
Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Biomedical Engineering
Controlling cellular plasticity to improve in vitro
models for kidney regeneration
Carla Pou Casellas1,2, Maarten B. Rookmaaker1 and
Marianne C. Verhaar1
Abstract
Given the increasing prevalence of end-stage kidney disease,
the high morbidity and mortality of dialysis treatment, and the
shortage of donor kidneys, the field of nephrology is progres-
sively shifting its focus to regenerative medicine. In particular,
both the development of a bioartificial kidney and the
improvement of kidney-mimicking systems developed in vitro
(e.g. organoids or tubuloids) for implantation purposes are
attractive therapeutic strategies. However, a major hurdle to
overcome with the current kidney cell models available is the
limited control over cellular plasticity to augment cell-type-
specific functionality. In this review, we summarize the main
knowledge on important factors known to drive or affect
maturation of kidney epithelial cells. This might aid in the
advancement of in vitro kidney models to enable their use in
regenerative medicine.
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Introduction
For decades, there is a persistent tension between the
high demand for kidney transplantations and the scarce
availability of donors. According to the United States
Organ Procurement and Transplantation Network, as of
www.sciencedirect.com
April 2021, 90,937 candidates are on the waiting list for
a new kidney in the United States [1]. Most patients
suffer from chronic kidney disease or end-stage kidney
disease and are fully dependent on long and frequent
dialysis sessions. Dialysis poses not only an economic
burden to the healthcare system but also an extreme
psychological burden to the patient. Moreover, dialysis
remains ineffective for the removal of protein-bound
toxins in the blood, which leads to higher morbidity
and mortality.
To circumvent or limit the use of dialysis and ultimately
aid in the shortage of kidney donations, the field of
nephrology is increasingly interested in regenerative
medicine and the development of bioartificial kidneys.
In the last decade, several in vitro kidney systems have
emerged, giving rise to new opportunities to progress in
replacing defective kidneys in vivo. The most well-
known kidney model that could be suitable for regen-

erative applications is induced pluripotent stem cell
(iPSC)-derived kidney organoids [2,3]. These are com-
plex three-dimensional cellular structures that resemble
the morphology of the nephron. One of the major ad-
vantages of kidney organoids is that they contain, in an
organized fashion, a variety of epithelial and mesen-
chymal cell types, including tubular epithelial cells,
nephron progenitor cells, podocytes, and endothelial
cells [4]. However, because of their incomplete level of
maturity and off-target differentiation [5], iPSC-derived
kidney organoids are, to date, mostly suitable for studies

concerning embryonic nephron development. Another
model that has recently been developed is adult kidney
tubuloids [6,7]. Unlike organoids, which are usually
cultured on transwells or low-attachment plates [8],
kidney tubuloids are embedded in hydrogels. Further-
more, they differ from kidney organoids in the fact that
they exclusively contain epithelial kidney cell types, and
their structure is spheric. Although being unsuitable to
study nephrogenesis, tubuloids have a better capacity to
mimic kidney regeneration as they are directly derived
from adult kidney tissue, and they show high expression

levels of several maturity markers together with the
absence of precursor and immature cell types that are
found in iPSC-derived kidney organoids. Additional ad-
vantages for the regenerative application of tubuloids are
easy cell sourcing from urine, which allows autologous
tissue growth, as well as the lack of genetic modification
and off-target differentiation [6,7].
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The major limitation for the clinical applicability of
organoids/tubuloids is the lack of adequate differentia-
tion owing to limited control over cellular plasticity.
Cellular plasticity refers to the phenomenon in which
terminally differentiated cells are able to transform into
another cell type, either by dedifferentiation
(i.e. transformation into a cell with a lower maturity
state) followed by redifferentiation or by trans-

