynamic
nature of macrophages in their native microenvironment. Human
tissue-specific characterization of tumor-associated macrophages
(TAM) is limited to glioma, skin, and hepatocellular carcinoma (8–10),
and there are no studies addressing prostate cancer (PCa)-specific
macrophage phenotypic diversity.

The PCa tumor microenvironment (TME) is composed of various
cells, including stromal, endothelial, and immune cells, with tissue-
resident macrophages representing one of the most predominant
immune cell populations (11, 12). Macrophages are critical mediators
of tissue homeostasis and have the capacity to suppress cancer-
associated processes, including tumor cell proliferation, angiogenesis,
andmetastasis (13).Multiple studies have shown a correlation between
high infiltration of TAMs in the PCa microenvironment and poor
prognosis, which suggests a role of these cells in cancer progression
(14–18). Given the prognostic significance of macrophages in the
TME, strategies aiming to target these cells have emerged as strong
candidates for cancer treatment (19–22).

It is also thought that immune cell type rather than sheer numbers of
immune cells present in the TME relates to efficacy (23). Various
macrophage phenotypes have been described, including the pro-
inflammatory/anti-tumor M1 state, and the anti-inflammatory/pro-
tumor M2 state, both characterized by expression of specific mar-
kers (24). However, macrophage diversity is likely not a binary
division, but rather a continuum of phenotypes between M1 and
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M2 extremes (6, 7). However, the diversity of human macrophage
populations in PCa is not yet explored and, therefore, tissue-specific
markers of macrophage populations in PCa are not yet defined.

To address this, we applied single-cell mRNA sequencing on
myeloid cells isolated fromprostatectomy specimens.Herewe describe
novel phenotypes of PCa-associated macrophages and their distinct
prognostic potential. Moreover, we propose new molecular markers
for identification of these phenotypes in patients with localized disease.
Understanding the unique macrophage populations in individual
prostate tumors and their effect on outcome will not only enhance
our knowledge of PCa biology and progression, but can better inform
clinicians regarding a patients’ prognosis and treatment options.

Materials and Methods
Patients, tumor specimens, and ethics statement

Prostate biopsies were collected from post-robotic-assisted laparo-
scopic prostatectomy (RALP) surgical specimen of patients with PCa
who did not receive any prior therapy (Gleason score 3þ4 and 3þ3).
Biopsies were collected from both the tumorous and the nontumorous
site of the prostate, which were estimated by a presurgery multi-
parametric magnetic resonance imaging (mpMRI) scan of the pelvis
and palpation by the surgeon of the prostatectomy specimen. An
average of three 18G biopsies were taken from the areas of the prostate
with a very high likelihood of containing clinically relevant PCa
(tumorous site) and from areas of the prostate without suspected PCa
(nontumorous site) on mpMRI. Accuracy of the mpMRI to identify
tumorous and nontumorous areas of the prostate was histologically
verified in H&E stained whole mount formalin fixed and paraffin
embedded slides. Fresh biopsies from the tumorous site and non-
tumorous site of the prostatectomy specimen from four patients were
processed separately for cell-surface markers CD14þ and/or CD11bþ

myeloid cell isolation and submitted for single-cell RNA sequencing.
The occurrence of identified clusters of macrophage populations in

prostatectomy specimen was estimated by IHC staining for cluster-
specific marker genes, which were selected from the top 10 list of most
differentially expressed genes between the clusters, which are not
secreted and had the highest specificity for myeloid cells. Stained
cores for the selected markers of the clusters, Cluster 0: SLC40A1
(antibody HPA065634; antibody 11 cores), Cluster 1: PLAC8 (anti-
body HPA040465; 21 cores), Cluster 2: FCN1 (antibody HPA001295;
32 cores), and the pan-macrophage marker CD68 (antibody
CAB000051; 54 cores), were downloaded from the human protein
atlas (www.proteinatlas.org) and visually estimated for percentage
surface containing tumor and nontumor and for number of marker
positive cells in both compartments. Marker positive cells were
identified and quantified by specific marker staining and morphology
by a pathologist specialized in uro-oncology. A score (0, 1, 2, or 3) was
assigned on the basis of the number of macrophages present (0, 1–10,
11–100, >100), respectively. Density of marker positive cells in tumor-
ous and nontumorous tissue was estimated by dividing the number of
marker positive cells in a compartment by the fraction of the total core
surface containing the compartment.

The use of patient data and biopsies from fresh prostatectomy
specimens for research purposes at the Netherlands Cancer Institute
have been executed pursuant to Dutch legislation and international
standards. Prior to 25May 2018, national legislation ondata protection
applied, as well as the International Guideline on Good Clinical
Practice. From 25 May 2018 on, we also adhere to the GDPR. Within
this framework, patients are informed and have always had the
opportunity to object or actively consent to the (continued) use of

their personal data and biospecimens in research. For this study, in-
formed consent was obtained from all patients. Hence, the procedures
comply both with (inter-) national legislative and ethical standards.

Tissue dissociation and CD11bþ and/or CD14þ cells sorting
Single-cell suspension was prepared from fresh PCa biopsies by

mechanical dissociation within 2 hours after surgery. Biopsies were
transported from the operation room on ice and minced with a scalpel
in cold PBS þ 0.5% BSA. Tissue was then mechanically dissociated
using a gentleMACS Dissociator (MACS Milteny Biotec) using
C-tubes (MACS Milteny Biotec) for 2 minutes as described previous-
ly (25). Subsequently, the samples were filtered through a 70mmol/L
strainer (BD Falcon) and spun down for 5 minutes at 300 � g at 4�C.
Cells were refiltered through a 40 mmol/L strainer (BD Falcon), spun
down for 5 minutes at 300� g at 4�C and resuspended in cold PBSþ
0.5% BSA. To compare the efficacy of GentleMACS with enzymatic
digestion, biopsies were chopped with scalpel and tweezers and
transferred to a 15 mL Falcon tube containing 100 U/mL of Collage-
nase I (SCR103; Sigma Aldrich), 0,05% of DNAse I (89836; Thermo
Fisher Scientific) and 5U/mL of Hyaluronidase (H3506; Sigma-
Aldrich) and incubated at 37�C for 2 hours. Enzymatic digestion was
then stopped by adding 1:1 volume of FBS-containing RPMI medium
to the cell suspension. A 70mmol/L strainer was used to filter the cell
suspension, followed by centrifugation at 1,200 rpm for 10 minutes.
Supernatant was removed and cells were resuspended in RPMI
medium containing 10% FBS.

