# Associations of Observational and Genetically Determined Caffeine Intake With Coronary Artery Disease and Diabetes Mellitus 

M. Abdullah Said (D) , MD; Yordi J. van de Vegte, BSc; Niek Verweij, PhD; Pim van der Harst, MD, PhD (D)

BACKGROUND: Caffeine is the most widely consumed psychostimulant and is associated with lower risk of coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM). However, whether these associations are causal remains unknown. This study aimed to identify genetic variants associated with caffeine intake, and to investigate evidence for causal links with CAD or T2DM. In addition, we aimed to replicate previous observational findings.


#### Abstract

METHODS AND RESULTS: Observational associations were tested within UK Biobank using Cox regression analyses. Moderate observational caffeine intakes from coffee or tea were associated with lower risks of CAD or T2DM, with the lowest risks at intakes of 121 to $180 \mathrm{mg} /$ day from coffee for CAD (hazard ratio [HR], 0.77 [ $95 \% \mathrm{Cl}, 0.73-0.82 ; P<1 \times 10^{-16}$ ]), and 301 to $360 \mathrm{mg} /$ day for T2DM (HR, 0.76 [ $95 \% \mathrm{Cl}, 0.67-0.86]$; $P=1.57 \times 10^{-5}$ ). Next, genome-wide association studies were performed on selfreported caffeine intake from coffee, tea, or both in 407072 UK Biobank participants. These analyses identified 51 novel genetic variants associated with caffeine intake at $P<1.67 \times 10^{-8}$. These loci were enriched for central nervous system genes. However, in contrast to the observational analyses, 2 -sample Mendelian randomization analyses using the identified loci in independent disease-specific cohorts yielded no evidence for causal links between genetically determined caffeine intake and the development of CAD or T2DM.

CONCLUSIONS: Mendelian randomization analyses indicate genetically determined higher caffeine intake might not protect against CAD or T2DM, despite protective associations in observational analyses.


Key Words: caffeine intake $\square$ coronary artery disease $\square$ genetics $\square$ Mendelian randomization $\square$ type 2 diabetes mellitus

Caffeine is the most commonly consumed psychostimulant in the world and is readily available in coffee, tea, and other food products. ${ }^{1}$ Previous observational studies and meta-analyses have generally reported beneficial associations between moderate intake of coffee, the main dietary source of caffeine, ${ }^{1}$ and risk of cardiovascular disease ${ }^{2}$ and type 2 diabetes mellitus (T2DM), ${ }^{3}$ as well as cardiovascular and all-cause mortality. ${ }^{4,5}$ Contrasting results have been reported as well for cardiovascular disease outcomes, including coronary artery disease (CAD), ${ }^{2,6-9}$
and therefore coffee and tea are not generally included in dietary guidelines. ${ }^{10}$ Given its widespread consumption, altering caffeine intake might be an interesting way to influence population-wide risk of developing CAD and T2DM.

Because of the observational design of previous studies, which include many cross-sectional and case-control studies, it is difficult to provide insight into causal relationships. Genome-wide association studies (GWASs) have identified several single-nucleotide polymorphisms (SNPs) associated with caffeine or coffee

[^0]
## CLINICAL PERSPECTIVE

## What Is New?

- Leveraging data from >400 000 individuals, we identified 51 novel genetic loci associated with caffeine intake.
- We confirmed phenotypic associations between caffeine intake and the development of coronary artery disease or type 2 diabetes mellitus, but by exploiting instrumental variable analyses we found no evidence for causality of this association.


## What Are the Clinical Implications?

- Our data do not support recommending caffeine intake to protect against the development of coronary artery disease of type 2 diabetes mellitus.


## Nonstandard Abbreviations and Acronyms

| CARDIoGRAMplusC4D | Coronary Artery |
| :---: | :---: |
|  | Disease Genome wide |
|  | Replication and |
|  | Meta-analysis plus The |
|  | Coronary Artery |
|  | Disease Genetics |
| DIAGRAM | Diabetes Genetics |
|  | Replication And |
|  | Meta-analysis |
| eQTL | expression quantitative trait locus |
| MR | Mendelian |
|  | randomization |
| T2DM | type 2 diabetes |
|  | mellitus |

intake through genes such as AHR and CYP1A2, which affect the metabolism of caffeine. ${ }^{11-17}$ Unlike traditional observational studies, Mendelian randomization (MR) analyses have the advantageous applicability of uncovering causal links using genetic variants, which are randomly allocated at conception, as instrumental variables for modifiable risk factors to test potential causal links with disease outcomes. So far, MR analyses between genetically determined higher caffeine intake and risk of CAD ${ }^{7,18}$ or T2DM ${ }^{19}$ failed to provide support for a causal link. However, these studies used only few SNPs and investigated coffee as the sole source of caffeine.

Here, we investigated the observational associations between habitual caffeine intake from coffee, tea, or both with new-onset CAD and T2DM in
a large prospective observational cohort. To further our knowledge of the genetic architecture underlying caffeine intake, we carried out GWASs for caffeine intake from coffee, tea, or both in over 400000 participants from the UK Biobank to identify novel variants for caffeine intake. Using this set of SNPs, we aimed to investigate the causal relationship between caffeine intake with CAD and T2DM in large independent cohorts.

## METHODS

The data that support the findings of this study are available from the corresponding author upon reasonable request. GWAS summary statistics generated during the present study will be made available in the following repository: https://doi.org/10.17632/d8nwk m7p9p.1.

## Study Population

The UK Biobank study is a population-based prospective cohort whose design and population have been described previously. ${ }^{20}$ From 2006 to 2010, $>500000$ individuals between the ages of 40 and 69 years were recruited in the United Kingdom. All participants gave informed consent, ${ }^{21}$ and the UK Biobank study was approved by the North West Multi-centre Research Ethics committee. ${ }^{22}$ Details regarding the UK Biobank study population are provided in Data S1.

## Ascertainment of Coffee and Tea Intake

During the first visit to the assessment center, daily coffee and tea intake were assessed by asking participants, "How many cups of coffee do you drink each day? (Include decaffeinated coffee)" and "How many cups of tea do you drink each day? (Include black and green tea)." In addition, coffee drinkers were asked what type of coffee they usually drink. Caffeine intake was calculated as the number of cups of coffee or tea multiplied by the caffeine content per cup. ${ }^{23}$ Combined caffeine intake from both coffee and tea was calculated as the sum of the daily caffeine intake from coffee and tea from individuals who provided data on both. Full details on the ascertainment of coffee, tea, and daily caffeine intake are provided in Data S1.

## CAD and T2DM Prevalence and Incidence in the UK Biobank

Prevalence at baseline and incidence of new-onset CAD and T2DM cases within UK Biobank were, per prior analysis, ${ }^{24}$ based on self-reported data, International Classification of Diseases, Ninth Revision
(ICD-9) and Tenth Revision (ICD-10) ${ }^{25}$ coded primary and secondary diagnoses, operation codes, ${ }^{26}$ and death attributable to either condition from inclusion in the UK Biobank until end of follow-up (March 31, 2017, for participants from England; February 29, 2016, for Wales; and October 31, 2016, for Scotland) as described in Data S1. Incident cases that were based on self-reported diagnoses during follow-up visits were included only if there were no events recorded according to the ICD-9 or ICD-10 or operation codes data and only if the participant did not report this in the previous visit. If the participant was the same age as the reported age of diagnosis, the median date between the visit and the participant's birthday was taken as date of event. If the age of diagnosis was before the participant's current age, we took the median date of the year of the reported age of diagnosis counted from the participant's birthday. If age of diagnosis was not available, we took the median date between the visit of the first self-reported diagnosis and the previous visit. Individuals with a history of CAD or T2DM at inclusion were excluded from the respective observational analyses.

## Covariates

At the first visit, weight (in kilograms) and height (in centimeters) were measured and used to calculate the body mass index (in kilograms per square meter). Age was calculated as the difference between date of birth and date of inclusion in the UK Biobank. Sex, ethnicity, weekly alcohol intake (UK units) and active smoking at inclusion were self-reported. Weekly alcohol intake was right-skewed and therefore log2 transformed for participants who provided this data. For participants without these accurate data on the number of units, we estimated the weekly alcohol intake using a more crude questionnaire of alcohol intake frequency where participants were asked, "About how often do you drink alcohol?" For this, we fitted a linear regression between with the log2transformed weekly alcohol intake and alcohol intake frequency in participants with both measures, and predicted weekly alcohol intake on the remaining individuals. The Townsend Deprivation Index, a proxy for socioeconomic status, was provided by the UK Biobank and inverse rank normalized because of a right-skewed distribution. ${ }^{24}$

## Genotyping and Imputation in UK Biobank

UK Biobank participants were genotyped using custom Affymetrix Axiom (UK Biobank Lung Exome Variant Evaluation ${ }^{27}$ or UK Biobank) arrays. The genotyping methods, arrays, and quality-control procedures have been described previously in detail ${ }^{28,29}$ and are briefly described in Data S1.

## Statistical Analysis

We performed multivariable Cox regression analyses to test the association of observational caffeine intake per 60 mg caffeine (equivalent to the caffeine content of 1 cup of instant coffee or 2 cups of tea) with newonset CAD and T2DM in the UK Biobank. Hazard ratios with 95\% Cls were calculated for 1 to 60, 61 to 120, 121 to 180, 181 to 240, 241 to 300, 301 to 360, or $>360 \mathrm{mg}$ of caffeine from coffee or combined, compared with individuals who drank 0 mg . Because of the lower caffeine content per cup of tea compared with caffeinated coffee, the hazard ratios and $95 \%$ Cls for caffeine from tea were calculated for 1 to 60, 61 to 120, 121 to 180 , or $>180 \mathrm{mg}$ (equivalent to $>6$ cups of tea) of caffeine compared with individuals who had 0-mg intake from tea. The time scale for the Cox regression analyses was from inclusion in the UK Biobank until the outcome of interest, death or end of follow-up. Cox regression analyses were performed unadjusted and adjusted for age, sex, body mass index, active smoking, Townsend Deprivation Index, and weekly alcohol intake using Stata version 15 (StataCorp, College Station, TX).

All genetic analyses were adjusted for age, sex, genotyping array, and the first 30 genetic principal components to adjust for population stratification. We performed separate GWASs for inverse rank normalized combined caffeine intake, caffeine from coffee, and caffeine from tea in 19400838 SNPs using BOLT-LMM version 2.3.1 software (Broad Institute, Cambridge, MA). ${ }^{30}$ A Bonferroni corrected $P<1.67 \times 10^{-8}$ (traditional GWAS significance threshold of $5 \times 10^{-8} / 3$ ) was considered genome-wide significant. This significance threshold is conservative, considering that our phenotypes are correlated with Spearman's rank correlation coefficients between phenotype pairs ranging from $r=-0.33$ to 0.71 (Table S1). Details of the GWAS analyses, functional annotation of candidate genes,,${ }^{31-35}$ and biological pathways are provided in Data S1.

We performed MR analyses using previously published summary statistics from the CARDIoGRAMplusC4D (Coronary Artery Disease Genome wide Replication and Meta-analysis plus The Coronary Artery Disease Genetics) consortium (123 504 controls and 60801 [33.0\%] cases) ${ }^{36}$ and the DIAGRAM Diabetes Genetics Replication And Meta-analysis)) consortium (132 532 controls and 26676 [16.8\%] cases) ${ }^{37}$ to gain insight into potential causal relationships between caffeine intake and CAD or T2DM, respectively. Lead SNPs of each caffeine intake trait that reached $P<1.67 \times 10^{-8}$ were used to create a weighted genetic risk score and were also used as instrumental variables in the MR. Each genetic risk score was created using an additive model per GWAS, summing the number of
effect alleles ( 0,1 , or 2 ) per individual after multiplying it with the effect size between the SNP and the GWAS phenotype. Statistical power for the MR with a binary outcome was calculated using an alpha of 0.05 and the explained variance of each genetic risk score, as described previously. ${ }^{38}$ For the MR, SNPs that were not available in CARDIoGRAMplusC4D or DIAGRAM were replaced with proxies with $R^{2}>0.8$, and were otherwise excluded from the MR analyses if no eligible proxies were available. SNP effects were harmonized across studies using the built-in feature of the TwoSampleMR package in R ( R Foundation for Statistical Computing, Vienna, Austria). The association between genetically determined higher caffeine intake and CAD or T2DM was assessed using fixed-effects inverse-variance weighted meta-analyses. Odds ratios (ORs) with $95 \%$ Cls are presented for the MR outcomes. To maximize the likelihood of reporting true findings, a was set at 0.005 instead of $0.05 .{ }^{39}$ Associations with $P<0.05$ were considered suggestively significant. We assessed potential weak instrument bias per SNP using the F-statistic ${ }^{40}$ and $I^{2} G \times{ }^{41}$ We determined the $I^{2}$ index. ${ }^{42}$ Cochran's $Q$, Rücker's and thus potential pleiotropy. MR-Egger, ${ }^{43}$ MR Pleiotropy Residual Sum and Outlier ${ }^{44}$ and MR inverse-variance weighted random effects ${ }^{43}$ were used as pleiotropy analyses. MR-Steiger filtering ${ }^{45}$ was performed to remove variants more strongly associated with the outcome than the exposure. Weighted median and weighted mode-based estimator MR analyses ${ }^{46}$ were performed as additional sensitivity analyses. Details of the MR analyses are provided in Data S1.

## RESULTS

## Cohort Characteristics

Of 502525 UK Biobank individuals, 362316 were available for the combined caffeine intake analyses, 373522 for caffeine from coffee, and 395866 for caffeine from tea (Figure S1). Baseline characteristics are shown in Table, per caffeine intake trait in Table S2, and stratified by caffeine intake in Tables S3 through S5. Median (interquartile range) combined caffeine intake was 205 (120-290) mg/ day, from coffee 85 (3-180) mg/day, and from tea 90 (60-150) mg/day.

## Associations of Observational Caffeine Intake With CAD and T2DM

During nearly 10 years (median, 8.1 years; interquartile range, 7.5-8.6) of follow-up in 345809 participants without history of CAD and 347718 participants without history of T2DM, 14681 (4.2\%) individuals developed CAD, and 6982 (2.0\%) developed

Table 1. Baseline Characteristics of All Included 407072 UK Biobank Participants

| Characteristics | Men | Women |
| :---: | :---: | :---: |
| Total, N | 186968 | 220104 |
| Age, y, mean (SD) | 57.16 (8.08) | 56.72 (7.92) |
| Daily caffeine intake, mg/d, median (IQR) |  |  |
| Combined caffeine | 210 (150-300) | 180 (120-270) |
| Caffeine from coffee | 85 (6-180) | 60 (3-170) |
| Caffeine from tea | 90 (60-150) | 90 (60-150) |
| Blood pressure, mm Hg, mean (SD) |  |  |
| Systolic | 139.60 (16.15) | 128.74 (17.88) |
| Diastolic | 84.69 (8.22) | 79.94 (8.20) |
| Active smoker, N (\%) |  |  |
| No | 164791 (88.1) | 200946 (91.3) |
| Yes | 22177 (11.9) | 19158 (8.7) |
| Body mass index, $\mathrm{kg} / \mathrm{m}^{2}$, mean (SD) | 27.85 (4.23) | 27.05 (5.13) |
| Weekly alcohol intake, UK units, median (IQR) | 15.40 (5.50, 28.40) | 6.40 (1.60, 13.20) |
| Hypertension, N (\%) |  |  |
| No | 119965 (64.2) | 160881 (73.1) |
| Yes | 67003 (35.8) | 59223 (26.9) |
| Hyperlipidemia, N (\%) |  |  |
| No | 139471 (74.6) | 188444 (85.6) |
| Yes | 47497 (25.4) | 31660 (14.4) |

Combined caffeine intake was calculated as the sum of caffeine intake from coffee and tea. Body mass index was calculated as weight in kilograms divided by height in meters squared. Smoking status and weekly alcohol intake were self-reported at inclusion. IQR indicates interquartile range.