differentiation (i.e. transformation into a different
mature cell type). In kidney cells, plasticity occurs
frequently, both in vivo and in vitro, as adaptive response
to changes in the environment. Regarding plasticity
related to transdifferentiation, an example can be taken
from recent findings by Howden et al. (2021), who
showed that distal tubule (DT) cells in iPSC-derived
kidney organoids are able to transdifferentiate into
ureteric epithelium under certain culture conditions
[9]. With respect to plasticity related to dedifferentia-
tion, a clear example occurs during acute kidney injury

in vivo, when cells in the affected area enter a more
immature and proliferative state to repopulate the
nephron with their subsequent redifferentiation [10].
Similarly, when primary kidney cells are cultured in vitro,
they rapidly dedifferentiate. However, although most
cells in vivo quickly redifferentiate upon dedifferentia-
tion, when cultured in vitro, they do not regain a fully
differentiated, mature phenotype [11,7]. In tubuloids,
addition of specific growth factors can augment the
proximal tubule (PT) phenotype, whereas withdrawal of
Figure 1

Cell plasticity during kidney regeneration and in vitro culture. (a) Upon in
cells become dedifferentiated. By unknown mechanisms (‘black box’), these c
unravel how kidney cell redifferentiation can be promoted in vitro.
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growth factors promotes preferential differentiation
toward distal kidney segments. Yet, in both cases, the
expression of many segment-specific differentiation
markers remains below the levels found in mature
kidney tissue in vivo [12,13,7]. To this day, the exact
drivers for full redifferentiation remain elusive.

Control over both the dedifferentiated and proliferative
state, as well as the functional and fully matured cell
state, is crucial, on the one hand, to obtain sufficient cell

numbers for a bioartificial device, and on the other hand,
to differentiate the cells toward the required functional
phenotype. Understanding and modulating cellular
plasticity can help upgrade the physiological mimicking
capacity of in vitro models. In this short nonexhaustive
review, we provide an overview of key stimuli d both
physical and chemical d that have been described to
direct adult kidney epithelial cell (re)differentiation,
and factors that have been shown to transcriptionally
modulate the cell state of adult kidney cells in vitro
(Figure 1).

Regulators of adult kidney epithelial cell
maturity
Recently, Morris [14] proposed a framework to
conceptualize cell identity, distinguishing between (1)
phenotype and function, (2) lineage, and (3) cell state.
For regenerative purposes, cell identity is best defined

by function, which depends on the adequate expression
jury in vivo or after introduction into an in vitro culture, kidney epithelial
ells are able to redifferentiate in vivo. (b) Opening this black box could
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of specific proteins; along the nephron, each cell type is
primarily distinguished by the expression and function
of segment-specific transporters. Because dedifferenti-
ation in vitro is driven by drastic transcriptional changes,
we examined per nephron segment which signaling
pathways and transcription factors are crucial regulators
for cell maturity and function (Section 2.1, Figure 2).
The second pillar of cell identity, lineage, is an inter-

esting concept to study at developmental stages to
identify cells based on their origin, but in this review, we
focus on cells at the other end of the maturity scale and
how their functionality can be influenced in vitro. Here,
the third pillar is more interesting: cell state is described
by Morris [14] as ‘the range of cellular phenotypes
arising from the interaction of a defined cell type with
its environment’. This review provides an overview of
the main soluble factors (Section 2.2) and matrix cues
(Section 2.3) that have shown to influence the (func-
tional) state of kidney cells (Figure 2).