Cells of the dissociated biopsies were incubated with APC-CD45,
PE-CD14, PE-CD11b, and FITC-CD3 (all Ebioscience) for 20minutes
andwashed before sorting using aMofloAstrios (BeckmanCoulter) or
FACSAria IIu (BDBioSciences). As a first step, cell doublets/multiplets
and dead cells were excluded using FSC height versus area. Then,
CD45þ leukocytes were selected, whereas small CD45þ cells (low SSC)
were discarded as possible lymphocytes. Subsequently, CD14þ and/or
CD11bþ single cells lacking CD3 expression (lymphocytes) were
selected. Living single CD45þCD3-CD14þ and/or CD11bþ macro-
phages (based on DAPI and scatter properties) were sorted into eight
384 wells plates (Bio-Rad) where cDNA synthesis was performed as
described previously (26).

Single-cell sequencing with SORT-seq
Single-cell mRNA sequencing was performed according to an

adapted version of the SORT-seq protocol (26), using barcoded
poly-A primers described by van den Brink and colleagues (27). In
short, single cells were FACS sorted into 384-well plates containing 384
different poly-A barcoded primers and Mineral oil (Sigma). After
sorting, plates were snap-frozen on dry ice and stored at �80�C.
Subsequently, cells were heat-lysed at 65�C followed by cDNA
synthesis using the CEL-Seq2 protocol (28) using robotic liquid
handling platforms Nanodrop II (GC Biotech) and Mosquito (TTP
Labtech). After second strand cDNA synthesis of poly-A transcripts,
the barcoded material was pooled into libraries of 384 cells and
amplified using in vitro transcription (28). Following amplification,
the rest of the CEL-seq2 protocol was followed for preparation of the
amplified cDNA library, using TruSeq small RNA primers (Illumina)
as previously described (26). The DNA library was paired-end
sequenced on an Illumina Nextseq500, high output, 1 � 75 bp.

Single-cell sequencing data analysis
After Illumina sequencing, read 1 was assigned 26 base pairs and

was used for identification of the Illumina library barcode and cell
barcode. Unique molecular identifiers (UMI) tags were added to each
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read. These are molecular tags used to detect and quantify unique
mRNA transcripts. More specifically, mRNA libraries were generated
by fragmentation and reverse transcribed to cDNA with tag-specific
primers. Read 2 was assigned 60 base pairs and used to map to the
reference transcriptome of Hg19. Data was demultiplexed as described
previously (29).

The Seurat v3.1.4 package was used in R v3.6.1 for processing the
data (30). To exclude dead, dying, or otherwise low-quality cells, cells
with less than 1,000 features (genes) and cells with greater than 1%
mitochondrial reads were removed from analysis. To exclude cell
doublets/multiplets, cells with greater than 6000 features (genes) were
removed from analysis. The data were log-normalized with a scale
factor of 10,000, and the 2000 most variable features were identified
using a variance stabilizing transformation. The data were scaled
according to all detected genes and PC analysis was performed on
the most variable genes. For linear dimensionality reduction, the
number of PCs (20) was selected on the basis of combined Jackstraw
analysis, examination of elbow plots, difference in variation between
subsequent PCs, and cumulative percent variation explained (31). To
identify clusters, a K-nearest neighbors graph was constructed from
the selected PCs and clusters were identified from this using the
Louvain algorithm at a resolution of 0.5 in Seurat. These were then
projected with Uniform Manifold Approximation and Projection
(UMAP) using uwot v0.1.5 and umap v0.2.4.1 packages in R.

A reciprocal PCAmethod was used for data integration (30). In this
procedure, the data from each patient was normalized, variable
features were selected, the data was scaled, and PC analysis was
performed independently. The PCA space of each patient was then
projected into each other patient to identify anchor points. The
anchors represent matching cell states identified by pairwise corre-
spondence between cells from different patients and are used to
transform the datasets into a shared space. The integrated data were
then scaled and PC analysis was performed as before. Clustering at
various shared nearest neighbors (SNN) resolutions was evaluated and
plotted with clustree_0.4.3 (32).

Differential expression and gene set enrichment analysis
(GSEA)

Differential expression analysis was performed on normalized RNA
values with minimum percentage (min.pct) and log fold-change
(logfc) thresholds of 0.25 to identify marker genes specific to each
cluster. Of note, although upregulation of genes in a cluster relative
to other clusters is generally reported, this implies that in the
latter clusters those genes are relatively downregulated. Significant
differentially expressed genes were defined by Bonferroni adjusted
P value <0.05. GSEA was performed using clusterProfiler v3.12.0 with
msigdbr v7.1.1 database in R (33). Hallmark gene set enrichment
analysis was performed by calculating logfc for all genes in each cluster
as compared with the other two clusters, without any thresholds for
min.pct or logfc, and ranking genes based on logfc.

Generation and evaluation of gene signatures
Differentially expressed genes between macrophage clusters iden-

tified in the integrated dataset were used to construct prognostic
signatures for biochemical relapse-free survival (RFS) of patients with
PCa in a published MSKCC PCa dataset (GSE 21032) (34). This
dataset, comprised of 131 primary patients with PCa with RNA
expression and biochemical recurrence (BCR) as determined by serum
prostate-specific antigen (PSA) levels, was used to assess biochemical
RFS. RFS was defined as time from prostatectomy to BCR (rise of PSA
≥0.2 ng/mL on two occasions).

The gene signature (classifier) was generated employing Elastic net
Cox regression using glmnet v4.0 in R (35). The prognostic perfor-
mance of the selected gene set was assessed in the MSKCC data by
performing a nested 10-fold cross-validation (10FCV), with the full
dataset split randomly into 10 folds with each fold stratified for the
number of events and Gleason score. The Elastic net regularization
parameters (alpha and lambda) were optimized as follows. A pre-
selected set of values for alphawere tested (0 to 1 by 0.1). For each value
of alpha in this set, we performed 10FCV to determine the optimal
value of lambda. To this end, we selected the value of lambda associated
with the minimum, average mean-squared error (MSE) across the
folds. This procedure delivered, for each value ofa, the optimal value of
l and the associated MSE. We then selected the value of a that
delivered the lowest MSE across all values of a in the set. HR,
confidence intervals (CI), P values, andHarrel’s C-index (concordance
index) for the MSKCC evaluation were generated using the coxph
function in the survival v3.1–12 package in R (36). Survival plots were
made by selecting the high (top 25%), low (bottom 25%), and
intermediate (middle 50%) risk of relapse from the CV predictions,
fit with event censoring and BCR-free time fromMSKCCdataset using
the survfit function in the survival package. ROC curves andAUCwere
calculated using predictions from the CVwith ROCR v1.0–7 in R (37).
The finalmacrophage gene signature used for validationwas generated
by fitting the fullMSKCCdataset with the optimized parameter values.