T2DM in the combined caffeine cohort. Results for unadjusted analyses are presented in Tables S6 and S7. In multivariable adjusted analyses (Tables S8 and S9), combined caffeine intake was very modestly or not associated with CAD or T2DM. However, the individual components, caffeine from coffee or tea, did show associations with lower risks of new-onset CAD and T2DM (Figure 1A and 1B, respectively). Overall, the associations between caffeine from coffee or tea with CAD and T2DM followed U-curvetype shapes, with the highest protective effects of caffeine intake from coffee on CAD at moderate intakes (121-180 mg/day), compared with no, lower, or higher intakes. Associations between caffeine from coffee with CAD or T2DM were not appreciably different when additionally adjusted for caffeine from tea, nor were the associations for caffeine from tea when additionally adjusted for caffeine from coffee (Table S10). Overall, caffeine intake from coffee was associated with lower risks of CAD and T2DM compared with caffeine from tea or combined. To determine whether this may be attributable to confounding by other, noncaffeine, substances, we stratified the




| Caffeine from coffee |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intake (mg/day) | $\mathrm{N}_{\text {total }}\left(\mathrm{N}_{\text {casss }}\right)$ |  |  |  | HR (95\% CI) | $P$ value |
| 0 | 82,017 (1,946) |  | - |  | Reference | Reference |
| 1-60 | 95,947 (1,938) |  | -- |  | 0.88 (0.82-0.93) | $4.46 \mathrm{e}^{-5}$ |
| 61-120 | 59,622 (1,046) |  | $\longmapsto \sim$ |  | 0.81 (0.75-0.87) | $4.87 e^{-8}$ |
| 121-180 | 48,112 (791) |  | $\stackrel{\square}{\square}$ |  | 0.77 (0.71-0.84) | $6.62 e^{-10}$ |
| 181-240 | 21,358 (451) |  | $\bullet$ |  | $0.84(0.76-0.93)$ | $1.07 \mathrm{e}^{-3}$ |
| 241-300 | 23,542 (426) |  | $\longmapsto$ |  | 0.79 (0.71-0.87) | $7.93 \mathrm{e}^{-6}$ |
| 301-360 | 14,788 (291) |  | $\bullet$ |  | 0.76 (0.67-0.86) | $1.57 \mathrm{e}^{-5}$ |
| >360 | 13,051 (304) |  | $\longmapsto$ |  | 0.84 (0.74-0.94) | $3.80 e^{-3}$ |
|  |  | 0.50 | 1.0 | 1.5 | 2.0 |  |
|  |  |  | Hazard ratio |  |  |  |


| Intake (mg/day) | $\mathrm{N}_{\text {total }}\left(\mathrm{N}_{\text {cases }}\right)$ |  |  |  | HR (95\% CI) | $P$ value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 57,433 (2,461) |  | - |  | Reference | Reference |
| 1-60 | 84,260 (3,165) |  | - |  | 0.87 (0.83-0.92) | $3.78 \mathrm{e}^{-7}$ |
| 61-120 | 114,525 (4,809) |  | $\square$ |  | 0.96 (0.91-1.00) | $7.20 \mathrm{e}^{-2}$ |
| 121-180 | 81,674 (3,620) |  | ம- |  | 0.99 (0.94-1.04) | 0.64 |
| >180 | 39,905 (2,012) |  | $\cdots$ |  | 1.07 (1.00-1.13) | $3.56 \mathrm{e}^{-2}$ |
|  |  | 0.50 | 1.0 | 1.5 | 2.0 |  |
| Hazard ratio ( $95 \% \mathrm{Cl}$ ) |  |  |  |  |  |  |


| Intake (mg/day) | $\mathrm{N}_{\text {total }}\left(\mathrm{N}_{\text {cases }}\right.$ ) |  |  |  | HR (95\% CI) | $P$ value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 57,152 (1,402) |  | - |  | Reference | Reference |
| 1-60 | $84,659(1,602)$ |  | $\longmapsto$ |  | 0.91 (0.85-0.98) | $1.25 \mathrm{e}^{-2}$ |
| 61-120 | 115,382 (2,084) |  | $\longmapsto$ |  | 0.86 (0.80-0.92) | $1.59 e^{-5}$ |
| 121-180 | 82,365 (1,627) |  | $\longmapsto \sim$ |  | $0.89(0.82-0.95)$ | $1.02 e^{-3}$ |
| >180 | 40,311 (885) |  | $\longmapsto$ |  | 0.90 (0.83-0.98) | $1.67 \mathrm{e}^{-2}$ |
| Hazard ratio (95\% CI) |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Figure 1. Associations between observational caffeine intake with new-onset coronary artery disease (A) and type 2 diabetes mellitus (B).
Hazard ratios (HR) with 95\% Cls were calculated using Cox regression analyses, adjusted for age, sex, active smoking, body mass index, and log-transformed weekly alcohol intake. Estimates $<1$ indicate a beneficial association between caffeine intake and outcome. Sixty milligrams of caffeine is equivalent to 1 cup of instant coffee or 2 cups of tea.
analyses by cups of decaffeinated or caffeinated coffee and found similar results. Both caffeinated and decaffeinated coffee were associated with lower risk of CAD and T2DM compared with no or high (>6 cups for caffeinated coffee; >3 for decaffeinated coffee) intake (Table S11).

## GWAS on Caffeine Intake Traits

We identified 62 SNPs in 37 loci: 32 novel, associated with combined caffeine intake (Figure 2; Table S12); 27 SNPs in 24 loci ( 20 novel) with caffeine from coffee (Figure S2; Table S13); and 27 SNPs in 24 loci (21 novel) with caffeine from tea (Figure S3; Table S14).


Figure 2. Manhattan plot for combined caffeine intake.
Manhattan plot showing the results for the genome-wide associations with combined caffeine intake in the UK Biobank with the $\log 10 P$ value on the vertical axis. The sentinel single nucleotide polymorphisms that reached genome-wide significance ( $P<1.67 \times 10^{-8}$ ) are colored red.

When combined on the basis of the lowest $P$ value over all traits, 73 unique SNPs in 5 known and 51 novel loci were associated with $\geq 1$ caffeine trait (Figure S4, Table S15). In total, 15 of 20 previously reported SNPs were replicated within 1 MB of our sentinel SNPs (Table S16). Regional association plots for each independent locus per trait are presented in Figures S5 through S7 and QQ plots in Figures S8 through S10. The sentinel SNPs identified in the combined caffeine, caffeine from coffee, and caffeine from tea GWAS explained $1.32 \%, 0.59 \%$, and $0.45 \%$ of variance in caffeine intake of their respective trait. The heritability rate ( $\mathrm{h}_{\mathrm{g}}^{2}$ ) for all SNPs in the GWAS was 8.2\% for combined caffeine intake, 6.1\% for caffeine from coffee, and $7.1 \%$ for caffeine from tea.
Using the genetic risk score of each GWAS, each unit change in genetically determined caffeine intake was consistent with 131.6 mg combined caffeine intake, 134.5 mg caffeine intake from coffee, and 86.1 mg caffeine intake from tea. In coffee drinkers,
depending on the type of coffee usually drunk, each unit related from 1.5 cup of decaffeinated coffee to 2.1 cups of instant coffee (Table S17).

## Candidate Genes and Deeper Insights Into Biology

We explored the potential biology of the sentinel SNPs per GWAS by prioritizing potentially causal genes in these loci based on proximity, expression quantitative trait locus (eQTL) analyses, and data-driven ex-pression-prioritized integration for complex traits. In total, we identified 48 candidate genes for combined caffeine intake, 27 for caffeine from coffee, and 40 for caffeine from tea (Figure 3). We identified the previously reported AHR, CYP1A1, and POR genes in all 3 GWASs. In addition, 2 novel genes, GOLPH3L and HORMAD1, were associated with all caffeine traits.
Across 209 tissue and cell types, central nervous system tissues were most enriched for SNPs associated


Figure 3. Venn diagram of candidate genes associated with caffeine intake.
Candidate genes were prioritized based on proximity, data-driven expression-prioritized integration for complex traits, and expression quantitative trait locus mapping for combined caffeine intake, caffeine from coffee, and caffeine from tea.
with caffeine from tea and combined, but none with caffeine from coffee (Table S18). Furthermore, 6 combined caffeine intake loci, and 3 loci each of caffeine from coffee or tea, contained variants with eQTLs in at least 1 tissue. The strongest associations were found for rs768283768 near HORMAD1 and GOLPH3L, which tagged multiple tissues (Table S19).

## Genetically Determined Caffeine Intake and CAD

The association between genetically determined caffeine intake and CAD was tested in the independent CARDIoGRAMplusC4D cohort (123 504 controls and 60801 [33.0\%] cases). In total, 35 SNPs from caffeine for combined caffeine intake, 22 for caffeine from coffee (rs2298527 excluded based on intermediate allele frequency in CARDloGRAMplusC4D), and 24 for caffeine from tea (Table S20 through S22). F-statistics indicated low chances of weak instrument bias (Table S23) and $\mathrm{I}_{\mathrm{GX}}$ indicated low chances of measurement error in MR-Egger (Table S24). However, $I^{2}$ and Cochran's Q indicated heterogeneity, and thus potential pleiotropy, for all caffeine traits (Table S24). Using the random effects inverse-variance weighted method as indicated by the nonsignificant Q-Q' and MR-Egger intercepts, we found that genetically determined caffeine intake from combined or coffee were not associated with

CAD (OR, 1.12 [ $95 \% \mathrm{Cl}, 0.80-1.40], P=0.31 ;$ OR 1.26 [ $95 \% \mathrm{Cl}, 0.82-1.93$ ], $P=0.28$, respectively). MR-Egger was used for caffeine from tea because the Q-Q' was significant; however, also for caffeine from tea, no association with CAD was indicated (OR, 1.60 [95\% $\mathrm{Cl}, 0.75-3.44], P=0.24$ ). MR Pleiotropy Residual Sum and Outlier analyses corroborated these findings for all traits, with and without trimming outlier SNPs (Table S25). MR-Steiger filtering also did not attenuate the results for any caffeine trait (Table S26). Finally, weighted median and mode-based analyses also indicated no association between genetically determined caffeine intake and CAD. Individual SNP effects are shown in Figures S11 through S13 and the MR analyses in Figure 4A.

## Genetically Determined Caffeine Intake and T2DM

The association between genetically determined caffeine intake and T2DM was investigated in the DIAGRAM cohort (132 532 controls and 26676 [16.8\%] cases). In DIAGRAM, 35 SNPs for combined caffeine intake, 23 SNPs for caffeine from coffee, and 24 SNPs for caffeine from tea were used (Tables S27 through S29). Also here, $I^{2}$ indices and Cochran's $Q$ indicated pleiotropy for all traits, and the MR-Egger intercept was not significant. However, because the Q-Q' was



| Caffeine from tea Method | $\mathrm{N}_{\text {SNP }}$ |  | OR (95\% CI) | $P$ value |
| :---: | :---: | :---: | :---: | :---: |
| Inverse variance weighted (fixed effects) | 24 | $\longmapsto$. | 0.94 (0.76-1.16) | 0.58 |
| MR Egger | 24 |  | 1.60 (0.75-3.44) | 0.24 |
| Inverse variance weighted (random effects) | 24 |  | 0.94 (0.67-1.32) | 0.73 |
| MR-PRESSO | 24 |  | 0.94 (0.67-1.32) | 0.73 |
| MR-PRESSO (Outlier-corrected) | 22 | $\cdots$ | 0.85 (0.64-1.14) | 0.29 |
| Weighted median | 24 |  | 0.95 (0.67-1.34) | 0.76 |
| Weighted mode | 24 |  | 1.03 (0.66-1.59) | 0.90 |
|  | 0.50 | $1.0 \quad 1.5$ | 2.0 |  |
| Odds ratio (95\% CI) |  |  |  |  |



Figure 4. Mendelian randomization results for genetically determined higher caffeine intake (per SD) on coronary artery disease ( $A$ ) and type 2 diabetes mellitus (B).
Odds ratios (OR) with $95 \%$ Cls are provided per standard deviation increase in genetically determined caffeine intake from combined, coffee, or tea. Number of single-nucleotide polymorphisms (SNPs) included are shown per method. Estimates <1.0 indicate a beneficial association between genetically determined caffeine intake and outcome. MR-PRESSO indicates Mendelian Randomization Pleiotropy Residual Sum and Outlier.
significant for all traits, we focused on the MR-Egger estimate for the causal effect. The MR-Egger analyses indicated no association between genetically determined higher caffeine intake from any trait with risk of T2DM (OR, 1.06 [ $95 \% \mathrm{Cl}, 0.67-1.68$ ], $P=0.79$ for combined caffeine intake; OR, 1.07 [ $95 \% \mathrm{Cl}, 0.33-3.54]$, $P=0.91$ for caffeine from coffee; OR, $2.36[95 \% \mathrm{Cl}$, $0.62-8.91], P=0.22$ for caffeine from tea; Figure 4B; estimates per SNP in Figures S14 through S16). Additional analyses using MR Pleiotropy Residual Sum and Outlier and MR-Steiger also found no associations between caffeine intake with T2DM after respectively trimming outliers and filtering (Tables S25 and S26). Finally, also weighted and mode-based estimator MR analyses were in line with these findings and indicated no association with T2DM.

## Combined Caffeine Intake-Specific Variants

In total, 18 variants were associated with combined caffeine intake, of which the annotated genes do not overlap with those of caffeine from coffee or caffeine from tea. However, these variants were most strongly associated with combined caffeine intake compared with caffeine from tea or coffee and had concordant betas across all traits (Table S15). This suggests that these variants act on both caffeine from coffee and caffeine from tea. We repeated the MR analyses using these variants or their proxies available in CARDIoGRAMplusC4D and DIAGRAM. Similar to the MR using all combined caffeine intake variants, we found no associations with CAD or T2DM.

## Moderate Versus Extreme Caffeine Intakes From Coffee or Tea

Because of the U-shaped curve observed in the observational analyses between caffeine from coffee and caffeine from tea with CAD or T2DM, we performed exploratory analyses to investigate variants associated with moderate caffeine intake from coffee or tea separately. Extremes of caffeine intake ( 0 and $>360 \mathrm{mg} /$ day for coffee and 0 and $>120 \mathrm{mg} / \mathrm{day}$ for tea) were taken together and values between the extremes as moderate intake. A total of 373522 individuals (99 427 [26.6\%] with moderate intake) were included in the GWAS for moderate caffeine consumption from coffee, and 395866 (188 013 [47.8\%] with moderate intake) in the GWAS for moderate caffeine consumption from tea. However, GWAS on either phenotype found no variants at $P<1.67 \times 10^{-8}$ or $P<5 \times 10^{-8}$.