Signaling pathways and transcription factors
Transcription factors are the primary regulators of gene

expression, and there is a plethora of transcription fac-
tors and pathways that either promote differentiation or
preserve a mature state of kidney epithelial cell types in
a cell-type specific manner. Current knowledge is
mainly based on knockout studies in adult mice, and on
in vitro experiments using human and murine cell lines,
summarized in Table 1.
Figure 2

Key factors involved in regulating maturation of the different nephron seg
receptor.
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In PT cells, major drivers of differentiation include the
hepatocyte nuclear factors 1a/4a (HNF1a/4a), the
peroxisome proliferator-activated receptors a and g
(PPARa/g), and the estrogen-related receptor a
(ESRRa). In mice,Hnf1a regulates the expression levels
of the chloride channel chloride voltage-gated channel 5
(Clcn5), the sodium and glucose cotransporter 2
(SGLT2, Slc5a2), and the sodium-phosphate cotrans-

porters 1 and 3 (Npt1/3, Slc17a1/3) [15e17]. In addi-
tion, in vitro studies have demonstrated that Hnf1a,
together with Hnf4a, is able to promote expression of a
major PT transporter, the organic anion transporter 1
(Oat1, Slc22a6) [18,19]. HNF4A alone can also induce
the expression of other PT-specific carriers, such as the
transporters SLC7A7 and SLC16A4, and the endocytic
receptor megalin (LRP2) [20].

The roles of PPAR and ESRRa on PT maturation have
been recently investigated by Dhillon et al. (2021):
activation of Ppara in mice resulted in increased
expression levels of PT markers such as the solute car-
riers Slc22a30, Slc27a2, and Slc16a11, whereas knockout
of Esrra led to reduced expression of a variety of genes,
including Slc22a6, Slc7a13, and Slc6a13 [21]. Confirming

the positive effects of PPAR activation on PT cell
maturation, treatment of LLC-PK1 cells with either a
PPARa or PPARg agonist increased LRP2 expression
levels, whereas the antagonists showed an opposite
effect [22]. Of note, the effects of PPAR and ESRRa on
ments in the kidney. PTH, parathyroid hormone; MR, mineralocorticoid

Current Opinion in Biomedical Engineering 2021, 20:100345

www.sciencedirect.com/science/journal/24684511


Table 1

Main transcription factors and signaling pathways involved in the differentiation of the different kidney epithelial segments.

Gene Modification Species/cell Line Effect References

Proximal tubule Hnf1a Knockout Mice Y Clcn5 expression
Y Slc5a2 expression
Y Slc17a1/3 expression

[17]
[16]
[15]

Hnf4a+Hnf1a Overexpression Mouse embryonic fibroblasts [ Slc22a6 expression [18,19]

HNF4A Overexpression HK-2/HEK-293T cells [ SLC4A1 expression
[ SLC7A7 expression
[ SLC16A4 expression
[ LRP2 expression

[20]

PPARA Activation Mice [ Slc22a30 expression
[ Slc27a2 expression
[ Slc16a11 expression

[21]

PPARA/G Activation
Inhibition

LLC-PK1 cells [ LRP2 expression
Y LRP2 expression

[22]

ESRRA Knockout Mice Y Slc22a6 expression
Y Slc7a13 expression
Y Slc6a13 expression

[21]

Loop of Henle Brn1 Heterozygous knockout Mice Y Umod expression
Y Ptger3 expression
Y Slc12a1 expression
Y Kcnj1 expression
Y BSND expression

[23]

Distal tubule Prox1 Knockout Mice Y Slc12a3 expression
Y Trpm6 expression

[27]

Memo1 Knockout Mice [ Trpv5 expression
[ Slc8a1 expression
[ Calb1 expression

[26]

Hnf1b siRNA mpkDCT cells Y Kcnj16 expression
Y Kcnj10 expression
Y Fxyd2a expression

[25]

Knockout Mice Y Kcnj16 expression
Y Kcnj10 expression
Y Slc12a3 expression
Y Pkhd1 expression

Fgfr1 Knockout Mice [ Trpv5 expression
[ Trpv6 expression
[ Calb1 expression

[24]

Collecting duct Elf3 Knockdown
Overexpression

mpkCCD cells Y Aqp2 expression
[ Aqp2 expression

[29]

Elf5 Overexpression mpkCCDC14 cells [ Aqp2 expression
[ Avpr2 expression

[28]

Knockout Mice Y Aqp2 expression
Y Avpr2 expression

Notch1+Notch2
Hes1

Knockout Mice Y Aqp2 expression
Y Elf5 expression
Y Avpr2 expression
Y Aqp4 expression
[ Foxi1 expression
[ Atp6v1b1 expression
[ Slc26a4 expression

[31,32]

Foxi1 Knockout Mice Y Slc4a1 expression
Y Slc26a4 expression

[30]
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PT cell differentiation are very tightly linked to their
effects on cellular metabolism, which highlights the
importance of cellular metabolism as a major driver of
PT cell differentiation [21].