Validation of gene signatures in independent cohorts
Gene signatures were tested in three independent cohorts by first

extracting the coefficients (bs) for the selected genes from themodel fit,
then multiplying the scaled gene expression data in the independent
datasets by these coefficients. The prospective Decipher cohort con-
tains anonymized genome-wide expression profiles from clinical use of
the Decipher test in the radical prostatectomy (RP) setting, between
February 2014 and August 2017, retrieved from the Decipher GRID
(NCT02609269). The retrospective natural history cohort from Johns
Hopkins Medical Institutions is comprised of men treated with RP,
with a median follow up time of 108 months (38). The Mayo Clinic
Cohort is a retrospective cohort of men treated with RP, with a
median follow-up time of 156 months (39, 40). Model discriminatory
capability was assessed on the basis of the AUC. Cox proportional
hazards was used to estimate the HR of metastasis-free survival for
patients with high signature (top25%).

Public availability of data
Limited and specific single cell RNA sequencing data of patient

macrophages can be found at GSE133094. RNA expression data for
Mayo (GSE46691, GSE62116), and JHMI (GSE79957) cohorts are also
available.

Results
Single-cell analysis of myeloid cells isolated from PCa biopsies

To identify the macrophage populations present in diseased human
prostates, fresh biopsies were collected from “tumorous” and “non-
tumorous” areas of post-RP specimens. Four previously patients with
untreated PCa, ages 50 to 74 years, with an initial serum PSA between
7.6 and 9.3 ng/mL and diagnosed with a Gleason score 6–7 and a
clinical stage pT2–3 adenocarcinoma of the prostate were included in
this study (Supplementary Table S1). To obtain a single cell suspension
for FACS sorting to isolate macrophages, two isolation methods were
compared: mechanical dissociation versus enzymatic digestion. The
yield of CD45þ leukocytes and CD45þ/CD14þ and/or CD11bþ
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myeloid cells was proportionally higher inmechanically digested tissue
compared with enzymatically digested tissue (Supplementary Fig. S1).
In addition, the percentage of live cells (DAPI-negative) was higher in
mechanically digested tissue compared with enzymatically digested
tissue (82.8% vs. 65.0%). This is in agreement with studies reporting
loss of epitopes in immune cells, especially myeloid cells that are
known to be sensitive to higher temperature (41–43). On the basis of
these observations,mechanical dissociationwas selected as the optimal
method to isolate macrophages from the PCa samples for scRNA-seq
analyses.

The procedure for obtaining native PCa-associated myeloid cells is
depicted in Fig. 1A. Tissue resident macrophages were isolated from
the biopsies by successively FACS sorting a single-cell suspension of
the biopsies for CD45þ leukocytes, followed by isolation of CD3-
CD14þ and/or CD11bþ myeloid cells (44–46). In total, 1,920 cells,
including 911 cells isolated from the tumorous and 1,009 cells isolated
from the nontumorous areas of the prostates were sequenced on eight
plates (Supplementary Table S1). Cells with less than 2,000 UMIs were
not considered, whereas only genes thatwere detectedwith at least four
UMIs in at least three cells, were used for further analysis. In plates 4
and 7, very few cells above the 2,000 UMI cut-off were found.
Furthermore, high levels of technical artefact genes like KCNQ1OT1,
which is a noncoding region rich in poly-A repeats and often found in
cell transcripts of poor quality were also detected (47). For these
reasons, plates 4 and 7 were excluded from further analysis. The range
(202–12,107) and mean (1,806) of genes (features) detected per cell
are displayed in Supplementary Fig. S2A. After additional quality
control filtering to remove dead, dying, or otherwise low-quality cells
and cell doublets/multiplets, plate 8 was found to contain very few
remaining cells and was also removed from analysis. The removal of
plates 7 and 8 resulted in the loss of all cells from patient 4. Therefore,
the subsequent analysis contains cells from three patients. The remain-
ing 751 cells retained for subsequent analysis showed a range andmean
of 1,026 to 5,876 and 2,787 genes per cell, respectively (Supplementary
Fig. S2B).

Subsequently, the accuracy of the mpMRI to annotate tumorous
and non-tumorous areas in the prostate was evaluated by histological
assessments of the H&E stained prostatectomy specimen of patients 1
to 3. The presurgery mpMRI of all 3 patients, indicated areas with a
high likelihood of containing tumor and an area less likely containing
tumor in patient 3 correctly. In patient 1, an area less likely containing
tumor was suggested, however, presence of tumor could not be
confirmed (Supplementary Fig. S3). Because biopsies were taken from
areas with a high likelihood of containing tumor and from areas not
suspected for containing tumor in the prostate, we conclude that the
biopsies were labelled correctly as “tumorous and nontumorous.”

Clustering of myeloid cells to identify PCa macrophage
subtypes

To surmount the implicit noise of individual features in scRNA
data, principal component (PC) analysis was used to reduce
dimensionality, followed by graph-based clustering to identify popu-
lations of highly-interconnected cells (30). Initial clustering of the data
yielded six independent clusters, with cluster 3 being substantially
divergent from the remaining clusters (Supplementary Fig. S4A). This
was also evident in the first PC (Supplementary Fig. S4B). Examination
of the genes within PC1, as well as markers for various cell types across
all clusters revealed that cells in cluster 3 expressed the well-known
natural killer (NK) cell markers NKG7 and GNLY (Fig. 1B; Supple-
mentary Figs. 4C and 4D; ref. 48). The presence of these cells after
FACS sorting is likely residual from the CD11b (ITGAM) selection

(Fig. 1B). Because the focus of this study is macrophages, these NK
cells were removed from further analysis. The 641 cells in the remain-
ing clusters are considered macrophages as all clusters express various
macrophage markers (CD68, CD86, CD163), while lacking expression
of established markers for other immune cell types (T-cell, B-cell, NK-
cell), prostate epithelium (FOLH1, KLK3), and mesenchymal cells
(PDGFRB, FAP; Fig. 1B; refs. 49, 50).

After removal of NK cells, the remaining macrophages were rea-
nalyzed as above, and 20 PCs were selected for further analysis
(Supplementary Fig. S5). Clustering these PCs yieldedfive populations,
however the clustering was highly patient specific (Fig. 2A and B). To
remove these patient-specific batch effects, a reciprocal PCA method
was employed to integrate the patient datasets (see “Materials and
Methods” for details). This method will effectively integrate
correspondence cells between datasets even in the presence of
extensive biological or technical differences (30). Clustering of the
final integrated dataset revealed three distinct macrophage subtypes
(Fig. 2C).