## DISCUSSION

In this large prospective study, we observed U-type associations between observational caffeine intake
with CAD and T2DM, although similar intakes from different sources had dissimilar effect sizes. In addition, we identified 51 novel genetic loci associated with caffeine intake, more than tripling the number of known loci. ${ }^{11-17}$ In contrast to the observational analyses, genetic causal inference analyses indicated that genetically determined caffeine intake was not associated with CAD or T2DM.

Our observational findings are concordant with previous studies showing inverse or U-type associations between caffeine intake with CAD $^{2,47}$ and T2DM. ${ }^{3,47,48}$ A meta-analysis in 1283685 individuals ( 28347 CAD cases) estimated a relative risk of 0.89 ( $95 \% \mathrm{CI}, 0.85-0.94$ ) for CAD at 3 to 5 cups of coffee daily and a neutral effect at higher intakes (>360 mg or $>6$ cups of coffee) compared with no intake. ${ }^{2}$ A plausible explanation for the U-type shape of the association is that coffee is a liquid extract of coffee beans and it contains a complex chemical mixture of biologically active compounds, some with beneficial and others with harmful effects. ${ }^{49}$ At moderate intakes, the beneficial effects could outweigh or counteract the harmful effects, whereas at higher intakes the harmful effects may counterbalance this. ${ }^{2}$ Our results for T2DM are in line with the most recent meta-analysis, which reported a relative risk of 0.70 ( $95 \% \mathrm{Cl}, 0.65-0.75$ ) in individuals who consumed 5 cups of coffee per day compared with nondrinkers, although they reported no U-type associations. ${ }^{50}$ The hypothesis that moderate caffeine intake may have beneficial effects compared with extreme intakes is also not supported by our findings for combined caffeine intake. The null findings of the observational analyses for combined caffeine intake indicate that caffeine by itself is unlikely to affect disease risk. The current study used the largest number of caffeine SNPs to date from different dietary sources, which is relevant for this UK population, where tea is the second-largest source of caffeine ${ }^{1}$ and may confound the association. Using these SNPs in robust causal inference analyses, we found no associations between genetically determined higher or lower caffeine intake and CAD or T2DM. These findings are in line with previous MR studies of caffeine intake on CAD and T2DM. ${ }^{7,18,19}$ The null findings of the combined caffeine intake SNPs can be considered a negative control for the observational findings. There is accumulating evidence that previous beneficial associations between caffeine intake with outcomes were attributable to residual confounding, most likely because of other compounds found in coffee ${ }^{3,7,18,19}$ or smoking, ${ }^{51}$ since no difference in outcomes is reported between decaffeinated and caffeinated coffee for CAD ${ }^{8}$ or T2DM. ${ }^{3}$ Also, in the current study, we found that observational decaffeinated coffee consumption was associated with similar effect sizes
compared with caffeinated coffee. Caffeinated coffee was more robustly associated with outcomes, but this is likely attributable to the larger number of caffeinated coffee drinkers. Furthermore, caffeine from coffee was generally associated with lower estimates compared with caffeine from tea or combined, arguing against an independent effect of caffeine. In addition, both previous and the current MR analyses consistently lack evidence for causality, providing further argument against a protective effect of genetically determined higher caffeine intake.

To our knowledge, this is the largest study to date to investigate the association of both observational and genetically determined caffeine intake from multiple sources with CAD and T2DM. This study also reports the largest number of caffeine intake-associated SNPs, while also replicating previously reported SNPs. These newly identified variants were then used in independent disease-specific cohorts for both CAD and T2DM in 2 -sample MR analyses. The explained variance of the sentinel SNPs is comparable with previously published GWASs on coffee ${ }^{7,12}$ or alcohol ${ }^{52}$ intake, which range between $0.6 \%$ and $1.3 \%$. However, the explained variance was of little influence on the statistical power for the MR.

This study has some limitations. In the current analyses, caffeine intake was calculated on the basis of self-reported data at a single time point at baseline, which does not take into account possible changes in coffee- and tea-drinking habits. Furthermore, because the caffeine content of coffee may differ depending on the method of preparation, ${ }^{53,54}$ use of filter, ${ }^{55}$ and type of coffee bean, ${ }^{1}$ and individuals may drink several types of coffee, the actual caffeine intake per day may differ from our calculation. We did not take into account caffeine intake from other sources such as cola or energy drinks, as this information was not available. In addition, the main MR analyses assume linear associations, whereas the causal associations might be nonlinear, with higher risks at low and high intakes, such as the U-shaped-curve associations observed in the observational analyses. However, it was not possible to examine nonlinear associations in the MR analyses because these require individual-level data in the outcome cohorts, which were not available. The MR analyses should therefore be interpreted with caution at the extremes of caffeine intake. It remains unclear which genetic variants are responsible for the specific parts of the potential U-shaped-curve association, and we cannot exclude the possibility that the variants associated with caffeine intake from coffee or tea could have bidirectional effects on the association. Exploratory analyses to investigate the nonlinear association within the UK Biobank, however, indicate that there may be no genetic variants solely associated with moderate or extreme caffeine intake from coffee or tea.

Also, despite our sensitivity analyses to test for and minimize bias, especially from genetic pleiotropy in which the instrumental variables may act on the outcome through other pathways than caffeine, this cannot be completely excluded. We found evidence for heterogeneity in the MR for CAD and T2DM for all caffeine traits, indicating that pleiotropy cannot be ruled out. We therefore report the correct model per degree of pleiotropy as the main results and performed several other sensitivity analyses to take this into account. Finally, the present analyses were performed in individuals of White British ancestry, which may limit the generalizability of the results to other populations.

In conclusion, this large prospective study showed inverse associations between observational caffeine intake with CAD and T2DM. However, effect sizes were similar between caffeinated and decaffeinated coffee; similar caffeine intakes from tea were associated with fewer inverse effects compared with caffeine from coffee. Furthermore, MR analyses in independent cohorts yielded no evidence for causality between genetically determined caffeine intake with CAD or T2DM. The main MR analysis results suggest that increasing caffeine intake may not be protective against the development of CAD or T2DM. However, these do not take into account the nonlinear association observed within the observational analyses. We therefore encourage reanalysis of the results when more advanced methods to study nonlinear associations within a summary-based 2 -sample MR setting emerge, without individual-level exposure data in the outcome cohort.

## ARTICLE INFORMATION

Received April 4, 2020; accepted September 18, 2020.

## Affiliations

From the Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands (M.A.S., Y.J.v.d.V., N.V., P.v.d.H.); and Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands (P.v.d.H.).

## Acknowledgments

This research was conducted using the UK Biobank Resource under Application Number 12006 and 15031. We thank the CARDloGRAMplusC4D and DIAGRAM investigators for making their data publicly available. We thank Ruben N. Eppinga, MD; Tom Hendriks, MD; M. Yldau van der Ende, MD; Hilde E. Groot, MD; Yanick Hagemeijer, MSc; and Jan Walter Benjamins, BEng, University of Groningen, University Medical Center Groningen, Department of Cardiology, for their contributions to the extraction and processing of data in the UK Biobank. None of the mentioned contributors received compensation, except for their employment at the University Medical Center Groningen. We also thank the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine high-performance computing cluster.

## Sources of Funding

Dr Verweij is supported by a Dutch Research Council (Nederlandse Organisatie voor Wetenschappelijk Onderzoek) VENI grant (016.186.125).

## Disclosures

None.

## Supplementary Material <br> Data S1 <br> Tables S1-S29 <br> Figures S1-S16

## REFERENCES

1. Fitt E, Pell D, Cole D. Assessing caffeine intake in the United Kingdom diet. Food Chem. 2013;140:421-426.
2. Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB. Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation. 2014;129:643-659
3. Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care. 2014;37:569-586.
4. Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R. Association of coffee drinking with total and cause-specific mortality. N Engl J Med. 2012;366:1891-1904
5. Loftfield E, Cornelis MC, Caporaso N, Yu K, Sinha R, Freedman N Association of coffee drinking with mortality by genetic variation in caffeine metabolism: findings from the UK Biobank. JAMA Intern Med. 2018;178:1086-1097.
6. Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 2006;295:1135-1141.
7. Nordestgaard AT, Nordestgaard BG. Coffee intake, cardiovascular disease and all-cause mortality: observational and Mendelian ran domization analyses in 95 000-223 000 individuals. Int J Epidemiol 2016;45:1938-1952.
8. Lopez-Garcia E, van Dam RM, Willett WC, Rimm EB, Manson JE, Stampfer MJ, Rexrode KM, Hu FB. Coffee consumption and coronary heart disease in men and women: a prospective cohort study. Circulation. 2006;113:2045-2053.
9. Sofi F, Conti AA, Gori AM, Eliana Luisi ML, Casini A, Abbate R, Gensini GF. Coffee consumption and risk of coronary heart disease: a me-ta-analysis. Nutr Metab Cardiovasc Dis. 2007;17:209-223.
10. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 2016;133:187-225.
11. Pirastu N, Kooyman M, Robino A, van der Spek A, Navarini L, Amin N, Karssen LC, Van Duijn CM, Gasparini P. Non-additive genome-wide association scan reveals a new gene associated with habitual coffee consumption. Sci Rep. 2016;6:31590.
12. Coffee and Caffeine Genetics Consortium, Cornelis MC, Byrne EM, Esko T, Nalls MA, Ganna A, Paynter N, Monda KL, Amin N, Fischer K, Renstrom F, et al. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol Psychiatry 2015;20:647-656.
13. Amin N, Byrne E, Johnson J, Chenevix-Trench G, Walter S, Nolte IM; kConFab Investigators, Vink JM, Rawal R, Mangino M, Teumer A, et al. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Mol Psychiatry. 2012;17:1116-1129
14. Sulem P, Gudbjartsson DF, Geller F, Prokopenko I, Feenstra B, Aben KK, Franke B, den Heijer M, Kovacs P, Stumvoll M, et al. Sequence variants at CYP1A1-CYP1A2 and AHR associate with coffee consumption Hum Mol Genet. 2011;20:2071-2077.
15. Nakagawa-Senda H, Hachiya T, Shimizu A, Hosono S, Oze I, Watanabe M, Matsuo K, Ito H, Hara M, Nishida Y, et al. A ge-nome-wide association study in the Japanese population identifies the 12q24 locus for habitual coffee consumption: the J-MICC Study. Sci Rep. 2018;8:1493.
16. Cornelis MC, Monda KL, Yu K, Paynter N, Azzato EM, Bennett SN, Berndt SI, Boerwinkle E, Chanock S, Chatterjee N, et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLoS Genet 2011;7:e1002033.
17. Cornelis MC, Kacprowski T, Menni C, Gustafsson S, Pivin E, Adamski J, Artati A, Eap CB, Ehret G, Friedrich N, et al. Genome-wide association study of caffeine metabolites provides new insights to caffeine
metabolism and dietary caffeine-consumption behavior. Hum Mol Genet. 2016;25:5472-5482.
18. Kwok MK, Leung GM, Schooling CM. Habitual coffee consumption and risk of type 2 diabetes, ischemic heart disease, depression and Alzheimer's disease: a Mendelian randomization study. Sci Rep. 2016;6:36500.
19. Nordestgaard AT, Thomsen M, Nordestgaard BG. Coffee intake and risk of obesity, metabolic syndrome and type 2 diabetes: a Mendelian randomization study. Int J Epidemiol. 2015;44:551-565.
20. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.
21. UK Biobank: protocol for a large-scale prospective epidemiological resource 2007. UK Biobank. Available at: http://www.ukbiobank.ac.uk/ wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf. Accessed December 15, 2015
22. UK Biobank Ethics and Governance Framework 2007. UK Biobank. Available at: https://www.ukbiobank.ac.uk/wp-content/uploa ds/2011/05/EGF20082.pdf. Accessed December 15, 2015.
23. Cafeine. Netherlands Nutrition Centre. Available at: https://www.voedi ngscentrum.nl/encyclopedie/cafeine.aspx. Accessed January 29, 2018.
24. Said MA, Verweij N, van der Harst P. Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK Biobank Study. JAMA Cardiol. 2018;3:693-702.
25. International Classifcation of Diseases (ICD). WHO. Available at: http:// www.who.int/classifications/icd/en/. Accessed January 10, 2016.
26. OPCS-4 Classification 2014. National Health Service. Available at: https://digital.nhs.uk/data-and-information/information-standards/infor mation-standards-and-data-collections-including-extractions/publi cations-and-notifications/standards-and-collections/dcb0084-opcs-classification-of-interventions-and-procedures. Accessed January 16, 2016.
27. Wain LV, Shrine N, Miller S, Jackson VE, Ntalla I, Soler Artigas M, Billington CK, Kheirallah AK, Allen R, Cook JP, et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med. 2015;3:769-781.
28. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O'Connell J, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203-209.
29. UK Biobank phasing and imputation documentation. UK Biobank, Marchini J. Updated 2015. Available at: https://biobank.ctsu.ox.ac.uk/ crystal/docs/impute_ukb_v1.pdf. Accessed August 18, 2017.
30. Loh PR, Tucker G, Bulik-Sullivan BK, Vilhjalmsson BJ, Finucane HK, Salem RM, Chasman DI, Ridker PM, Neale BM, Berger B, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015;47:284-290.
31. Pers TH, Karjalainen JM, Chan Y, Westra HJ, Wood AR, Yang J, Lui JC, Vedantam S, Gustafsson S, Esko T, et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun. 2015;6:5890.
32. GTEx Consortium, Laboratory, Data Analysis \&Coordinating Center (LDACC)-Analysis Working Group, Statistical Methods groups-Analysis Working Group, Enhancing GTEx (eGTEx) groups, NIH Common Fund, $\mathrm{NIH} / \mathrm{NCI}, \mathrm{NIH} / \mathrm{NHGRI}, \mathrm{NIH} / \mathrm{NIMH}, \mathrm{NIH} / \mathrm{NIDA}$, Biospecimen Collection Source Site-NDRI, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550:204-213.
33. Qi T, Wu Y, Zeng J, Zhang F, Xue A, Jiang L, Zhu Z, Kemper K, Yengo L, Zheng Z, et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat Commun. 2018;9:2282, 018-04558-1.
34. Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, Christiansen MW, Fairfax BP, Schramm K, Powell JE, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45:1238-1243.
35. Lloyd-Jones LR, Holloway A, McRae A, Yang J, Small K, Zhao J, Zeng B, Bakshi A, Metspalu A, Dermitzakis M, et al. The genetic architecture of gene expression in peripheral blood. Am J Hum Genet. 2017;100:371.
36. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, Saleheen D, Kyriakou T, Nelson CP, Hopewell JC, et al. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121-1130.
37. Scott RA, Scott LJ, Magi R, Marullo L, Gaulton KJ, Kaakinen $M$, Pervjakova N, Pers TH, Johnson AD, Eicher JD, et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes. 2017;66:2888-2902.
38. Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42:1497-1501.
39. Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers E-J, Berk R, Bollen KA, Brembs B, Brown L, Camerer C, et al. Redefine statistical significance. Nat Hum Behav. 2018;2:6-10.
40. Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ, Davey Smith G, Sterne JA. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res. 2012;21:223-242.
41. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol. 2016;45:1961-1974.
42. Greco MFD, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34:2926-2940.
43. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017;36:1783-1802.
44. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693-698.
45. Hemani G, Bowden J, Davey SG. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27:R195-208.
46. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46:1985-1998.
47. Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024.
48. van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA. 2005;294:97-104.
49. Spiller G. Chapter 6. the chemical components of coffee. In: Caffeine. 1st ed. Boca Raton, CA: CRC Press; 1998:97.
50. Carlstrom M, Larsson SC. Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis. Nutr Rev. 2018;76:395-417.
51. Ding M, Satija A, Bhupathiraju SN, Hu Y, Sun Q, Han J, Lopez-Garcia E, Willett W, van Dam RM, Hu FB. Association of coffee consumption with total and cause-specific mortality in 3 large prospective cohorts. Circulation. 2015;132:2305-2315.
52. Clarke TK, Adams MJ, Davies G, Howard DM, Hall LS, Padmanabhan S, Murray AD, Smith BH, Campbell A, Hayward C, et al. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank ( $\mathrm{N}=112$ 117). Mol Psychiatry. 2017;22:1376-1384.
53. Ludwig IA, Clifford MN, Lean ME, Ashihara H, Crozier A. Coffee: biochemistry and potential impact on health. Food Funct. 2014;5:1695-1717.
54. Gloess AN, Schönbächler B, Klopprogge B, D`Ambrosio L, Chatelain K, Bongartz A, Strittmatter A, Rast M, Yeretzian C. Comparison of nine common coffee extraction methods: instrumental and sensory analysis. Eur Food Res Technol. 2013;236:607-627.
55. van Dusseldorp M, Katan MB, van Vliet T, Demacker PN, Stalenhoef AF. Cholesterol-raising factor from boiled coffee does not pass a paper filter. Arterioscler Thromb. 1991;11:586-593.