In the loop of Henle (LoH), transcriptional regulation of
maturation is still not well understood; to our knowl-
edge, the only factor linked to higher LoH differentia-

tion to date is POU class 3 homeobox 3 (POU3F3, or
BRN1). A heterozygous knockout of Brn1 in adult mice
decreased the expression levels of important markers in
that segment, including uromodulin (Umod), the pros-
taglandin E receptor 3 (Ptger3), the sodium-potassium-
chloride cotransporter 2 (Nkcc2, Slc12a1), the renal
outer medullary potassium channel (Romk, Kcnj1), and
barttin (Bsnd) [23].

The maturation of the DT in mice is affected by the
expression of the transcription factors prospero homeo-

box 1 (Prox1), mediator of cell motility 1 (Memo1), he-
patocyte nuclear factor 1b (Hnf1b), and the fibroblast
growth factor receptor 1 (Fgfr1). The individual dele-
tion of these genes affects the expression of several DT-
specific markers, such as the calcium-handling genes
Trpv5 and calbindin 1 (Calb1), or the potassium channels
Kcnj16 and Kcnj10 [24e27].

Finally, collecting duct (CD) maturity and identity are
mainly regulated by the transcription factors E74 like
ETS factors 3 and 5 (Elf3/5), forkhead box I1 (Foxi1),
and the Notch signaling pathway. Elf3/5 and Notch are
important for the maturation of principal cells (PCs)
[28,29], whereas Foxi1 is essential for the maturation of
intercalated cells (ICs) [30,31]. Furthermore, these
factors have shown to orchestrate the trans-
differentiation between both cell types in the CD [31].
One of the most important markers in PCs demon-
strating maturity is the channel aquaporin-2 (Aqp2).
Both Elf3 and Elf5 can bind to the Aqp2 promoter,
thereby regulating its basal expression levels [28,29].
Aqp2 expression can also be greatly modulated by Notch
signaling: dual knockout of Notch1 and Notch2 in mice

has shown to significantly downregulate the expression
of this channel [32]. Similar results have been obtained
with the deletion of the Notch target Hes1, which not
only leads to a reduction in Aqp2 expression but also of
Elf5, Avpr2, and Aqp4. Simultaneously, inhibition of
Notch increases the expression of IC-related markers,
such as Foxi1, the ATPase Hþ transporting V1 subunit
B1 (Atp6v1b1), and pendrin (Slc26a4) [31,32], indicating
that Notch inhibition promotes transdifferentiation of
PCs into ICs. Finally, Foxi1, the major IC transcription
factor, is able to regulate the mRNA expression of the IC
www.sciencedirect.com
transporters anion exchanger 1 (AE1, Slc4a1) and Slc26a4
[30].

Soluble factors
Ions and osmolality
Apart from the direct action of transcription factors, cells
react to systemic signals with transcriptional changes to

maintain homeostasis. For example, kidney cells in the
medulla are exposed to very high levels of osmolality, and
thus possess mechanisms to reduce ionic strength, for
example, by accumulating intracellular osmolytes [33].
This adaptive process is partly regulated at the tran-
scriptional level. In vitro, induction of hyperosmolality has
shown to increase expression of a variety of genes in
different kidney cells, including the chloride voltage-
gated channel 5 (Clcn5), Aqp2, Aqp3, and Slc6a12 [34e36].
Furthermore, hyperosmolality upregulates the transcrip-
tion factor tonicity-responsive enhancer-binding

protein (TonEBP), which has been linked to the
hyperosmolality-induced upregulation of Aqp2 [33].
Interestingly, impairment inNotch signaling was reported
to cause a significant decrease in urine osmolality [32].
Therefore, the effects of Notch on CD (trans)differenti-
ation might be partly dependent on osmolality changes.