The number of macrophage clusters identified will depend on a
variety of factors specific to the dataset, including the number of cells
and cell types, tissue with which the macrophages are associated,
method of digestion, the number of PCs used, and the resolution of the
SNNs graph. The number of macrophage clusters identified in this
study was largely comparable to those reported in previous scRNA-seq
studies across a variety of tissues (Supplementary Table S2; refs.
51–58). The number of PCs used in this analysis were carefully selected
to ensure the appropriate amount of biological variation was included
(Supplementary Fig. S5). To assess the number of clusters identified,
increasing resolutions for the SNN graph were tested (Supplementary
Fig. S6A). This analysis indicated that while increasing the SNN
resolution could force additional clusters, the new clusters were in
fact subclusters of the three primary subtypes, and no new distinct
clusters were identified. While the primary subtypes may indeed have
subclusters of specific function, this analysis revealed that subclusters
were often defined by a relatively small number of cells or genes in this
dataset, and appeared unstable as they often merged back together at
different resolutions. Therefore, in this study we focused only on the
three primary macrophage subtypes identified.

In the integrated dataset, the cells from each patient were no longer
forming isolated or dominant clusters, but were instead distributed
across all three clusters, indicating that the reciprocal PCAmethodwas
effective at removing the patient-specific batch effects (Figs. 2D).
Unexpectedly, the macrophages from the tumor and nontumorous
biopsies showed nearly identical distributions among the clusters, and
no differences were observed between the macrophage subtypes
present in the tumorous and nontumorous portions of the diseased
prostate (Figs. 2E and F). In addition, the distributions of CD11b
(ITGAM) andCD14 expressing cells were assessed in the three clusters
and found to be comparable between the tumorous and nontumorous
cells (Supplementary Fig. S6B). Cumulatively, these results indicate
that there are three biologically distinct macrophage subtypes present
in the tumorous and nontumorous portions of diseased human
prostates.

Evaluation of M1 and M2 macrophage phenotypes in PCa
clusters

As a first step to examine the identity of these macrophage clusters,
previously established markers associated with M1-like and M2-like
phenotypes were investigated (24). Plotting all detectable M1 and M2
marker genes for each cell in a heatmap revealed thatmanymarkers are
not readily detectable in all cells and there is no clear M1/M2
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separation between these clusters (Fig. 3A). Given the varying
expression levels and the sparsity of marker expression, averaging
individual markers within each cluster was not useful in evaluating
M1/M2 identity within the clusters, though it appeared that M2
markers were generally expressed at higher levels (Supplementary
Figs. S7A and S7B). For these reasons, all M1 and M2 markers were
separately combined by averaging the RNA expression of allM1 orM2
markers within each cell. From this analysis it is evident that the mean
expression level of all combined M2 markers per cell are higher than
the mean M1 marker expression levels (Fig. 3B; Supplementary
Fig. S7C). Furthermore, the mean M1 expression levels were slightly
but significantly higher in cluster 2, while the mean M2 expression
levels were significantly elevated in cluster 0 (Fig. 3C and D). These
results demonstrate that although a slightly elevated expression of the

averagedM1 andM2markers can be detected in certain clusters, these
are not the main factors contributing to the variation that separates
these macrophage populations.

Identification of differentially expressed genes and biological
pathways

To determine the biological differences between these three mac-
rophage clusters, differential expression analysis was performed to
detect marker genes in each cluster. This analysis identified 468
significantly differentially expressed genes, with 164 genes identified
asmarkers in cluster 0, 199 genes in cluster 1, and 105 genes in cluster 2
(Supplementary Table S3). Examining this list of genes showed only
11/68M1 andM2markers to be differentially expressed, with 3/33M1
markers upregulated in cluster 2 and 6/35 M2 markers upregulated in
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Figure 1.

Single cell sequencing of myeloid cells from patients with PCa. A, Experimental procedure: single cell suspensions of multiple biopsies from the tumor and tumor-
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cluster 0 (Supplementary Table S4). These results agree with the slight
enrichments observed inFig. 3C andD, however there are also twoM2
markers upregulated in cluster 2, further exemplifying the need for
better stratification. The most differentially expressed genes from each
cluster show either expression only in their cluster, or elevated
expression as compared with the other clusters (Fig. 4). These genes
represent ideal markers for these novel macrophage subtypes.

To evaluate the localization of macrophage subtypes in prostatec-
tomy samples, we scored IHC staining of a representative ideal marker
from each macrophage cluster, as well as a pan-macrophage marker
(CD68), in multiple independent patient samples (Supplementary
Fig. S8; ref. 59. Analysis of CD68 control, SLC40A1 for cluster 0,
PLAC8 for cluster 1, and FCN1 for cluster 2 suggested that the three

macrophage subtypes are present in both the tumorous and nontu-
morous portions of PCa patient samples at approximately equal
percentages (Supplementary Figs. S9A–S9D). When correcting for
the overall percentage of tumor, the density of CD68 and PLAC8
(Cluster 1) positive cells was higher in the nontumorous portions of the
prostatectomy samples than in the tumorous portions, whereas there
was no difference in density of SLC40A1 (Cluster 0) and FCN1
(Cluster 2) positive cells between the two portions (Supplementary
Fig. S9E).

To explore the functional pathways that genes associated with each
cluster are involved in, GSEA was performed (Supplementary
Fig. S10). Cluster 0 genes showed activation of the hallmark TNFa
signaling via NFKB as well as WNT b-catenin signaling, and
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suppression of interferon pathways (IFNa and IFNg), MTORC1
signaling, and complement pathways, among others (Supplementary
Fig. S10A). Conversely, cluster 2 showed activation of multiple
inflammatory pathways including IFNa, IFNg , TNFa, and comple-
ment, while showing suppression of WNT b-catenin signaling and
cell-cycle pathways (Supplementary Fig. S10B). Cluster 1, however,
showed suppression of multiple immune pathways (IFNa, IFNg ,
TNFa, among others), and activation of cell-cycle pathways (E2F

targets, MYC targets, G2M checkpoint) as well as MTORC1 signaling
(Supplementary Fig. S10C). To explore the possibility of PCa TAM
regulation of T cells, known markers of T-cell regulation by TAMs
were interrogated in the data (60). Very few of these markers were
readily detectable and only one, CSF1R, was found to be significantly
differentially expressed (Supplementary Fig. S11). Collectively, these
results suggest that each macrophage population is involved in unique
biological functions.
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Generation and evaluation of macrophage gene signature
To develop a prospective gene signature, all genes in the integrated

dataset found to be significantly differentially expressed between
macrophage clusters were included in the model (Fig. 5A). Using a
published PCa dataset from Memorial Sloan Kettering Cancer Center
(MSKCC) (34), a 217-gene prognostic signature (Supplementary
Table S5) predicting biochemical RFS of patients with PCawas selected
(see “Materials and Methods” for details). The performance of the
macrophage gene signature was evaluated employing 10-fold nested
cross-validation on the MSKCC dataset using ROC as a performance
measure (Fig. 5B). As expected, in a Cox regression analysis this
classifier showed a significant association with RFS (HR ¼ 4.1; P ¼
1.7e�05; Fig. 5C). Furthermore, in a multivariate analysis including
the signature withGleason score (biopsy and pathologic), prediagnosis
biopsy PSA levels, seminal vesicle invasion (SVI), extracapsular exten-
sion (ECE), and clinical stage the signature was found to be an
independent predictor of outcome (Fig. 5D).