## Supplemental Material

## Data S1.

## Supplemental Methods

## UK Biobank participants

The study design and population of the UK Biobank study have been described in detail previously ${ }^{20}$. Briefly, between 2006 and 2010 over 500,000 participants aged 40-69 years from the general population were recruited at 22 assessment centers in the United Kingdom. Participants provided information on demographic, lifestyle, and other potentially health-related aspects through interviews, questionnaires, physical measurements as well as blood and urine samples ${ }^{20}$. All participants provided informed consent for the study at their first visit to the assessment center by agreeing to all individual statements of the consent form and providing their signature on an electronic pad $^{21}$. The UK Biobank study has approval from the North West Multi-centre Research Ethics Committee for the UK, from the National information Governance Board for Health \& Social Care for England and Wales, and from the Community health Index Advisory Group for Scotland ${ }^{22}$.

## Ascertainment of coffee and tea intake

During the first visit to the assessment center, daily coffee and tea intake were assessed by asking participants "How many cups of coffee do you drink each day? (Include decaffeinated coffee)" and "How many cups of tea do you drink each day? (Include black and green tea)".
Participants were asked to provide the average number of cups of either beverage they drink daily, based on their intake over the last year. We excluded participants who answered with "Less than one", "Do not know" or "Prefer not to answer". Participants who indicated to drink more than 10 cups of coffee or 20 cups of tea daily were asked to confirm their input. In addition, coffee drinkers were asked what type of coffee they usually drink, to which they could answer "Decaffeinated coffee (any type)", "Instant coffee", "Ground coffee (include espresso, filter etc)", "Other type of coffee", "Do not know" or "Prefer not to answer". Amongst coffee drinkers we additionally excluded those who did not provide information on the type of coffee they usually drink. Coffee and tea intake were truncated at 20 cups per day.
Decaffeinated coffee was considered to contain 3 mg of caffeine per cup, instant coffee 60 mg , ground coffee 85 mg , and tea $30 \mathrm{mg}^{23}$. Combined caffeine intake from both coffee and tea was calculated as the sum of the daily caffeine intake from coffee and tea from individuals who provided data on both.

## CAD and T2D prevalence and incidence in the UK Biobank

Prevalence and incidence of CAD and T2D within UK Biobank were captured using self-reported data collected using the baseline-questionnaires and verbal interviews as per prior analysis ${ }^{24}$. Diagnoses were additionally captured using the Hospital Episode Statistics "Spell and Episode" category, which contains data on diagnoses made during hospital in-patient stay. We used both main and secondary diagnoses, coded according to the International Classification of Diseases (ICD) versions 9 and $10^{25}$. For CAD, we used ICD-9 codes 410, 412 and 414, and ICD-10 codes I21-I25, Z951 and Z955. For T2D, we used ICD-9 code 250 and ICD-10 codes E10-E14. In addition we used surgical procedures that were recorded according to the Office of Population, Censuses and Surveys: Classification of interventions and Procedures (OPCS), version 4 coding ${ }^{26}$. For CAD, OPCS-4 codes K40-K46, K49, K50 and K75 were used. Incident cases that were based on self-reported diagnoses during followup visits were included only if there were no events recorded according to ICD-9/ICD-10/OPCS 4 and only if the participant did not report this in the previous visit. If the participant was the same age as the reported age of diagnosis, the median date between the visit and their birthday was taken as date of event, and if the age of diagnosis was before the participants current age we took the median date of the year of the reported age of diagnosis counted from the participants birthday. If age of diagnosis was not available we took the median date between the visit of the first self-reported diagnosis and the previous visit. Participants with CAD or T2D at inclusion were excluded for the observational analyses of the respective disease. Follow-up for incident CAD, T2D and death due to these conditions was from inclusion until March 31, 2017 for participants from England, February 29, 2016 for Wales, and October 31, 2016 for Scotland.

## Genotyping and imputation in UK Biobank

The genotyping process and arrays used in UK Biobank have been described elsewhere in more detail. Briefly, participants were genotyped using the custom Affymetrix UK Biobank Lung Exome Variant Evaluation (UK BiLEVE) Axiom ${ }^{\mathrm{TM}}(\mathrm{N}=49,950)$ or Affymetrix UK Biobank Axiom ${ }^{\mathrm{TM}}$ array $(\mathrm{N}=438,427)^{27,28}$. The UK BiLEVE Axiom ${ }^{\mathrm{TM}}$ and UK Biobank Axiom ${ }^{\mathrm{TM}}$ arrays respectively have 807,411 and 820,927 single-nucleotide polymorphism (SNP), insertion and deletion markers with $>95 \%$ common content ${ }^{28}$. Participants genotyped using the UK BiLEVE array were selected based on smoking behavior (heavy smokers with a mean 35 pack-years and
never smokers) ${ }^{27}$. Genomic quality control of samples and variants, as well as imputation was performed by the Wellcome Trust Centre for Human Genetics, based on merged UK10K and 1000 Genomes phase 3 panels ${ }^{27,29}$. Participants were excluded if there was a mismatch between genetic and reported sex, if participants had high missingness or excess heterozygosity, or were not of white British descent. In total, from the 502,525 UK Biobank participants, 1,332 did not pass genomic quality control and 91,069 were not of white British descent.

## Genetic analyses

All genetic analyses were adjusted for age, sex, genotyping array, and the first 30 principal components (PCs) to adjust for population stratification. We performed separate GWAS for inverse rank normalized combined caffeine intake, caffeine from coffee, and caffeine from tea. GWAS were performed using BOLT-LMM v2.3.1, which uses a linear mixed model that corrects for population structure and cryptic relatedness ${ }^{30}$. In total, 19,400,838 SNPs were included in the GWAS. To obtain a set of independent SNPs per phenotype, SNPs with $P<5 \times 10^{-8}$ were clumped together based on linkage disequilibrium (LD) $\mathrm{R}^{2}>0.005$ and $5-\mathrm{Mb}$ distance using the clumping procedure integrated in PLINK version 1.9. To account for multiple testing of the 3 GWAS, we considered only SNPs with Bonferroni corrected $P<1.67 \times 10^{-8}$ (traditional GWAS significance threshold of $5 \times 10^{-8} / 3$ ) as statistically significant. This significance threshold is conservative, considering that our phenotypes are correlated with Spearman's rank correlation coefficients between phenotype pairs ranging from $\mathrm{r}=-0.33$ to 0.71 (Table S1).

For each phenotype we consequently identified the sentinel SNP (defined as the most significant SNP in a $5-\mathrm{Mb}$ region at either side of the SNP ) at each locus. A locus was defined as a 1-Mb region at either side of the sentinel SNP. Similar to how the sentinel SNP per locus per phenotype was identified, a single sentinel SNP with the lowest $P$ value per locus was identified across the sentinel SNPs of all three phenotypes for general caffeine intake. SNPs were excluded if the minor allele frequency (MAF) was $<0.005$ or the INFO score was below 0.3 .

## Identification of candidate genes

Candidate genes at each locus were prioritized based on 1) proximity, the nearest protein coding gene and any additional gene within 10kb of the sentinel SNP; 2) Data-driven Expression-Prioritized Integration for Complex Traits (DEPICT); and 3) expression quantitative trait locus (eQTL) genes in cis analyses. Summary information about candidate causal genes was obtained through queries in GeneCards.

## DEPICT analyses

DEPICT has been described in detail previously ${ }^{31}$. Briefly, DEPICT systematically prioritizes likely causal genes at associated loci, and identifies tissue and cell types where genes from associated loci are highly expressed. DEPICT.v1.beta version rel194 1KG imputed GWAS was obtained from https://data.broadinstitute.org/mpg/depict/. DEPICT was run with default settings, using all variants at $P<1.0 \times 10^{-}$ ${ }^{5}$. Tissue and cell type enrichment found by DEPICT at FDR < 0.05 were considered significant.

## eQTL analyses

We applied a summary-data-based MR (SMR) approach in cis-eQTL data repositories from Genotype-Tissue Expression (GTEx) version $7^{32}$, Brain-eMeta eQTL ${ }^{33}$, and blood eQTL from Westra ${ }^{34}$ and CAGE ${ }^{35}$. SMR, by default, was performed only in cis-regions. eQTL genes were considered as candidate causal genes if the top associated eQTL SNP achieved $P<2.7 \times 10^{-7}\left(P=0.05 /\right.$ n $_{\text {SMRtests }}=[$ combined caffeine intake $=187,748$; caffeine from coffee $=181,931$; caffeine from tea $=182,971]$ ), passed the HEterogeneity In Dependent Instruments (HEIDI) test with $P>0.05$, and were LD buddies ( $\mathrm{R}^{2}>0.8$ ) with the queried caffeine intake SNP. HEIDI distinguishes pleiotropy from linkage by testing for heterogeneity in SMR estimates of SNPs in LD with the topassociated cis-eQTL. In the case of pleiotropy, the gene expression and the trait of interest share the same SNP. Software for the SMR/HEIDI tests was downloaded from http://cnsgenomics.com/software/smr/\#Download and eQTL catalogues from http://cnsgenomics.com/software/smr/\#eQTLsummarydata.

## Associations between genetics with outcomes

To gain insight in the potentially causal relationship between caffeine intake and CAD, we performed MR analyses on summary statistics data from the CARDIoGRAMplusC4D consortium as provided by Nikpay et al. in 123,504 controls and 60,801 ( $33.0 \%$ ) cases $^{36}$. The CARDIoGRAMplusC4D data was obtained through MR Base. To assess the potentially causal relationship with T2D, MR analyses were performed on summary statistics data from the DIAGRAM consortium as reported by Scott et al., which included 132,532 controls and 26,676 cases $(16.8 \%)^{37}$. Summary statistics data for DIAGRAM was downloaded from http://www.diagramconsortium.org/downloads.html. Analyses were performed per caffeine intake trait using the lead SNPs at $P<1.67 \times 10^{-8}$. Proxies based on highest LD and position were used for SNPs that were not available in CARDIoGRAMplusC4D or DIAGRAM. SNPs were only replaced with proxies with $\mathrm{R}^{2}>0.8$, and were otherwise excluded from the MR analyses if no eligible proxies were available. SNP effects were harmonized across the
studies using the built-in function in the MR Base R package (TwoSampleMR). The association between genetically determined higher caffeine intake and CAD or T2D was assessed using a fixed-effects inverse-variance weighted (IVW) meta-analysis method which combines MR estimates for individual SNPs with the outcome. Odds ratios (OR) with $95 \%$ CI are presented for the MR outcomes. To maximize the likelihood of reporting true findings, $\alpha$ was set at 0.005 rather than $0.05^{39}$. Associations with $P<0.05$ were considered suggestively significant.

## Weak instrument bias

The strength of the instruments (SNPs) per phenotype was assessed using the F-statistic, calculated as $F=R^{2}\left(n_{\text {sample }}{ }^{-}\right.$ $2) /\left(1-R^{2}\right)$, where $\mathrm{R}^{2}$ is the proportion of variability in caffeine intake. An F-statistic $>10$ indicates relatively low risk of weak instrument bias in MR analyses ${ }^{40}$, which is essential to prevent violation of the 'NO Measurement Error' assumption. Additionally, potential weak instrument bias in MR-Egger regression analyses was assessed by calculating $\mathrm{I}^{2}{ }_{\mathrm{GX}}$, which is the true variance of the SNP-exposure association. $\mathrm{I}^{2}{ }_{\mathrm{GX}}>95 \%$ indicates small uncertainty in the SNP-exposure association estimates and was considered low risk of measurement error ${ }^{41}$.

## Analyses for pleiotropy in MR

In MR analyses, pleiotropy indicates multiple effects are exerted by a SNP, which could violate the assumption in MR analysis that the SNP only influences the outcome through the exposure of interest (here, caffeine). We applied multiple tests to investigate potential pleiotropy in our analyses. First, $\mathrm{I}^{2}$ index and Cochran's Q statistic were determined. An $\mathrm{I}^{2}$ index $>25 \%$ and Cochran's Q $P<0.05$ were considered indicative of heterogeneity and thus pleiotropy ${ }^{42}$. In case of evidence of heterogeneity, each instrument can be allowed to have a (balanced) pleiotropic effect and a random effects IVW method can be applied ${ }^{43}$. MR-Egger, which in contrast to the IVW method assumes pleiotropic effects of the SNPs on the outcome are independent of their association with the exposure (caffeine), was performed as an additional test. If the MR-Egger intercept is zero, tested using $P>0.05$, this indicated there was evidence for absent pleiotropic bias, whereas deviations from zero indicate horizontal pleiotropy across the SNPs. If the InSIDE assumption, which assumes the association of SNPs with the exposure are independent of the direct pleiotropic effects of the SNP on the outcome, is satisfied, the coefficient from the MR-Egger regression is an estimate of the causal effect. We further assessed heterogeneity within the MR-Egger analysis using the Rücker's Q' statistic, and tested whether this differed ( $P<0.05$ ) from Cochran's Q (Q-Q'). A significant difference indicates the MR-Egger is the preferred method to study the association between the exposure and the outcome ${ }^{43}$. Pleiotropy was further tested using the MR pleiotropy residual sum and outlier (MRPRESSO) test ${ }^{44}$, which compares the residuals for each SNP in the zero-intercept regression line of the SNPoutcome estimate with the SNP-exposure estimate in the absence of pleiotropy. Hereby, pleiotropic effects can be detected and outliers identified. MR-PRESSO then re-analyses the association without the outliers, correcting for potential pleiotropic effects ${ }^{44}$. MR-Steiger filtering was performed to remove variants which are stronger associated with the outcome than the exposure ${ }^{45}$. To this end, the $\mathrm{R}^{2}$ for the exposure and outcome is calculated, after which variants with significantly lower $\mathrm{R}^{2}$ for the exposure than for the outcome are removed.