The differential abundance of specific ions has shown to
transcriptionally affect the levels of transporters in,
especially, CD cells. For instance, lithium (Liþ) treat-
ment is known for its effects on transdifferentiation of

PCs into ICs, reflected by a decrease in cellular Aqp2
expression and an increase in IC marker expression,
such as Slc4a1 [37,32,38]. Similarly, the dietary deple-
tion of potassium (Kþ) leads to the downregulation of
Aqp2 expression and the promotion of expression of IC-
specific markers. Importantly, Kþ depletion also sup-
presses Notch signaling [39]. Finally, treatment of mice
with bicarbonate (NaHCO3), together with an aldoste-
rone analog, has shown to upregulate mRNA levels of
both Slc4a1 and Slc26a4 [40].

Hormones
The major function of hormones in the distal segments
of the kidney is the regulation of transporters and
channels in regulatory systems for homeostasis and
osmolality control. Therefore, hormones in these seg-
ments (especially the CD) have a crucial effect on the
cell state, even though this might not be per se related to
differentiation.

Especially hormones binding to the mineralocorticoid
receptor (MR) display a wide array of effects in these
segments. For instance, several studies have demon-
strated that aldosterone, an MR ligand, is able to not
Current Opinion in Biomedical Engineering 2021, 20:100345
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only upregulate the protein levels of the sodium-chlo-
ride cotransporter (Ncc) and Aqp2, but also the mRNA
expression of the epithelial sodium channel a (ENaCa,
Scnn1a) [41e43]. Fludrocortisone and dexamethasone,
which can also bind to MR, were similarly able to in-
crease protein levels of Ncc and expression of Aqp2 in
rodent models, respectively [42,44].

The antidiuretic hormone vasopressin, which acts
through cAMP, is also a well-known modulator of CD
cell maturation. Vasopressin stimulates mRNA expres-
sion of Aqp2 in a dose- and time-dependent manner.
This effect can also be mimicked by using other cAMP
activators, such as forskolin or 8-bromo-cAMP [45,46]. A
recent article by Uchimura et al. (2020) [4] demon-
strated an improved differentiation of iPSC-derived
kidney organoids toward kidney cells of the CD d
based on the significant increase in markers specific for
the CD d by treating them with both vasopressin and

aldosterone.

Another hormone with a putative but conflicting role in
kidney maturation is the parathyroid hormone (PTH).
In rat kidneys, PTH positively regulates expression of
Trpv5, Calb1, and Ncx1 [47]. In contrast, specific
knockout of Pth1r in the LoH, DT, and CD of mice
caused an increase in the expression of Trpv5 and Calb1
[48]. These differential effects could be owing to the
fact that PTH is also able to activate cAMP [49] and
might thus exert its positive effects on differentiation

independently of its receptor.

Mechanical cues
Matrix topography and stiffness
Especially for the development of bioartificial kidneys,
it is crucial to choose the membrane chemistry and
surface topography that better support cellular differ-
entiation and functionality. Several studies have
explored the effects of different substrate topographies
and stiffnesses on the enhancement of kidney cell

maturation. Microenvironmental curvature, as physio-
logically found in the nephron, has been shown to
improve renal function, among others, through
increased expression of PT transporters such as
SLC22A6 [50]. Besides curvature, anisotropic extracel-
lular matrix architecture encourages structural arrange-
ment of F-actin, which augments the expression of
kidney transporters, including SLC22A2 and ABCB1
[51,52]. Stiffness has also shown to be a determinant of
kidney cell maturity, with softer materials allowing for
better differentiation of kidney organoids [53]. Finally,