Using the Coxmodel linear predictor as a prognostic index (PI), the
relative prognostic value of each macrophage cluster was assessed by
summing the product of themodel coefficients (bs) and the scaled gene
expression values in each cell (Supplementary Fig. S12). This analysis
demonstrated that cells from cluster 2 had a low PI, while cells from
clusters 0 and 1 had a highPI. This result indicates that higher numbers
of cells from cluster 2 are associated with better outcome, whereas
higher numbers of cells form clusters 0 and 1 are associated with worse
outcome. Taken together with the pathway analysis in Supplementary
Fig. S10, these results indicate that the pro-inflammatory macrophage
subsets are associatedwith better outcome, whereas anti-inflammatory
and proliferative macrophage subtypes are associated with worse
outcome.

Validation of gene signature in independent PCa cohorts
To further assess the prognostic value of the macrophage gene

signature, it was validated in three independent cohorts from the
Decipher GRID registry. The first cohort is a prospective Decipher
GRID cohort containing RNA expression data from >5,000 patients
with RP and includes basic demographic and pathologic data, but not
longitudinal clinical outcomes. This cohort was used to associate the
signature to Decipher risk groups and pathologic Gleason score
(Fig. 6A and B). Because this cohort has no metastasis outcome yet,
high Decipher group was used as a surrogate of metastasis potential
since it was heavily validated for that endpoint (38, 40, 61). The second
cohort is a retrospective natural history cohort (n¼ 355) comprised of
men treated with RP at Johns Hopkins Medical Institutions
(JHMI) (38). The third cohort is a retrospective cohort (n ¼ 780) of
men treated with RP at the Mayo Clinic (40, 61). All three cohorts are
described in Supplementary Table S6.

The strength of association of the macrophage signature with
metastasis-free survival was tested using a Cox regression analysis on
the Mayo and JHMI cohorts and the signature showed significant
association with metastasis-free survival (Mayo: HR¼ 1.89, P value¼
1.0e�06; JHMI:HR¼ 2.25,P value¼ 3.3e�05;Fig. 6C andD). In both
cohorts, the classifier was also found to be an independent predictor of
metastasis in multivariate analysis (Supplementary Table S7). Taken
together, these results indicate that profiling single-cell RNA expres-
sion in PCa-associated macrophages and identifying subpopulations
present in the diseased prostate can have significant prognostic value in
predicting patients’ likelihood of biochemical relapse and metastasis.
These results lay the foundation for profiling macrophage populations
in PCa and other cancer types, and will inform future studies inves-
tigating the immune systems’ role in cancer progression.

Discussion
Macrophages can either promote or suppress cancer development

and progression depending on their specific phenotype and function.
In this study, we defined the degree of human PCa-specific macro-
phage diversity through single-cell sequencing with the aim to identify
PCa-specific macrophage populations. Three macrophage subtypes
were identified, and although some canonical M1 and M2 markers
were present, these were not adequate to define the clusters. The
distinction between inflammatory M1 and anti-inflammatory/prolif-
erative M2 macrophages was based on in vitro cell line models and
describe the two extremes of the spectrum of macrophage differen-
tiation (21). Our findings suggest that the M1/M2 distinction of
macrophage differentiations does not accurately recapitulate native
PCa associated macrophages, which should be considered in future
studies.

Our results are largely in line with a recent single-cell study
describing cell types in human PCa (58). Here the authors showed
evidence that TAMs express amixture ofM1 andM2markers, and that
two of themain sources of variation between TAM subtypes are TNFa
and NFKB pathways. This study identified five macrophage clusters,
suggesting that surveying more patients and sequencing higher num-
bers of cells may further our understanding of the role TAMs play in
PCa. Of note for comparison of our studywith previous studies, are the
different methods of obtaining single cell solutions. Although most
previous studies performed enzymatic digestion, we performed
mechanical dissociation. This difference in techniques, might intro-
duce a bias for particular cell populations. However, in agreement with
previous studies (41–43), we demonstrated that mechanical digestion
leads to a higher number of live myeloid cells as compared with
enzymatic digestion. This becomes particularly relevant in poorly
infiltrated tumors, such as PCa, where the immune cell content,
specifically macrophages, is already reduced.

Multiple reports demonstrated a correlation between TAMs and
poor prognosis of patients with PCa (62–64); however, the vast
majority of these studies only focused on a small selection of TAM-
associated markers, including IL10, CD163, and MRC1 (CD206).
Other than previous studies, we constructed signatures and clustering
of macrophages based on the transcriptional profile of macrophages as
they occur in all their complexity in the human PCa-microenviron-
ment. Using the genes differentially expressed between the clusters, we
were able to develop a gene signature with significant prognostic value
in multiple independent PCa cohorts. These results advance the field
not only by defining TAMs subtypes, but also by demonstrating that
the genes differentially expressed between these subtypes can predict a
PCa patient’s prognostic outlook in terms of biochemical recurrence
and metastasis.

Macrophages were isolated from biopsies from the “tumorous” and
“nontumorous” sites of the prostate. Sites of the biopsies were iden-
tified using presurgery mpMRI images. Although the presence of
tumor was not histologically confirmed in the biopsies themselves,
histologic evaluation of the whole prostatectomy specimen confirmed
that thempMRI images correctly identified tumorous areas in all three
patients. This confirms correct labelling of biopsies as tumorous or
nontumorous. Remarkably, no differences were observed between
macrophage subtypes found in the tumorous and the non-
tumorous sites, suggesting that tumorigenic factors may also affect
distant nontumorigenic sites. Furthermore, this suggests that these
macrophage populations could in theory be detected from a biopsy
regardless to tumor cell percentage. This is important because the
prognostic value of the gene signature outweighs the biopsy Gleason
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score and pre-diagnosis biopsy PSA levels, and is approaching the
significance of pathological Gleason, suggesting a possible path to
identifying high-risk patients without necessitating RP. In addition,
the macrophage signature and pathological Gleason score were both
independent predictors in our multivariate analysis, suggesting that
the signature can provide additional prognostic information. How-
ever, these finding will require further experimental validation before
such measures could be employed.