## Sensitivity analyses in MR

We additionally performed several sensitivity analyses. First, weighted median MR analysis was performed, which allows up to $50 \%$ of the instruments to be invalid, in contrast to regular IVW analysis where absence of pleiotropic effects of the instruments is assumed. Next, weighted mode-based estimator MR analyses were performed to allow even larger numbers of SNPs to be invalid, but rather takes the overall MR result from the greatest number of valid SNPs with similar MR estimates ${ }^{46}$. The R packages TwoSampleMR version 0.4.22 (https://mrcieu.github.io/TwoSampleMR/) and MR-PRESSO version 1.0 were used for the MR analyses.

## Data sources

## UK Biobank

This research has been conducted using the UK Biobank Resource under Application Number 12006 and 15031.

## CARDIoGRAMplusC4D Consortium

We used summary statistics data available in MR Base from the Coronary Artery Disease Genome wide Replication and Meta-analysis plus The Coronary Artery Disease (CARDIoGRAMplusC4D) consortium as published by Nikpay et al. in $2015^{36}$. The CARDIoGRAMplusC4D cohort consisted of 123,504 controls and 60,801 (33.0\%) coronary artery disease cases.

## DIAGRAM consortium

We used summary statistics data from the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium as published by Scott et al. in 2017 37 , downloaded from http://www.diagramconsortium.org/downloads.html. The DIAGRAM cohort consisted of 132,532 controls and $2 \overline{6,676}$ (16.8\%) type 2 diabetes cases.

## Table S1. Spearman's rank correlation between phenotypical caffeine intake traits

|  | Combined daily caffeine intake | Daily caffeine intake from coffee | Daily caffeine intake from tea |
| :--- | :---: | :---: | :---: |
| Combined daily caffeine intake | 1 |  |  |
| Daily caffeine intake from coffee | 0.7147 | 1 |  |
| Daily caffeine intake from tea | 0.3071 | -0.3319 |  |

[^1]Table S2. Baseline characteristics for individuals included in the GWAS on combined caffeine intake, caffeine from coffee, or caffeine from tea

| Characteristic | Combined Caffeine | Caffeine from Coffee | Caffeine from Tea |
| :---: | :---: | :---: | :---: |
| Total, n | 362,316 | 373,522 | 395,866 |
| Age, mean (SD), y | 56.94 (8.00) | 56.92 (8.01) | 56.94 (7.99) |
| Female | 195,754 (54.0\%) | 201,463 (53.9\%) | 214,395 (54.2\%) |
| Daily caffeine intake, median (IQR), mg/day |  |  |  |
| Combined caffeine | 205 (120-290) | 205 (120-290) | 205 (120-290) |
| Caffeine from coffee | 60 (3-180) | 85 (3-180) | 60 (3-180) |
| Caffeine from tea | 90 (60-150) | 90 (60-150) | 90 (60-150) |
| Blood pressure, mean (SD), mm Hg |  |  |  |
| Systolic | 133.75 (17.94) | 133.76 (17.93) | 133.73 (17.95) |
| Diastolic | 82.13 (8.54) | 82.14 (8.54) | 82.12 (8.54) |
| Active smoker |  |  |  |
| No | 325,226 (89.8\%) | 335,025 (89.7\%) | 355,938 (89.9\%) |
| Yes | 37,090 (10.2\%) | 38,497 (10.3\%) | 39,928 (10.1\%) |
| BMI, mean (SD), kg/m² | 27.43 (4.74) | 27.43 (4.75) | 27.41 (4.75) |
| Weekly alcohol intake, median (IQR), UK units | 9.60 (1.96-20.20) | 9.60 (1.96-20.20) | 9.60 (1.96-20.00) |
| Hypertension |  |  |  |
| No | 250,114 (69.0\%) | 257,966 (69.1\%) | 272,994 (69.0\%) |
| Yes | 112,202 (31.0\%) | 115,556 (30.9\%) | 122,872 (31.0\%) |
| Hyperlipidemia |  |  |  |
| No | 291,798 (80.5\%) | 300,872 (80.6\%) | 318,841 (80.5\%) |
| Yes | 70,518 (19.5\%) | 72,650 (19.4\%) | 77,025 (19.5\%) |

Combined caffeine intake was calculated as the sum of caffeine intake from coffee and tea. Body mass index calculated as weight in kilograms divided by height in meters squared

## Table S3. Baseline characteristics per 60 mg of combined caffeine intake

| Characteristic | 0 mg | 1-60 mg | 61-120 mg | 121-180 mg | 181-240 mg | 241-300 mg | 301-360 mg | >360 mg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total, n | 8,845 | 26,279 | 55,733 | 81,959 | 69,745 | 51,542 | 31,198 | 37,015 |
| Age, mean (SD), y | 53.61 (8.33) | 56.05 (8.28) | 56.91 (8.12) | 57.33 (7.99) | 57.52 (7.85) | 57.20 (7.84) | 56.87 (7.80) | 56.19 (7.94) |
| Female | 5,673 (64.1\%) | 16,185 (61.6\%) | 32,673 (58.6\%) | 46,430 (56.7\%) | 37,917 (54.4\%) | 26,289 (51.0\%) | 14,948 (47.9\%) | 15,639 (42.3\%) |
| Daily caffeine intake, median (IQR), mg/day |  |  |  |  |  |  |  |  |
| Combined caffeine | 0 (0-0) | 33 (15-60) | 96 (90-120) | 159 (150-180) | 230 (210-240) | 285 (270-300) | 345 (330-360) | 450 (420-540) |
| Caffeine from coffee | 0 (0-0) | 6 (0-15) | 3 (0-60) | 18 (0-85) | 120 (60-170) | 170 (120-240) | 240 (170-300) | 340 (255-425) |
| Caffeine from tea | 0 (0-0) | 30 (0-30) | 90 (60-90) | 120 (60-150) | 120 (60-180) | 120 (60-180) | 90 (60-180) | 120 (30-210) |
| Blood pressure, mean (SD), mm Hg |  |  |  |  |  |  |  |  |
| Systolic | 128.79 (17.62) | 132.38 (18.11) | 133.68 (18.19) | 133.96 (18.18) | 134.20 (17.91) | 134.26 (17.72) | 134.08 (17.56) | 133.72 (17.44) |
| Diastolic | 80.92 (8.87) | 81.70 (8.70) | 82.03 (8.58) | 82.05 (8.56) | 82.13 (8.47) | 82.35 (8.44) | 82.43 (8.50) | 82.49 (8.50) |
| Active smoker |  |  |  |  |  |  |  |  |
| No | 8,235 (93.1\%) | 24,301 (92.5\%) | 52,154 (93.6\%) | 75,786 (92.5\%) | 63,530 (91.1\%) | 45,656 (88.6\%) | 26,631 (85.4\%) | 28,933 (78.2\%) |
| Yes | 610 (6.9\%) | 1,978 (7.5\%) | 3,579 (6.4\%) | 6,173 (7.5\%) | 6,215 (8.9\%) | 5,886 (11.4\%) | 4,567 (14.6\%) | 8,082 (21.8\%) |
| BMI, mean (SD), $\mathrm{kg} / \mathrm{m}^{2}$ | 27.84 (5.77) | 27.87 (5.23) | 27.32 (4.82) | 27.28 (4.69) | 27.24 (4.57) | 27.40 (4.53) | 27.57 (4.65) | 27.75 (4.75) |
| Weekly alcohol intake, median (IQR), UK units | 1.96 (1.00-12.40) | 6.90 (1.60-17.90) | 8.70 (1.96-19.20) | 9.60 (1.96-19.20) | 9.60 (2.00-20.20) | 10.80 (2.66-21.30) | 11.20 (2.90-22.40) | 11.20 (1.96-23.20) |
| Hypertension |  |  |  |  |  |  |  |  |
| No | 6,542 (74.0\%) | 17,598 (67.0\%) | 37,359 (67.0\%) | 55,634 (67.9\%) | 48,329 (69.3\%) | 36,266 (70.4\%) | 22,152 (71.0\%) | 26,234 (70.9\%) |
| Yes | 2,303 (26.0\%) | 8,681 (33.0\%) | 18,374 (33.0\%) | 26,325 (32.1\%) | 21,416 (30.7\%) | 15,276 (29.6\%) | 9,046 (29.0\%) | 10,781 (29.1\%) |
| Hyperlipidemia |  |  |  |  |  |  |  |  |
| No | 7,646 (86.4\%) | 20,773 (79.0\%) | 44,522 (79.9\%) | 65,591 (80.0\%) | 56,254 (80.7\%) | 41,857 (81.2\%) | 25,345 (81.2\%) | 29,810 (80.5\%) |
| Yes | 1,199 (13.6\%) | 5,506 (21.0\%) | 11,211 (20.1\%) | 16,368 (20.0\%) | 13,491 (19.3\%) | 9,685 (18.8\%) | 5,853 (18.8\%) | 7,205 (19.5\%) |

## Table S4. Baseline characteristics per 60 mg caffeine intake from coffee

| Characteristic | 0 mg | $\mathbf{1 - 6 0 ~ m g ~}$ | 61-120 mg | 121-180 mg | 181-240 mg | 24-300 mg1 | 301-360 mg | > 360 mg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total, n | 85,680 | 100,079 | 61,866 | 49,884 | 22,315 | 24,478 | 15,473 | 13,747 |
| Age, mean (SD), y | 55.88 (8.15) | 57.95 (7.83) | 57.25 (7.97) | 57.15 (7.92) | 56.85 (7.90) | 56.36 (7.97) | 56.31 (7.91) | 55.35 (8.00) |
| Female | 49,810 (58.1\%) | 59,014 (59.0\%) | 32,525 (52.6\%) | 25,331 (50.8\%) | 10,745 (48.2\%) | 11,382 (46.5\%) | 6,944 (44.9\%) | 5,712 (41.6\%) |
| Daily caffeine intake, median (IQR), mg/day |  |  |  |  |  |  |  |  |
| Combined caffeine | 150 (90-180) | 129 (72-183) | 210 (175-240) | 260 (210-300) | 300 (240-360) | 330 (300-375) | 390 (360-450) | 540 (480-630) |
| Caffeine from coffee | 0 (0-0) | 15 (6-60) | 120 (85-120) | 180 (170-180) | 240 (240-240) | 300 (255-300) | 360 (340-360) | 480 (425-595) |
| Caffeine from tea | 150 (90-180) | 90 (60-150) | 90 (60-150) | 90 (30-120) | 60 (0-120) | 60 (0-90) | 30 (0-90) | 30 (0-90) |
| Blood pressure, mean (SD), mm Hg |  |  |  |  |  |  |  |  |
| Systolic | 132.74 (18.30) | 133.78 (17.99) | 134.17 (17.93) | 134.13 (17.80) | 135.10 (17.70) | 134.02 (17.43) | 134.24 (17.26) | 133.47 (17.36) |
| Diastolic | 81.90 (8.68) | 81.79 (8.46) | 82.26 (8.53) | 82.29 (8.45) | 82.87 (8.58) | 82.50 (8.48) | 82.69 (8.46) | 82.61 (8.58) |
| Active smoker |  |  |  |  |  |  |  |  |
| No | 77,385 (90.3\%) | 92,972 (92.9\%) | 56,678 (91.6\%) | 45,213 (90.6\%) | 19,289 (86.4\%) | 20,972 (85.7\%) | 12,607 (81.5\%) | 9,909 (72.1\%) |
| Yes | 8,295 (9.7\%) | 7,107 (7.1\%) | 5,188 (8.4\%) | 4,671 (9.4\%) | 3,026 (13.6\%) | 3,506 (14.3\%) | 2,866 (18.5\%) | 3,838 (27.9\%) |
| BMI, mean (SD), $\mathrm{kg} / \mathrm{m}^{2}$ | 27.50 (5.01) | 27.41 (4.70) | 27.08 (4.58) | 27.19 (4.54) | 27.95 (4.69) | 27.52 (4.64) | 27.93 (4.87) | 28.08 (4.98) |
| Weekly alcohol intake, median (IQR), UK units | 6.40 (1.17-17.90) | 8.00 (1.96-17.60) | 11.20 (3.60-22.10) | 12.00 (4.80-22.70) | 11.50 (3.20-23.00) | 12.60 (4.43-23.50) | 12.30 (3.16-24.00) | 11.00 (1.96-23.90) |
| Hypertension |  |  |  |  |  |  |  |  |
| No | 58,289 (68.0\%) | 66,870 (66.8\%) | 43,294 (70.0\%) | 35,409 (71.0\%) | 15,610 (70.0\%) | 17,743 (72.5\%) | 10,957 (70.8\%) | 9,794 (71.2\%) |
| Yes | 27,391 (32.0\%) | 33,209 (33.2\%) | 18,572 (30.0\%) | 14,475 (29.0\%) | 6,705 (30.0\%) | 6,735 (27.5\%) | 4,516 (29.2\%) | 3,953 (28.8\%) |
| Hyperlipidemia |  |  |  |  |  |  |  |  |
| No | 69,397 (81.0\%) | 79,007 (78.9\%) | 50,233 (81.2\%) | 40,659 (81.5\%) | 18,025 (80.8\%) | 20,107 (82.1\%) | 12,464 (80.6\%) | 10,980 (79.9\%) |
| Yes | 16,283 (19.0\%) | 21,072 (21.1\%) | 11,633 (18.8\%) | 9,225 (18.5\%) | 4,290 (19.2\%) | 4,371 (17.9\%) | 3,009 (19.4\%) | 2,767 (20.1\%) |

Table S5. Baseline characteristics per $\mathbf{6 0} \mathbf{~ m g}$ caffeine intake from tea

| Characteristic | 0 mg | $\mathbf{1 - 6 0 ~ m g ~}$ | 61-120 mg | 121-180 mg | $>180 \mathrm{mg}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total, n | 60,199 | 87,981 | 119,872 | 85,705 | 42,109 |
| Age, mean (SD), y | 55.81 (8.18) | 56.63 (8.16) | 57.49 (7.90) | 57.29 (7.83) | 56.94 (7.79) |
| Female | 33,935 (56.4\%) | 45,911 (52.2\%) | 65,987 (55.0\%) | 46,619 (54.4\%) | 21,943 (52.1\%) |
| Daily caffeine intake, median (IQR), mg/day |  |  |  |  |  |
| Combined caffeine | 180 (12-300) | 180 (72-270) | 180 (120-270) | 210 (162-270) | 300 (240-385) |
| Caffeine from coffee | 180 (12-300) | 120 (15-240) | 60 (3-170) | 60 (0-120) | 3 (0-85) |
| Caffeine from tea | 0 (0-0) | 60 (30-60) | 90 (90-120) | 150 (150-180) | 240 (210-300) |
| Blood pressure, mean (SD), mm Hg |  |  |  |  |  |
| Systolic | 133.11 (17.83) | 133.80 (17.94) | 133.99 (17.99) | 133.91 (18.03) | 133.35 (17.84) |
| Diastolic | 82.25 (8.68) | 82.21 (8.60) | 82.02 (8.48) | 82.10 (8.50) | 82.01 (8.48) |
| Active smoker |  |  |  |  |  |
| No | 52,157 (86.6\%) | 80,103 (91.0\%) | 110,804 (92.4\%) | 77,595 (90.5\%) | 35,279 (83.8\%) |
| Yes | 8,042 (13.4\%) | 7,878 (9.0\%) | 9,068 (7.6\%) | 8,110 (9.5\%) | 6,830 (16.2\%) |
| BMI, mean (SD), kg/m² | 28.16 (5.27) | 27.25 (4.69) | 27.15 (4.55) | 27.37 (4.63) | 27.48 (4.73) |
| Weekly alcohol intake, log UK units | 9.00 (1.96-20.60) | 11.20 (3.20-22.40) | 9.60 (2.06-19.80) | 8.90 (1.96-19.20) | 6.90 (1.17-18.40) |
| Hypertension |  |  |  |  |  |
| No | 41,492 (68.9\%) | 61,464 (69.9\%) | 82,497 (68.8\%) | 58,873 (68.7\%) | 28,668 (68.1\%) |
| Yes | 18,707 (31.1\%) | 26,517 (30.1\%) | 37,375 (31.2\%) | 26,832 (31.3\%) | 13,441 (31.9\%) |
| Hyperlipidemia |  |  |  |  |  |
| No | 48,172 (80.0\%) | 71,307 (81.0\%) | 96,712 (80.7\%) | 68,990 (80.5\%) | 33,660 (79.9\%) |
| Yes | 12,027 (20.0\%) | 16,674 (19.0\%) | 23,160 (19.3\%) | 16,715 (19.5\%) | 8,449 (20.1\%) |