the findings of some studies suggest that decellularized
tissues could be excellent candidates as natural kidney
Current Opinion in Biomedical Engineering 2021, 20:100345
cell-supporting matrices, providing physiological topol-
ogy, stiffness, and molecular cues. Both human and
murine embryonic stem cells perfused into decellular-
ized kidneys have shown to repopulate the scaffold and
are able to differentiate [54,55]. However, the extent of
such maturation has not yet been compared with that on
standard culturing surfaces.

Fluid shear stress
The apical side of the kidney epithelium is constantly
exposed to a pulsatile urine flow, generated by the
heart’s pumping action. Most kidney epithelial cells are
equipped with microvilli and primary cilia, which act as
mechanosensors that translate extracellular flow into
intracellular signal transduction cascades. A recent study
revealed that prolonged PTcell culture under fluid flow
leads to selective activation of pathways involved in cell
adhesion and polarization, leading to a phenotype that is

transcriptionally more representative of the PT in vivo
[56]. Moreover, flow has shown to positively affect the
expression of various PTmarkers in human cell lines and
organoids, including brush border enzyme g-glutamyl-
transferase 1 (GGT1), the sodium/hydrogen exchanger 3
(NHE3, SLC9A3), the multidrug resistance protein 4
(MRP4, ABCC4), LRP2, and AQP1 [57e59]. Tran-
scriptional and metabolomics data showed upregulated
aerobic metabolic pathways and decreased glycolytic
flux under flow conditions, which might underlie a flow-
induced increase in oxygen availability [60].
Conclusion and future outlook
Terminally differentiated kidney tubular cells are
capable of de- or transdifferentiating owing to cellular
plasticity. In vivo, this occurs primarily in response to

injury, but a similar process is observed when cells are
cultured in vitro. Cells in current kidney organoids and
tubuloids remain mostly in an intermediate cell state
with partial expression of cell-specific markers but
functionality far below the capacity of fully differenti-
ated cells. To generate highly functional tissue for
kidney regeneration, a promising strategy is the exploi-
tation of cellular plasticity by shifting cells to the most
functional state possible. In this short review, we pro-
vide an overview of factors known to drive or affect the
expression of cell-type-specific differentiation markers

that determine cellular functionality. The induction of
key transcription factors can promote function specific
to the respective nephron segments, but also regulation
through hormones and ions can induce cellular homeo-
static responses. Moreover, mechanical cues from the
extracellular matrix and fluid flow have been shown to
potentiate cellular function. Therefore, defined culture
media or microfluidic systems may be effective
www.sciencedirect.com
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approaches to enhance the differentiated phenotype of
kidney cells. Interestingly, incorporation of supporting
cells and/or vasculature in kidney organoids can further
promote their maturation [61,62].

We limited this overview to the main information re-
ported on kidney cell differentiation, but other stimuli,
such as oxygenation, epigenetics, and the molecular

composition of the extracellular matrix, should not be
dismissed, as they have shown to affect plasticity of cells
from other organs or even kidney cells during injury
[63e67]. An exploration of how these factors could
contribute to better kidney cell maturation is of great
importance. In addition, kidney cell transdifferentiation
remains to be an understudied subject. Future studies
should investigate which specific factors are able to
drive transdifferentiation of which kidney cell types.
Last but not least, a large number of kidney single-cell
RNA sequencing studies have recently been published

that provide information on major transcription factors
and other genes related to the maturation of the
different epithelial kidney cell types [68,69]. The
relevance of these candidates on kidney cell differenti-
ation should now be confirmed experimentally.

In conclusion, a deeper mechanistic understanding of
cellular plasticity in kidney organoids and tubuloids can
ultimately be translated into advanced culture systems
with functional and regenerative potential.
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