The GSEA performed in this study suggests that each macrophage
subtypes is involved in unique biological processes. Cluster 1 does not
appear to be participating in inflammatory pathways and may repre-
sent a proliferative feeder cell type, or otherwise less differentiated

macrophage subtype. Cluster 0 appears to be largely anti-inflamma-
tory, whereas cluster 2 appears primarily pro-inflammatory. These
results agree with the notion that macrophages can broadly adopt
either a pro-inflammatory or anti-inflammatory phenotype, and this
could either potentiate or mediate cancer progression (6, 7, 24). More-
over, because there was no difference in the occurrence of the three
clusters in biopsies from the tumorous and nontumorous site of the
prostate, the differences in functions of the macrophages in the three
clusters may be related to the origin of the macrophages, which could
either be embryonic-derived or blood-derived (4).

Furthermore, using a PI we demonstrate that pro-inflammatory
cluster 2 cells are associated with better prognosis, whereas the
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anti-inflammatory cluster 0 and anti-inflammatory/proliferative
cluster 1 cells are associated with worse outcome. These suggest that
targeting cluster 2 cells to increase their numbers and targeting clusters
0 and 1 to decrease their numbers is a potential therapeutic strategy for
patients with PCa. To this purpose, our findings provide novel drug
targetable genes specific for each cluster. It will be important for future
studies to explore the role these macrophage populations play in PCa,
and to investigate targeting these subtypes and their associated path-
ways with immunotherapy.

Cancer immunotherapies, specifically those inhibiting T-cell
immune checkpoints, have generated significant impact in recent
years, with established efficacy in advanced melanoma (65, 66),
non–small cell lung cancer (67, 68) and bladder cancer patients
(69, 70). However, in other cancers, including PCa, immunotherapy
efficacy is limited (71, 72). The uncertain therapeutic efficacy of
immunotherapy in PCa is partly due to a poor infiltration of
immune cells in the TME (16, 73–76). Moreover, TAMs display
an ability to modulate tumor immunity by suppression of T-cell
recruitment and function, although the precise mechanisms have
yet to be elucidated (60). Several direct and indirect suppressive
actions of macrophages on T-cell functions have been suggested,
including involvement of immune checkpoints ligands (e.g., PDL1,
B7-H4), cytokines (e.g., IL10, CXCL10, CCL22), and cell surface
receptors (e.g., CD2017, CSF1R; ref. 60). However, in this study,
only the colony-stimulating factor 1 receptor (CSF1R), which is a
key regulator of immunosuppressive macrophage expansion, was
found to be enriched in cluster 0. Whether the macrophage subtypes
discovered in this study play a role in T-cell regulation will be an
important question for future studies.

Limitations of this study include the small number of patients
included in the study and the absence of assessment of protein
expression of the key selected genes. To this end, future studies should
include immunohistochemistry analysis to further support our
findings.

In conclusion, in this study we demonstrate the relevance of using
single-cell transcriptomics from PCa-associated macrophages as a

prognostication strategy for individual patients. We propose that
targeting unique tumor-associated macrophage subtypes, as opposed
to all macrophages, can provide a therapeutic avenue to combat PCa
and potentially other cancer types.

Authors’ Disclosures
F.Y. Feng reports personal fees from Janssen, Blue Earth Diagnostics, Astellas,

Myovant, Roivant, Genentech, Bayer, PFS Genomics, SerImmune, and Bristol-Myers
Squibb outside the submitted work. L.F.A. Wessels reports grants from Genmab BV
during the conduct of the study. W. Zwart reports grants from Astellas Pharma
outside the submitted work. A.M. Bergman reports grants from FP7 MCA-ITN and
KWF Dutch Cancer Society during the conduct of the study. No disclosures were
reported by the other authors.

Authors’ Contributions
J.C. Siefert: Formal analysis, investigation, visualization, methodology, writing–
original draft, writing–review and editing.B. Cioni:Conceptualization, investigation,
writing–original draft, writing–review and editing.M.J. Muraro: Conceptualization,
resources, data curation, formal analysis, writing–original draft. M. Alshalalfa:
Formal analysis, validation, visualization, writing–original draft. J. Vivie: Resources,
data curation, investigation. H.G. van der Poel: Resources, writing–review and
editing. I.G. Schoots: Visualization. E. Bekers: Visualization. F.Y. Feng: Resources,
supervision. L.F.A. Wessels: Resources, supervision, writing–review and editing.
W. Zwart: Resources, supervision, writing–review and editing. A.M. Bergman:
Conceptualization, resources, supervision, funding acquisition, writing–original
draft, writing–review and editing.

Acknowledgments
We thank our collaborators from Single Cell Discoveries B.V., supported by the

Hubrecht Institute and the Oncode Institute. This work was supported by the FP7
MCA-ITN grant agreement 317445 – TIMCC and KWF Dutch Cancer Society grant
No. 2009–4356 awarded to Andre Bergman.

The costs of publication of this article were defrayed in part by the payment of page
charges. This article must therefore be hereby marked advertisement in accordance
with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 26, 2020; revised December 18, 2020; accepted June 7, 2021;
published first June 15, 2021.

References
1. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages.

Nat Immunol 2013;14:986–95.
2. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping

analysis reveals that adult microglia derive from primitive macrophages. Science
2010;330:841–5.

3. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-
resident macrophages self-maintain locally throughout adult life with minimal
contribution from circulating monocytes. Immunity 2013;38:792–804.

4. Epelman S, Lavine KJ, RandolphGJ. Origin and functions of tissuemacrophages.
Immunity 2014;41:21–35.

5. Gordon S, Pluddemann A, Martinez Estrada F. Macrophage heterogeneity in
tissues: phenotypic diversity and functions. Immunol Rev 2014;262:36–55.

6. Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D, Krebs W, et al.
High-resolution transcriptome of human macrophages. PLoS One 2012;7:
e45466.

7. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcrip-
tome-based network analysis reveals a spectrum model of human macrophage
activation. Immunity 2014;40:274–88.

8. M€uller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A, et al. Single-
cell profiling of human gliomas reveals macrophage ontogeny as a basis for
regional differences in macrophage activation in the tumor microenvironment.
Genome Biol 2017;18:234.

9. Xue D, Tabib T, Morse C, Lafyatis R. Single-cell RNA sequencing reveals
different subsets of macrophage and dendritic cells in human skin.
J Immunol 2019;202:(1 Supplement)177.8.

10. Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, et al. Landscape and
dynamics of single immune cells in hepatocellular carcinoma. Cell 2019;179:
829–45.