Combined caffeine intake was calculated as the sum of caffeine intake from coffee and tea. Body mass index calculated as weight in kilograms divided by height in meters squared

Table S6. Unadjusted associations of phenotypic caffeine intake with new-onset coronary artery disease

| Caffeine Trait | Caffeine intake (mg/day) | N total | N cases (\%) | Person-time at risk (years) | Absolute risk | Hazard Ratio | 95\% Confidence interval | $P$ value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Combined intake | 0 | 8,552 | 265 (3.10) | 68222.505 | 3.10 | 1 | Reference | Reference |
|  | 1-60 | 24,983 | 1018 (4.07) | 198905.92 | 4.07 | 1.32 | (1.15-1.51) | 6.27E-05 |
|  | 61-120 | 53,067 | 2173 (4.09) | 421662.78 | 4.09 | 1.33 | (1.17-1.51) | $1.22 \mathrm{E}-05$ |
|  | 121-180 | 78,040 | 3412 (4.37) | 617136.57 | 4.37 | 1.43 | (1.26-1.62) | $2.52 \mathrm{E}-08$ |
|  | 181-240 | 66,669 | 2725 (4.09) | 526813.63 | 4.09 | 1.34 | (1.18-1.51) | 7.05E-06 |
|  | 241-300 | 49,359 | 2107 (4.27) | 389466.51 | 4.27 | 1.40 | (1.23-1.59) | $2.89 \mathrm{E}-07$ |
|  | 301-360 | 29,858 | 1226 (4.11) | 235711.7 | 4.11 | 1.34 | (1.18-1.53) | $1.40 \mathrm{E}-05$ |
|  | >360 | 35,281 | 1755 (4.97) | 277356.55 | 4.97 | 1.63 | (1.44-1.86) | 8.88E-14 |
|  |  |  |  |  |  |  |  |  |
| Coffee | 0 | 81,341 | 3615 (4.44) | 644426.54 | 4.44 | 1 | Reference | Reference |
|  | 1-60 | 95,254 | 4183 (4.39) | 753153.67 | 4.39 | 0.99 | (0.95-1.04) | 0.67 |
|  | 61-120 | 59,247 | 2266 (3.82) | 468704.42 | 3.82 | 0.86 | (0.82-0.91) | 2.78E-08 |
|  | 121-180 | 47,987 | 1767 (3.68) | 380342.59 | 3.68 | 0.83 | (0.78-0.88) | 8.42E-11 |
|  | 181-240 | 21,319 | 975 (4.57) | 168465.82 | 4.57 | 1.03 | (0.96-1.11) | 0.39 |
|  | 241-300 | 23,492 | 944 (4.02) | 185517.36 | 4.02 | 0.91 | (0.84-0.98) | $8.00 \mathrm{E}-03$ |
|  | 301-360 | 14,826 | 637 (4.30) | 117194.67 | 4.30 | 0.97 | (0.89-1.06) | 0.48 |
|  | >360 | 13,082 | 680 (5.20) | 103020.73 | 5.20 | 1.18 | (1.09-1.28) | $8.54 \mathrm{E}-05$ |
|  |  |  |  |  |  |  |  |  |
| Tea | 0 | 57,433 | 2461 (4.28) | 454797.51 | 4.28 | 1 | Reference | Reference |
|  | 1-60 | 84,260 | 3165 (3.76) | 670336.26 | 3.76 | 0.87 | (0.83-0.92) | $3.38 \mathrm{E}-07$ |
|  | 61-120 | 114,525 | 4809 (4.20) | 906479.66 | 4.20 | 0.98 | (0.93-1.03) | 0.43 |
|  | 121-180 | 81,674 | 3620 (4.43) | 643994.84 | 4.43 | 1.04 | (0.99-1.09) | 0.13 |
|  | >180 | 39,905 | 2012 (5.04) | 313272.29 | 5.04 | 1.19 | (1.12-1.26) | 9.29E-09 |

Unadjusted Cox regression analyses. 60 mg caffeine is equivalent to the caffeine content of one cup of instant coffee or 2 cups of tea. Person-time follow up is provided per 1000 person-time years

Table S7. Unadjusted associations of phenotypic caffeine intake with new-onset type $\mathbf{2}$ diabetes

| Caffeine Trait | Caffeine intake (mg) | N total | N cases (\%) | Person-time at risk (years) | Absolute risk | Hazard Ratio | 95\% Confidence interval | $P$ value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Combined intake | 0 | 8,456 | 183 (2.16) | 67917.769 | 2.16 | 1 | Reference | Reference |
|  | 1-60 | 25,012 | 651 (2.60) | 200942.01 | 2.60 | 1.20 | (1.02-1.42) | 0.03 |
|  | 61-120 | 53,431 | 1156 (2.16) | 429276.93 | 2.16 | 1.00 | (0.86-1.17) | 0.99 |
|  | 121-180 | 78,764 | 1516 (1.92) | 631103.5 | 1.92 | 0.89 | (0.77-1.04) | 0.15 |
|  | 181-240 | 67,123 | 1208 (1.80) | 537016.45 | 1.80 | 0.84 | (0.72-0.98) | 0.02 |
|  | 241-300 | 49,606 | 959 (1.93) | 396529.11 | 1.93 | 0.90 | (0.77-1.05) | 0.19 |
|  | 301-360 | 29,979 | 548 (1.83) | 239606.07 | 1.83 | 0.85 | (0.72-1.01) | 0.06 |
|  | >360 | 35,347 | 761 (2.15) | 282170.46 | 2.15 | 1.00 | (0.85-1.18) | 0.96 |
|  |  |  |  |  |  |  |  |  |
| Coffee | 0 | 82,017 | 1946 (2.37) | 657588.3 | 2.37 | 1 | Reference | Reference |
|  | 1-60 | 95,947 | 1938 (2.02) | 768505.49 | 2.02 | 0.85 | (0.80-0.91) | $6.8 \mathrm{E}-07$ |
|  | 61-120 | 59,622 | 1046 (1.75) | 477108.76 | 1.75 | 0.74 | (0.69-0.80) | $6.9 \mathrm{E}-15$ |
|  | 121-180 | 48,112 | 791 (1.64) | 385341.27 | 1.64 | 0.69 | (0.64-0.75) | <1.0E-16 |
|  | 181-240 | 21,358 | 451 (2.11) | 171104.9 | 2.11 | 0.89 | (0.80-0.99) | 0.03 |
|  | 241-300 | 23,542 | 426 (1.81) | 188172.08 | 1.81 | 0.77 | (0.69-0.85) | $6.7 \mathrm{E}-07$ |
|  | 301-360 | 14,788 | 291 (1.97) | 118443.97 | 1.97 | 0.83 | (0.73-0.94) | 3.2E-03 |
|  | >360 | 13,051 | 304 (2.33) | 104416.4 | 2.33 | 0.98 | (0.87-1.11) | 0.81 |
|  |  |  |  |  |  |  |  |  |
| Tea | 0 | 57,152 | 1402 (2.45) | 457663.58 | 2.45 | 1 | Reference | Reference |
|  | 1-60 | 84,659 | 1602 (1.89) | 680333.52 | 1.89 | 0.77 | (0.71-0.82) | $4.77 \mathrm{E}-13$ |
|  | 61-120 | 115,382 | 2084 (1.81) | 925272.64 | 1.81 | 0.74 | (0.69-0.79) | $<1.0 \mathrm{E}-16$ |
|  | 121-180 | 82,365 | 1627 (1.98) | 658185.41 | 1.98 | 0.81 | (0.75-0.87) | 5.18E-09 |
|  | $>180$ | 40,311 | 885 (2.20) | 321345.95 | 2.20 | 0.90 | (0.83-0.98) | 0.02 |

Table S8. Multivariable adjusted associations of phenotypic caffeine intake with new-onset coronary artery disease

| Caffeine Trait | Caffeine intake (mg) | N total | N cases (\%) | Person-time at risk (years) | Absolute risk | Hazard Ratio | 95\% Confidence interval | $P$ value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Combined intake | 0 | 8,552 | 265 (3.10) | 68222.505 | 3.10 | 1 | Reference | Reference |
|  | 1-60 | 24,983 | 1018 (4.07) | 198905.92 | 4.07 | 1.11 | (0.97-1.27) | 0.12 |
|  | 61-120 | 53,067 | 2173 (4.09) | 421662.78 | 4.09 | 1.07 | (0.95-1.22) | 0.27 |
|  | 121-180 | 78,040 | 3412 (4.37) | 617136.57 | 4.37 | 1.11 | (0.98-1.26) | 0.10 |
|  | 181-240 | 66,669 | 2725 (4.09) | 526813.63 | 4.09 | 1.01 | (0.89-1.14) | 0.90 |
|  | 241-300 | 49,359 | 2107 (4.27) | 389466.51 | 4.27 | 1.04 | (0.91-1.18) | 0.58 |
|  | 301-360 | 29,858 | 1226 (4.11) | 235711.7 | 4.11 | 0.98 | (0.85-1.11) | 0.72 |
|  | >360 | 35,281 | 1755 (4.97) | 277356.55 | 4.97 | 1.12 | (0.98-1.27) | 0.10 |
|  |  |  |  |  |  |  |  |  |
| Coffee | 0 | 81,341 | 3615 (4.44) | 644426.54 | 4.44 | 1 | Reference | Reference |
|  | 1-60 | 95,254 | 4183 (4.39) | 753153.67 | 4.39 | 0.92 | (0.88-0.96) | $3.89 \mathrm{E}-04$ |
|  | 61-120 | 59,247 | 2266 (3.82) | 468704.42 | 3.82 | 0.81 | (0.77-0.85) | $7.99 \mathrm{E}-15$ |
|  | 121-180 | 47,987 | 1767 (3.68) | 380342.59 | 3.68 | 0.77 | (0.73-0.82) | <1.0E-16 |
|  | 181-240 | 21,319 | 975 (4.57) | 168465.82 | 4.57 | 0.91 | (0.85-0.98) | $1.13 \mathrm{E}-02$ |
|  | 241-300 | 23,492 | 944 (4.02) | 185517.36 | 4.02 | 0.84 | (0.78-0.90) | $1.04 \mathrm{E}-06$ |
|  | 301-360 | 14,826 | 637 (4.30) | 117194.67 | 4.30 | 0.83 | (0.76-0.90) | $1.70 \mathrm{E}-05$ |
|  | >360 | 13,082 | 680 (5.20) | 103020.73 | 5.20 | 0.98 | (0.91-1.07) | 0.71 |
|  |  |  |  |  |  |  |  |  |
| Tea | 0 | 57,433 | 2461 (4.28) | 454797.51 | 4.28 | 1 | Reference | Reference |
|  | 1-60 | 84,260 | 3165 (3.76) | 670336.26 | 3.76 | 0.87 | (0.83-0.92) | 3.78E-07 |
|  | 61-120 | 114,525 | 4809 (4.20) | 906479.66 | 4.20 | 0.96 | (0.91-1.00) | $7.20 \mathrm{E}-02$ |
|  | 121-180 | 81,674 | 3620 (4.43) | 643994.84 | 4.43 | 0.99 | (0.94-1.04) | 0.64 |
|  | >180 | 39,905 | 2012 (5.04) | 313272.29 | 5.04 | 1.07 | (1.00-1.13) | $3.56 \mathrm{E}-02$ |

 provided per 1000 person-time years

Table S9. Multivariable adjusted associations of phenotypic of caffeine intake with new-onset type 2 diabetes

| Caffeine Trait | Caffeine intake (mg) | N total | N cases (\%) | Person-time at risk (years) | Absolute risk | Hazard Ratio | 95\% Confidence interval | $P$ value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Combined intake | 0 | 8,456 | 183 (2.16) | 67917.769 | 2.16 | 1 | Reference | Reference |
|  | 1-60 | 25,012 | 651 (2.60) | 200942.01 | 2.60 | 1.20 | (1.02-1.42) | 0.03 |
|  | 61-120 | 53,431 | 1156 (2.16) | 429276.93 | 2.16 | 1.07 | (0.91-1.25) | 0.40 |
|  | 121-180 | 78,764 | 1516 (1.92) | 631103.5 | 1.92 | 0.94 | (0.81-1.10) | 0.45 |
|  | 181-240 | 67,123 | 1208 (1.80) | 537016.45 | 1.80 | 0.89 | (0.76-1.04) | 0.13 |
|  | 241-300 | 49,606 | 959 (1.93) | 396529.11 | 1.93 | 0.93 | (0.79-1.09) | 0.37 |
|  | 301-360 | 29,979 | 548 (1.83) | 239606.07 | 1.83 | 0.83 | (0.71-0.99) | 0.04 |
|  | >360 | 35,347 | 761 (2.15) | 282170.46 | 2.15 | 0.91 | (0.77-1.07) | 0.23 |
|  |  |  |  |  |  |  |  |  |
| Coffee | 0 | 82,017 | 1946 (2.37) | 657588.3 | 2.37 | 1 | Reference | Reference |
|  | 1-60 | 95,947 | 1938 (2.02) | 768505.49 | 2.02 | 0.88 | (0.82-0.93) | $4.46 \mathrm{E}-05$ |
|  | 61-120 | 59,622 | 1046 (1.75) | 477108.76 | 1.75 | 0.81 | (0.75-0.87) | $4.87 \mathrm{E}-08$ |
|  | 121-180 | 48,112 | 791 (1.64) | 385341.27 | 1.64 | 0.77 | (0.71-0.84) | $6.62 \mathrm{E}-10$ |
|  | 181-240 | 21,358 | 451 (2.11) | 171104.9 | 2.11 | 0.84 | (0.76-0.93) | $1.07 \mathrm{E}-03$ |
|  | 241-300 | 23,542 | 426 (1.81) | 188172.08 | 1.81 | 0.79 | (0.71-0.87) | $7.93 \mathrm{E}-06$ |
|  | 301-360 | 14,788 | 291 (1.97) | 118443.97 | 1.97 | 0.76 | (0.67-0.86) | $1.57 \mathrm{E}-05$ |
|  | >360 | 13,051 | 304 (2.33) | 104416.4 | 2.33 | 0.84 | (0.74-0.94) | $3.80 \mathrm{E}-03$ |
|  |  |  |  |  |  |  |  |  |
| Tea | 0 | 57,152 | 1402 (2.45) | 457663.58 | 2.45 | 1 | Reference | Reference |
|  | 1-60 | 84,659 | 1602 (1.89) | 680333.52 | 1.89 | 0.91 | (0.85-0.98) | $1.25 \mathrm{E}-02$ |
|  | 61-120 | 115,382 | 2084 (1.81) | 925272.64 | 1.81 | 0.86 | (0.80-0.92) | $1.59 \mathrm{E}-05$ |
|  | 121-180 | 82,365 | 1627 (1.98) | 658185.41 | 1.98 | 0.89 | (0.82-0.95) | $1.02 \mathrm{E}-03$ |
|  | >180 | 40,311 | 885 (2.20) | 321345.95 | 2.20 | 0.90 | (0.83-0.98) | $1.67 \mathrm{E}-02$ |