11. Poltavets V, Kochetkova M, Pitson SM, Samuel MS. The role of the extracellular
matrix and its molecular and cellular regulators in cancer cell plasticity.
Front Oncol 2018;8:431.

12. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated
macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017;14:
399–416.

13. Poh AR, Ernst M. Targeting macrophages in cancer: from bench to bedside.
Front Oncol 2018;8:49.

14. Lanciotti M,Masieri L, RaspolliniMR,Minervini A,Mari A, Comito G, et al. The
role of M1 and M2 macrophages in prostate cancer in relation to extracapsular
tumor extension and biochemical recurrence after radical prostatectomy.
Biomed Res Int 2014;2014:486798.

15. Shimura S, Yang G, Ebara S, Wheeler TM, Frolov A, Thompson TC. Reduced
infiltration of tumor-associated macrophages in human prostate cancer: asso-
ciation with cancer progression. Cancer Res 2000;60:5857–61.

16. Nonomura N, Takayama H, Nakayama M, Nakai Y, Kawashima A, Mukai M,
et al. Infiltration of tumour-associated macrophages in prostate biopsy speci-
mens is predictive of disease progression after hormonal therapy for prostate
cancer. BJU Int 2011;107:1918–22.

17. Hu W, Qian Y, Yu F, Liu W, Wu Y, Fang X, et al. Alternatively activated
macrophages are associated with metastasis and poor prognosis in prostate
adenocarcinoma. Oncol Lett 2015;10:1390–6.

Prostate Cancer-Associated Macrophages Have Prognostic Value

AACRJournals.org Mol Cancer Res; 19(10) October 2021 1789

D
ow

nloaded from
 http://aacrjournals.org/m

cr/article-pdf/19/10/1778/2967699/1778.pdf by guest on 16 February 2022



18. Gollapudi K, Galet C, Grogan T, Zhang H, Said JW, Huang J, et al. Association
between tumor-associated macrophage infiltration, high grade prostate cancer,
and biochemical recurrence after radical prostatectomy.Am JCancer Res 2013;3:
523–9.

19. Escamilla J, Schokrpur S, Liu C, Priceman SJ, Moughon D, Jiang Z, et al. CSF1
receptor targeting in prostate cancer reverses macrophage-mediated resistance
to androgen blockade therapy. Cancer Res 2015;75:950–62.

20. Xu J, Escamilla J, Mok S, David J, Priceman S, West B, et al. CSF1R signaling
blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of
radiotherapy in prostate cancer. Cancer Res 2013;73:2782–94.

21. Wong D, Kandagatla P, KorzW, Chinni SR. Targeting CXCR4 with CTCE-9908
inhibits prostate tumor metastasis. BMC Urol 2014;14:12.

22. Huang EH, Singh B, CristofanilliM,Gelovani J,Wei C,Vincent L, et al. ACXCR4
antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast
cancer. J Surg Res 2009;155:231–6.

23. Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, et al.
Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3
trials of active cellular immunotherapy with sipuleucel-T in advanced prostate
cancer. Cancer 2009;115:3670–9.

24. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation:
time for reassessment. F1000Prime Rep 2014;6:13.

25. Norstr€omMM, Ra
�
destad E, Stikvoort A, Egevad L, Bergqvist M,Henningsohn L,

et al. Novel method to characterize immune cells from human prostate tissue.
Prostate 2014;74:1391–9.

26. Muraro MJ, Dharmadhikari G, Gr€un D, Groen N, Dielen T, Jansen E, et al. A
single-cell transcriptome atlas of the human pancreas. Cell Syst 2016;3:385–94.

27. van den Brink SC, Sage F, V�ertesy �A, Spanjaard B, Peterson-Maduro J, Baron CS,
et al. Single-cell sequencing reveals dissociation-induced gene expression in
tissue subpopulations. Nat Methods 2017;14:935–6.

28. Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L,
et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-seq. Genome Biol
2016;17:77.

29. GrunD, Kester L, van Oudenaarden A. Validation of noise models for single-cell
transcriptomics. Nat Methods 2014;11:637–40.

30. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al.
Comprehensive integration of single-cell data. Cell 2019;177:1888–902.

31. Chung NC, Storey JD. Statistical significance of variables driving systematic
variation in high-dimensional data. Bioinformatics 2015;31:545–54.

32. Zappia L, OshlackA. Clustering trees: a visualization for evaluating clusterings at
multiple resolutions. Gigascience 2018;7:giy083.

33. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS 2012;16:284–7.

34. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al.
Integrative genomic profiling of human prostate cancer. Cancer Cell 2010;18:
11–22.

35. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear
models via coordinate descent. J Stat Softw 2010;33:1–22.

36. Terry M, Therneau PMG. Modeling survival data: extending the Cox model, in
Springer. Springer: New York; 2000.

37. Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier
performance in R. Bioinformatics 2005;21:3940–1.

38. Ross AE, Johnson MH, Yousefi K, Davicioni E, Netto GJ, Marchionni L, et al.
Tissue-based genomics augments post-prostatectomy risk stratification in a
natural history cohort of intermediate- and high-risk men. Eur Urol 2016;69:
157–65.

39. Erho N, Crisan A, Vergara IA, Mitra AP, Ghadessi M, Buerki C, et al. Discovery
and validation of a prostate cancer genomic classifier that predicts early
metastasis following radical prostatectomy. PLoS One 2013;8:e66855.

40. Karnes RJ, Bergstralh EJ, Davicioni E, Ghadessi M, Buerki C, Mitra AP, et al.
Validation of a genomic classifier that predicts metastasis following radical
prostatectomy in an at risk patient population. J Urol 2013;190:2047–53.

41. Autengruber A, GerekeM, Hansen G, Hennig C, Bruder D. Impact of enzymatic
tissue disintegration on the level of surface molecule expression and immune cell
function. Eur J Microbiol Immunol 2012;2:112–20.

42. Ford AL, Foulcher E, Goodsall AL, Sedgwick JD. Tissue digestion with dispase
substantially reduces lymphocyte and macrophage cell-surface antigen expres-
sion. J Immunol Methods 1996;194:71–5.

43. Chen Z, Chen X, Xu Y, Xiong P, Fang M, Tan Z, et al. Collagenase digestion
down-regulates the density of CD27 on lymphocytes. J Immunol Methods 2014;
413:57–61.

44. Perera PY, Mayadas TN, Takeuchi O, Akira S, Zaks-Zilberman M, Goyert SM,
et al. CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR) 4 to
elicit full lipopolysaccharide and taxol-inducible gene expression. J Immunol
2001;166:574–81.

45. Lasitschka F, Giese T, Paparella M, Kurzhals SR, Wabnitz G, Jacob K, et al.
Human monocytes downregulate innate response receptors following exposure
to the microbial metabolite n-butyrate. Immun Inflamm Dis 2017;5:480–92.