 provided per 1000 person-time years

Table S10. Associations of caffeine from coffee or tea additionally adjusted for caffeine intake from tea or coffee respectively

| Caffeine trait | Outcome | Caffeine intake (mg/day) | N total | N cases | Person-time at risk (years) | Hazard Ratio | 95\% Confidence interval | $P$ value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Coffee | CAD | 0 | 80,659 | 3585 | 638979.73 | 1 | Reference | Reference |
|  |  | 1-60 | 93,173 | 4105 | 736562.39 | 0.93 | 0.89-0.98 | $3.49 \mathrm{E}-03$ |
|  |  | 61-120 | 57,946 | 2217 | 458418.04 | 0.82 | 0.78-0.87 | $4.92 \mathrm{E}-13$ |
|  |  | 121-180 | 46,065 | 1707 | 364964.26 | 0.79 | 0.75-0.84 | $1.33 \mathrm{E}-14$ |
|  |  | 181-240 | 20,183 | 939 | 159374.73 | 0.95 | 0.88-1.02 | 0.16 |
|  |  | 241-300 | 21,967 | 898 | 173350.49 | 0.87 | 0.81-0.94 | $2.88 \mathrm{E}-04$ |
|  |  | 301-360 | 13,727 | 595 | 108434.36 | 0.86 | 0.78-0.94 | $7.88 \mathrm{E}-04$ |
|  |  | >360 | 12,089 | 635 | 95192.156 | 1.03 | 0.94-1.12 | 0.58 |
|  |  |  |  |  |  |  |  |  |
| Tea | CAD | 0 | 55,825 | 2382 | 442052.98 | 1 | Reference | Reference |
|  |  | 1-60 | 79,764 | 2978 | 634422.94 | 0.86 | 0.81-0.91 | $5.56 \mathrm{E}-08$ |
|  |  | 61-120 | 103,981 | 4370 | 822745.06 | 0.94 | 0.89-0.99 | 0.02 |
|  |  | 121-180 | 71,617 | 3189 | 564449.23 | 0.97 | 0.91-1.02 | 0.22 |
|  |  | >180 | 34,622 | 1762 | 271605.95 | 1.04 | 0.98-1.11 | 0.19 |
|  |  |  |  |  |  |  |  |  |
| Coffee | T2D | 0 | 81,341 | 1929 | 652143.91 | 1 | Reference | Reference |
|  |  | 1-60 | 93,878 | 1903 | 751852.25 | 0.86 | 0.81-0.92 | 4.79E-06 |
|  |  | 61-120 | 58,318 | 1014 | 466693.64 | 0.79 | 0.73-0.85 | $1.29 \mathrm{E}-09$ |
|  |  | 121-180 | 46,186 | 758 | 369829.71 | 0.74 | 0.68-0.81 | 7.46E-12 |
|  |  | 181-240 | 20,222 | 428 | 161941.97 | 0.80 | 0.72-0.89 | $4.48 \mathrm{E}-05$ |
|  |  | 241-300 | 22,000 | 388 | 175830.94 | 0.72 | 0.65-0.81 | $1.50 \mathrm{E}-08$ |
|  |  | 301-360 | 13,701 | 274 | 109674.18 | 0.72 | 0.63-0.82 | $9.16 \mathrm{E}-07$ |
|  |  | >360 | 12,072 | 288 | 96595.711 | 0.80 | 0.71-0.91 | 8.75E-04 |
|  |  |  |  |  |  |  |  |  |
| Tea | T2D | 0 | 55,552 | 1357 | 444786.2 | 1 | Reference | Reference |
|  |  | 1-60 | 80,118 | 1502 | 643704.93 | 0.88 | 0.82-0.95 | 7.49E-04 |
|  |  | 61-120 | 104,793 | 1898 | 840005.24 | 0.82 | 0.76-0.88 | $5.82 \mathrm{E}-08$ |
|  |  | 121-180 | 72,247 | 1430 | 577158.15 | 0.82 | 0.76-0.89 | $6.32 \mathrm{E}-07$ |
|  |  | >180 | 35,008 | 795 | 278907.78 | 0.85 | 0.78-0.93 | 4.70E-04 |

diusted for caffeine intake from coffee

Table S11. Associations of decaffeinated and caffeinated cups of coffee with new-onset coronary artery disease and type 2 diabetes

| Group | Outcome | Cups of coffee | N total | N cases | Person-time at risk (years) | Hazard Ratio | 95\% Confidence interval | $P$ value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Decaffeinated | CAD | 0 | 85,257 | 6,222 | 662436.76 | 1 | Reference | Reference |
|  |  | 1 | 16,340 | 1,116 | 127170.84 | 0.95 | 0.89-1.01 | 0.10 |
|  |  | 2 | 14,932 | 928 | 116645.79 | 0.83 | 0.78-0.89 | $3.21 \mathrm{E}-07$ |
|  |  | 3 | 9,881 | 700 | 76817.509 | 0.96 | 0.89-1.04 | 0.28 |
|  |  | 4 | 7,147 | 503 | 55563.823 | 0.92 | 0.84-1.01 | 0.07 |
|  |  | 5 | 4,312 | 304 | 33483.425 | 0.93 | 0.83-1.05 | 0.24 |
|  |  | 6 | 2,879 | 230 | 22278.00 | 1.02 | 0.90-1.17 | 0.75 |
|  |  | >6 | 2,351 | 176 | 18201.01 | 0.98 | 0.84-1.14 | 0.79 |
|  |  |  |  |  |  |  |  |  |
| Caffeinated | CAD | 0 | 85,257 | 6,222 | 662436.76 | 1 | Reference | Reference |
|  |  | 1 | 62,144 | 4,025 | 482864.61 | 0.83 | 0.80-0.87 | <1.0E-16 |
|  |  | 2 | 60,858 | 3,718 | 474437.8 | 0.77 | 0.74-0.80 | <1.0E-16 |
|  |  | 3 | 40,666 | 2,562 | 317174.8 | 0.80 | 0.76-0.84 | <1.0E-16 |
|  |  | 4 | 28,098 | 1,891 | 218703.22 | 0.83 | 0.79-0.87 | $1.84 \mathrm{E}-12$ |
|  |  | 5 | 16,594 | 1,165 | 128721.25 | 0.86 | 0.81-0.92 | 5.62E-06 |
|  |  | 6 | 11,122 | 825 | 86165.836 | 0.85 | 0.79-0.92 | $1.56 \mathrm{E}-05$ |
|  |  | $>6$ | 9,411 | 803 | 72635.775 | 0.97 | 0.90-1.04 | 0.38 |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Decaffeinated | T2D | 0 | 85,257 | 4,689 | 669744.72 | 1 | Reference | Reference |
|  |  | 1 | 16,340 | 765 | 128765.31 | 0.94 | 0.87-1.01 | 0.10 |
|  |  | 2 | 14,932 | 681 | 117636.71 | 0.89 | 0.82-0.96 | 0.00 |
|  |  | 3 | 9,881 | 476 | 77887.652 | 0.92 | 0.83-1.01 | 0.08 |
|  |  | 4 | 7,147 | 374 | 56086.719 | 0.93 | 0.84-1.04 | 0.20 |
|  |  | 5 | 4,312 | 233 | 33805.93 | 0.92 | 0.80-1.05 | 0.20 |
|  |  | 6 | 2,879 | 178 | 22489.786 | 1.04 | 0.89-1.20 | 0.63 |
|  |  | >6 | 2,351 | 149 | 18356.787 | 1.04 | 0.89-1.23 | 0.62 |
|  |  |  |  |  |  |  |  |  |
| Caffeinated | T2D | 0 | 85,257 | 4,689 | 669744.72 | 1 | Reference | Reference |
|  |  | 1 | 62,144 | 2,813 | 488247.68 | 0.89 | 0.85-0.93 | $1.77 \mathrm{E}-06$ |
|  |  | 2 | 60,858 | 2,691 | 479099.39 | 0.87 | 0.83-0.91 | $1.40 \mathrm{E}-08$ |
|  |  | 3 | 40,666 | 1,844 | 320263.23 | 0.89 | 0.84-0.93 | $1.17 \mathrm{E}-05$ |
|  |  | 4 | 28,098 | 1,456 | 220558.29 | 0.94 | 0.88-1.00 | 0.04 |
|  |  | 5 | 16,594 | 916 | 129881.67 | 0.96 | 0.89-1.03 | 0.23 |
|  |  | 6 | 11,122 | 639 | 87104.843 | 0.91 | 0.84-0.99 | 0.03 |
|  |  | >6 | 9,411 | 635 | 73355.381 | 1.05 | 0.97-1.14 | 0.24 |

Adjusted for age at inclusion, sex, body mass index (kg/m2) at inclusion, active smoking, log-transformed weekly alcohol intake (UK units), and Townsend Deprivation Index. Results are provided for individuals who drank decaffeinated or decaffeinated coffee per cup of coffee.

Table S12. GWAS top SNP results for combined caffeine intake at $\mathbf{P}<1.67 \times 10^{-8}$

| SNP | CHR | hg19 | EFAL | NEFAL | EF Freq | BETA | SE | P value | Genomic Band | Nearest genes | eQTL genes | DEPICT genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs2472297 | 15 | 75027880 | C | T | 0.731645 | -0.10487 | 0.002616 | 2.4E-351 | q24.1 | CYP1A1 |  |  |
| rs4410790 | 7 | 17284577 | T | C | 0.364122 | $-0.08137$ | 0.002412 | 1.50E-249 | p21.1 | AHR |  |  |
| rs17685 | 7 | 75616105 | G | A | 0.721471 | -0.0408 | 0.002584 | 3.80E-56 | q11.23 | POR, STYXL1 | AC005077.12 |  |
| rs56113850 | 19 | 41353107 | T | C | 0.421755 | -0.02649 | 0.002351 | $1.90 \mathrm{E}-29$ | q13.2 | CYP2A6 |  |  |
| rs2231142 | 4 | 89052323 | G | T | 0.886707 | 0.03913 | 0.00366 | $1.10 \mathrm{E}-26$ | q22.1 | ABCG2 |  |  |
| 7:73042302_GCTTT_G | 7 | 73042302 | GCTTT | G | 0.866226 | -0.03591 | 0.003412 | $6.60 \mathrm{E}-26$ | q11.23 | MLXIPL | MLXIPL |  |
| rs768283768 | 1 | 150701510 | A | AC | 0.419751 | 0.024685 | 0.002462 | $1.20 \mathrm{E}-23$ | q21.3 | HORMAD1, CTSS | CERS2, CTSS, GOLPH3L, HORMAD1, SETDB1 |  |
| rs1260326 | 2 | 27730940 | T | C | 0.391852 | -0.02297 | 0.002377 | $4.20 \mathrm{E}-22$ | p23.3 | GCKR |  |  |
| rs6062679 | 20 | 62889991 | T | C | 0.534615 | -0.02278 | 0.002358 | $4.50 \mathrm{E}-22$ | q13.33 | PCMTD2 | PCMTD2 |  |
| rs199612805 | 22 | 24843991 | T | TGAAACCA | 0.986403 | 0.095734 | 0.01012 | $3.10 \mathrm{E}-21$ | q11.23 | SPECC1L-ADORA2A, ADORA2A |  |  |
| rs9611527 | 22 | 41644428 | G | A | 0.664286 | 0.019792 | 0.002466 | $1.00 \mathrm{E}-15$ | q13.2 | CHADL, RANGAP1 | RANGAP1 |  |
| rs139797380 | 6 | 137244957 | C | G | 0.991601 | 0.106741 | 0.013575 | 3.70E-15 | q23.3 | PEX7, SLC35D3 |  |  |
| rs62332762 | 4 | 106143492 | C | T | 0.597585 | 0.01828 | 0.002368 | $1.20 \mathrm{E}-14$ | q24 | TET2 |  |  |
| rs117810762 | 10 | 135315795 | G | A | 0.982023 | $-0.06827$ | 0.008863 | $1.30 \mathrm{E}-14$ | q26.3 | SPRN |  |  |
| rs531431865 | 17 | 46165234 | C | CA | 0.678686 | -0.01854 | 0.002537 | $2.70 \mathrm{E}-13$ | q21.32 | CBX1 |  |  |
| rs6265 | 11 | 27679916 | C | T | 0.810755 | 0.021572 | 0.002964 | $3.40 \mathrm{E}-13$ | p14.1 | BDNF |  |  |
| rs489693 | 18 | 57882787 | C | A | 0.67465 | -0.01759 | 0.002478 | $1.30 \mathrm{E}-12$ | q21.32 | MC4R |  |  |
| rs12514566 | 5 | 7391462 | G | A | 0.664698 | 0.017242 | 0.002456 | $2.20 \mathrm{E}-12$ | p15.31 | ADCY2 |  |  |
| rs1490384 | 6 | 126851160 | C | T | 0.501467 | -0.01587 | 0.002323 | $8.30 \mathrm{E}-12$ | q22.32 | CENPW |  |  |
| 1:174856749_TG_T | 1 | 174856749 | TG | T | 0.538714 | 0.016005 | 0.00235 | $9.70 \mathrm{E}-12$ | q25.1 | RABGAP1L |  |  |
| rs61141867 | 19 | 47556375 | T | TG | 0.253635 | -0.01842 | 0.002725 | $1.40 \mathrm{E}-11$ | q13.32 | NPAS1, TMEM160 |  |  |
| rs4240624 | 8 | 9184231 | G | A | 0.092461 | 0.02693 | 0.004012 | $1.90 \mathrm{E}-11$ | p23.1 | PPP1R3B |  |  |
| rs115454798 | 3 | 142092190 | A | G | 0.871965 | -0.02252 | 0.003491 | $1.10 \mathrm{E}-10$ | q23 | XRN1 |  |  |
| 16:18776851_G_GA | 16 | 18776851 | G | GA | 0.651439 | 0.017366 | 0.002727 | $1.90 \mathrm{E}-10$ | p12.3 | RPS15A | ARL6IP1 |  |
| rs 12591786 | 15 | 60902512 | C | T | 0.842038 | 0.020213 | 0.00323 | $3.90 \mathrm{E}-10$ | q22.2 | RORA |  |  |
| rs215601 | 7 | 32333921 | A | C | 0.372618 | 0.01488 | 0.002404 | $6.00 \mathrm{E}-10$ | p14.3 | PDE1C |  |  |
| rs4418728 | 10 | 94839724 | G | T | 0.550788 | 0.014384 | 0.002333 | $7.00 \mathrm{E}-10$ | q23.33 | CYP26A1 |  |  |
| rs376877108 | 12 | 112020797 | GTT | G | 0.201051 | 0.01783 | 0.002912 | $9.10 \mathrm{E}-10$ | q24.12 | ATXN2 |  |  |
| rs78456557 | 3 | 123300686 | C | G | 0.900201 | -0.02364 | 0.00389 | $1.20 \mathrm{E}-09$ | q21.1 | PTPLB |  |  |
| 6:108876096_CAAT_C | 6 | 108876096 | CAAT | C | 0.838739 | 0.018991 | 0.003165 | $2.00 \mathrm{E}-09$ | q21 | FOXO3 |  |  |
| rs7105462 | 11 | 112912048 | G | A | 0.40559 | 0.014163 | 0.002366 | $2.10 \mathrm{E}-09$ | q23.2 | NCAM1 |  |  |
| rs2667773 | 15 | 77872191 | A | G | 0.686772 | 0.014947 | 0.002506 | $2.50 \mathrm{E}-09$ | q24.3 | LINGO1 |  |  |
| rs754177720 | 6 | 98555544 | CA | C | 0.479652 | -0.01384 | 0.002358 | 4.40E-09 | q16.1 | POU3F2 |  |  |
| 20:35568001_AAAAG_A | 20 | 35568001 | AAAAG | A | 0.68498 | 0.014682 | 0.002513 | $5.20 \mathrm{E}-09$ | q11.23 | SAMHD1 |  |  |
| rs12785227 | 10 | 65262685 | A | G | 0.685798 | 0.014549 | 0.002507 | $6.50 \mathrm{E}-09$ | q21.3 | REEP3 |  |  |
| 3:50895869_ATAATAATAAT_A | 3 | 50895869 | ATAATAATAAT | A | 0.915367 | 0.028214 | 0.004864 | $6.60 \mathrm{E}-09$ | p21.2 | DOCK3 |  |  |
| rs1228024 | 11 | 47951353 | C | A | 0.340021 | 0.013965 | 0.002453 | $1.30 \mathrm{E}-08$ | p11.2 | PTPRJ |  |  |

 standard error; eQTL, expression quantitative locus; DEPICT, Data-driven Expression-Prioritized Integration for Complex Traits.