46. da Silva TA, Zorzetto-Fernandes ALV, Cecílio NT, Sardinha-Silva A, Fernandes
FF, Roque-Barreira MC. CD14 is critical for TLR2-mediated M1 macrophage
activation triggered by N-glycan recognition. Sci Rep 2017;7:7083.

47. Zhu S, Zhang XO, Yang L. Panning for long noncoding RNAs. Biomolecules
2013;3:226–41.

48. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species.
Nat Biotechnol 2018;36:411–20.

49. Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast
heterogeneity in the tumormicroenvironment. Cancer Biol Ther 2006;5:1640–6.

50. Fearon DT. The carcinoma-associated fibroblast expressing fibroblast activation
protein and escape from immune surveillance. Cancer Immunol Res 2014;2:
187–93.

51. Taylor SA, Chen SY, Gadhvi G, Feng L, Gromer KD, Abdala-Valencia H, et al.
Transcriptional profiling of pediatric cholestatic livers identifies three distinct
macrophage populations. PLoS One 2021;16:e0244743.

52. Evren E, Ringqvist E, Tripathi KP, Sleiers N, Rives IC, Alisjahbana A, et al.
Distinct developmental pathways from blood monocytes generate human lung
macrophage diversity. Immunity 2021;54:259–75.

53. Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi JW, et al. Single-cell RNA
sequencing demonstrates the molecular and cellular reprogramming of meta-
static lung adenocarcinoma. Nat Commun 2020;11:2285.

54. Garrido-Martin EM, Mellows TWP, Clarke J, Ganesan A-P, Wood O, Cazaly A,
et al. M1(hot) tumor-associated macrophages boost tissue-resident memory T
cells infiltration and survival in human lung cancer. J Immunother Cancer 2020;
8:e000778.

55. Mao X, Yang X, Chen X, Yu S, Yu S, Zhang B, et al. Single-cell transcriptome
analysis revealed the heterogeneity and microenvironment of gastrointestinal
stromal tumors. Cancer Sci 2021;112:1262–74.

56. Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O’Brien SA, et al. Single-
cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer.
Cell 2020;181:442–59.

57. Pan Y, Lu F, Fei Q, YuX, Xiong P, YuX, et al. Single-cell RNA sequencing reveals
compartmental remodeling of tumor-infiltrating immune cells induced by anti-
CD47 targeting in pancreatic cancer. J Hematol Oncol 2019;12:124.

58. Chen S, Zhu G, Yang Y, Wang F, Xiao YT, Zhang N, et al. Single-cell analysis
reveals transcriptomic remodellings in distinct cell types that contribute to
human prostate cancer progression. Nat Cell Biol 2021;23:87–98.

59. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A,
et al. Proteomics. Tissue-based map of the human proteome. Science 2015;347:
1260419.

60. DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and
immunotherapy. Nat Rev Immunol 2019;19:369–82.

61. Howard LE, Zhang J, Fishbane N, Hoedt AM, Klaassen Z, Spratt DE, et al.
Validation of a genomic classifier for prediction of metastasis and prostate
cancer-specific mortality in African-American men following radical prosta-
tectomy in an equal access healthcare setting. Prostate Cancer Prostatic Dis 2019;
23:419–28.

62. Comito G, Giannoni E, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni
G, et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize
during prostate carcinoma progression. Oncogene 2014;33:2423–31.

63. Erlandsson A, Carlsson J, LundholmM, F€alt A, Andersson S-O, Andr�en O, et al.
M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate 2019;
79:363–9.

64. Hayashi T, Fujita K, Nojima S, Hayashi Y, Nakano K, Ishizuya Y, et al. High-fat
diet-induced inflammation accelerates prostate cancer growth via IL6 signaling.
Clin Cancer Res 2018;24:4309–18.

65. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al.
Improved survival with ipilimumab in patients with metastatic melanoma.
N Engl J Med 2010;363:711–23.

66. Robert C, Thomas L, Bondarenko I, O’Day S,Weber J, Garbe C, et al. Ipilimumab
plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med
2011;364:2517–26.

Siefert et al.

Mol Cancer Res; 19(10) October 2021 MOLECULAR CANCER RESEARCH1790

D
ow

nloaded from
 http://aacrjournals.org/m

cr/article-pdf/19/10/1778/2967699/1778.pdf by guest on 16 February 2022



67. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Cso��szi T, F€ul€op A, et al.
Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung
cancer. N Engl J Med 2016;375:1823–33.

68. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al.
Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer.
N Engl J Med 2017;377:1919–29.

69. Ardolino L, Joshua A. Immune checkpoint inhibitors inmalignancy. Aust Prescr
2019;42:62–67.

70. Bellmunt J, deWit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab
as second-line therapy for advanced urothelial carcinoma. N Engl J Med 2017;
376:1015–26.

71. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJM, et al.
Ipilimumab versus placebo after radiotherapy in patients with metastatic
castration-resistant prostate cancer that had progressed after docetaxel chemo-
therapy (CA184–043): a multicentre, randomised, double-blind, phase 3 trial.
Lancet Oncol 2014;15:700–12.

72. Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G, et al.
Randomized, double-blind, phase III Trial of ipilimumab versus placebo in
asymptomatic or minimally symptomatic patients with metastatic chemo-
therapy-naive castration-resistant prostate cancer. J Clin Oncol 2017;35:
40–47.

73. Vitkin N, Nersesian S, Siemens DR, Koti M. The tumor immune contexture of
prostate cancer. Front Immunol 2019;10:603.

74. Kiniwa Y, Miyahara Y, Wang HY, Peng W, Peng G, Wheeler TM, et al. CD8þ
Foxp3þ regulatory T cells mediate immunosuppression in prostate cancer.
Clin Cancer Res 2007;13:6947–58.

75. Strasner A, KarinM. Immune infiltration and prostate cancer. Front Oncol 2015;
5:128.

76. Ebelt K, Babaryka G, Frankenberger B, Stief CG, Eisenmenger W,
Kirchner T, et al. Prostate cancer lesions are surrounded by FOXP3þ,
PD-1þ and B7-H1þ lymphocyte clusters. Eur J Cancer 2009;45:
1664–72.

AACRJournals.org Mol Cancer Res; 19(10) October 2021 1791

Prostate Cancer-Associated Macrophages Have Prognostic Value

D
ow

nloaded from
 http://aacrjournals.org/m

cr/article-pdf/19/10/1778/2967699/1778.pdf by guest on 16 February 2022



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides true
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        18
        18
        18
        18
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 18
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [792.000 1224.000]
>> setpagedevice