Table S13. GWAS top SNP results for caffeine intake from coffee at $\mathbf{P}<1.67 \times 10^{-8}$

| SNP | CHR | hg19 | EFAL | NEFAL | EF Freq | BETA | SE | $P$ value | Genomic Band | Nearest genes | eQTL genes | DEPICT genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs2472297 | 15 | 75027880 | C | T | 0.731859 | -0.06521 | 0.002587 | 3.10E-140 | q24.1 | CYP1A1 |  |  |
| rs4410790 | 7 | 17284577 | T | C | 0.364412 | -0.05171 | 0.002384 | $2.80 \mathrm{E}-104$ | p21.1 | AHR |  |  |
| rs1057868 | 7 | 75615006 | C | T | 0.714413 | -0.02445 | 0.002536 | $5.50 \mathrm{E}-22$ | q11.23 | POR |  |  |
| rs201399553 | 16 | 53829963 | T | TTC | 0.594033 | -0.02253 | 0.002377 | $2.60 \mathrm{E}-21$ | q12.2 | FTO |  |  |
| rs56113850 | 19 | 41353107 | T | C | 0.421821 | -0.02071 | 0.002323 | $4.90 \mathrm{E}-19$ | q13.2 | CYP2A6 |  |  |
| rs11127048 | 2 | 27752463 | G | A | 0.381191 | -0.01997 | 0.002398 | $8.10 \mathrm{E}-17$ | p23.3 | GCKR |  |  |
| rs66723169 | 18 | 57808978 | C | A | 0.769043 | -0.02249 | 0.002732 | $1.80 \mathrm{E}-16$ | q21.32 | MC4R |  |  |
| rs34060476 | 7 | 73037956 | A | G | 0.865581 | -0.02519 | 0.003365 | $7.10 \mathrm{E}-14$ | q11.23 | MLXIPL | MLXIPL |  |
| rs181251778 | 22 | 24901968 | A | G | 0.986146 | 0.072648 | 0.009834 | $1.50 \mathrm{E}-13$ | q11.23 | UPB1 |  |  |
| rs531431865 | 17 | 46165234 | C | CA | 0.678648 | -0.0171 | 0.002507 | $9.00 \mathrm{E}-12$ | q21.32 | CBX1 |  |  |
| rs7571970 | 2 | 646849 | T | C | 0.172823 | -0.02076 | 0.003047 | $9.40 \mathrm{E}-12$ | p25.3 | TMEM18 |  |  |
| rs1327259 | 6 | 51177811 | A | G | 0.614152 | 0.015707 | 0.002365 | $3.10 \mathrm{E}-11$ | p12.2 | PKHD1 |  |  |
| rs6063085 | 20 | 45840459 | A | C | 0.625251 | -0.01571 | 0.00237 | $3.40 \mathrm{E}-11$ | q13.12 | ZMYND8 |  |  |
| rs2726513 | 4 | 106217358 | G | T | 0.587077 | 0.015301 | 0.002347 | $7.00 \mathrm{E}-11$ | q24 | TET2 |  |  |
| rs4615895 | 1 | 96274668 | G | A | 0.259574 | -0.01705 | 0.002627 | $8.60 \mathrm{E}-11$ | p21.3 | TMEM56-RWDD3 |  |  |
| rs 139937261 | 17 | 17585130 | C | CG | 0.487688 | -0.01491 | 0.002304 | $9.80 \mathrm{E}-11$ | p11.2 | RAI1 |  |  |
| rs2298527 | 11 | 112851961 | G | C | 0.405568 | 0.014947 | 0.002336 | $1.60 \mathrm{E}-10$ | q23.2 | NCAM1 |  |  |
| rs35198275 | 3 | 50536092 | A | G | 0.865693 | 0.020797 | 0.003387 | $8.20 \mathrm{E}-10$ | p21.31 | CACNA2D2 |  |  |
| rs12514566 | 5 | 7391462 | G | A | 0.664625 | 0.014831 | 0.002428 | $1.00 \mathrm{E}-09$ | p15.31 | ADCY2 |  |  |
| rs6893807 | 5 | 87965021 | A | G | 0.843563 | -0.01916 | 0.003159 | $1.30 \mathrm{E}-09$ | q14.3 | MEF2C |  |  |
| rs2521501 | 15 | 91437388 | A | T | 0.677316 | 0.014916 | 0.002472 | $1.60 \mathrm{E}-09$ | q26.1 | FES, MAN2A2 | FES |  |
| rs768283768 | 1 | 150701510 | A | AC | 0.419823 | 0.014214 | 0.002434 | 5.20E-09 | q21.3 | HORMAD1, CTSS | CTSS, GOLPH3L, HORMAD1 |  |
| rs76881016 | 10 | 134196286 | A | G | 0.928496 | -0.02584 | 0.004453 | 6.60E-09 | q26.3 | LRRC27 |  |  |
| rs117810762 | 10 | 135315795 | G | A | 0.982047 | -0.05011 | 0.008765 | $1.10 \mathrm{E}-08$ | q26.3 | SPRN |  |  |

, 1 SNP Abberial SNP single standard error; eOTL, expression quantitative locus: DEPICT, Data-driven Expression-Prioritized Integration for Complex Traits.

## Table S14. GWAS top SNP results for caffeine intake from tea at $\mathbf{P}<1.67 \times 10^{-8}$

| SNP | CHR | hg19 | EFAL | NEFAL | EF Freq | BETA | SE | P value | Genomic Band | Nearest genes | eQTL genes | DEPICT genes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs2472297 | 15 | 75027880 | C | T | 0.732806 | -0.05411 | 0.002521 | 3.30E-102 | q24.1 | CYP1A1 |  | SIN3A |
| rs4410790 | 7 | 17284577 | T | C | 0.36537 | -0.04033 | 0.00232 | $1.10 \mathrm{E}-67$ | p21.1 | AHR |  |  |
| rs9624470 | 22 | 24820268 | G | A | 0.419254 | -0.02534 | 0.002272 | $6.80 \mathrm{E}-29$ | q11.23 | SPECC1L, SPECC1L-ADORA2A, ADORA2A | UPB1 |  |
| rs17685 | 7 | 75616105 | G | A | 0.721688 | -0.02391 | 0.002488 | $7.20 \mathrm{E}-22$ | q11.23 | POR,STYXL1 |  |  |
| rs2465018 | 6 | 51241140 | G | A | 0.769413 | -0.02211 | 0.002666 | $1.10 \mathrm{E}-16$ | p12.2 | PKHD1 |  |  |
| rs1481012 | 4 | 89039082 | A | G | 0.887297 | 0.026005 | 0.003536 | $1.90 \mathrm{E}-13$ | q22.1 | ABCG2 |  |  |
| rs56188862 | 1 | 174189269 | T | C | 0.614947 | 0.016829 | 0.002297 | $2.40 \mathrm{E}-13$ | q25.1 | RABGAP1L |  |  |
| rs73053413 | 12 | 11329548 | C | T | 0.836535 | 0.021681 | 0.003021 | $7.10 \mathrm{E}-13$ | p13.2 | PRR4, TAS2R14, TAS2R42 | PRR4, TAS2R15 |  |
| rs 140775622 | 20 | 62962869 | C | T | 0.830545 | -0.02262 | 0.003207 | $1.80 \mathrm{E}-12$ | q13.33 | PCMTD2 |  |  |
| rs4817505 | 21 | 34343828 | T | C | 0.607874 | -0.01512 | 0.002292 | $4.20 \mathrm{E}-11$ | q22.11 | OLIG2 |  | OLIG2 |
| rs 192084998 | 5 | 152077481 | G | A | 0.703764 | 0.015836 | 0.002458 | $1.20 \mathrm{E}-10$ | q33.1 | NMUR2 |  |  |
| rs10741694 | 11 | 16286183 | T | C | 0.372823 | -0.01474 | 0.002312 | $1.80 \mathrm{E}-10$ | p15.1 | SOX6 |  | SOX6 |
| rs132919 | 22 | 41809903 | G | C | 0.22639 | -0.01708 | 0.002697 | $2.40 \mathrm{E}-10$ | q13.2 | TEF |  | TEF, ZC3H7B, SREBF2 |
| rs12591786 | 15 | 60902512 | C | T | 0.842256 | 0.019576 | 0.003109 | $3.00 \mathrm{E}-10$ | q22.2 | RORA |  |  |
| rs11204711 | 1 | 150682115 | A | G | 0.616497 | -0.01444 | 0.002336 | $6.40 \mathrm{E}-10$ | q21.3 | HORMAD1 | GOLPH3L, HORMAD1 | SETDB1, RPRD2 |
| rs11022752 | 11 | 13307622 | A | G | 0.730907 | -0.01535 | 0.002525 | $1.20 \mathrm{E}-09$ | p15.2 | ARNTL |  |  |
| rs 141180025 | 7 | 39295736 | CT | C | 0.391273 | -0.01399 | 0.002335 | $2.10 \mathrm{E}-09$ | p14.1 | POU6F2 |  |  |
| rs2117137 | 3 | 89525505 | A | G | 0.594554 | -0.01349 | 0.002273 | $2.90 \mathrm{E}-09$ | p11.1 | EPHA3 |  |  |
| rs62534435 | 9 | 7042938 | C | G | 0.796528 | -0.01629 | 0.002776 | $4.40 \mathrm{E}-09$ | p24.1 | KDM4C |  |  |
| rs28429148 | 16 | 53798319 | G | A | 0.565413 | 0.013189 | 0.002288 | $8.20 \mathrm{E}-09$ | q12.2 | FTO |  |  |
| rs139797380 | 6 | 137244957 | C | G | 0.991607 | 0.075145 | 0.013059 | $8.70 \mathrm{E}-09$ | q23.3 | PEX7, SLC35D3 |  |  |
| rs 199602679 | 16 | 63031361 | G | GT | 0.783938 | -0.01603 | 0.0028 | $1.00 \mathrm{E}-08$ | q21 | CDH8 |  |  |
| rs 145755097 | 3 | 50254188 | C | CTTTGT | 0.852979 | -0.01849 | 0.003258 | $1.40 \mathrm{E}-08$ | p21.31 | GNAI2 |  | RBM5 |
| rs77476394 | 1 | 26757610 | CTAAA | C | 0.208732 | -0.01572 | 0.002785 | $1.60 \mathrm{E}-08$ | p36.11 | LIN28A, DHDDS |  |  |

基 tandard error; eQTL, expression quantitative locus; DEPICT, Data-driven Expression-Prioritized Integration for Complex Traits

Table S15. GWAS SNP results over all caffeine traits at $P<1.67 \times 10^{-8}$ based on the lowest $P$ value

|  |  |  |  |  |  |  |  |  |  |  |  |  | Combined Caffeine intake |  |  |  |  | Caffeine from coffee |  |  |  |  | Caffeine from tea |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNP | $\begin{gathered} \hline \mathbf{C H} \\ \mathbf{R} \\ \hline \end{gathered}$ | hg19 | EFAL | $\begin{gathered} \text { NEFA } \\ L \end{gathered}$ | $\begin{gathered} \text { EF } \\ \text { Freq } \end{gathered}$ | $\begin{gathered} \text { INF } \\ \mathbf{O} \end{gathered}$ | $\begin{gathered} \hline \text { BET } \\ \text { A } \\ \hline \end{gathered}$ | SE | $\begin{gathered} \hline \mathbf{P} \\ \text { value } \end{gathered}$ | $\begin{gathered} \text { Origi } \\ \mathbf{n} \end{gathered}$ | $\begin{gathered} \mathrm{LO} \\ \text { CUS } \end{gathered}$ | $\begin{aligned} & \hline \text { LOC } \\ & \text { USID } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { EF } \\ \text { Freq } \end{gathered}$ | $\begin{gathered} \text { INF } \\ \mathbf{O} \end{gathered}$ | $\begin{array}{\|c} \hline \text { BET } \\ \text { A } \\ \hline \end{array}$ | SE | $\begin{gathered} \mathbf{P} \\ \text { value } \end{gathered}$ | $\begin{gathered} \text { EF } \\ \text { Freq } \end{gathered}$ | $\begin{gathered} \text { INF } \\ \mathbf{O} \\ \hline \end{gathered}$ | $\begin{gathered} \text { BET } \\ \mathbf{A} \\ \hline \end{gathered}$ | SE | $\begin{gathered} \hline \mathbf{P} \\ \text { value } \end{gathered}$ | $\begin{gathered} \text { EF } \\ \text { Freq } \end{gathered}$ | $\begin{gathered} \text { INF } \\ \mathbf{O} \end{gathered}$ | $\begin{gathered} \text { BET } \\ \text { A } \\ \hline \end{gathered}$ | SE | $\begin{gathered} \mathbf{P} \\ \text { value } \end{gathered}$ |
| rs77476394 | 1 | 26757610 | $\begin{gathered} \text { CTAA } \\ \text { A } \\ \hline \end{gathered}$ | C | 0.209 | 0.970 | $0.016$ | 0.003 | $\begin{gathered} 1.60 \mathrm{E}- \\ 08 \end{gathered}$ | Tea | 1 | 1 | 0.209 | 0.970 | $0.005$ | 0.003 | $\begin{array}{r} 6.30 \\ \text { E-02 } \\ \hline \end{array}$ | 0.209 | 0.970 | 0.003 | 0.003 | $\begin{gathered} \hline 2.80 \mathrm{E} \\ -01 \\ \hline \end{gathered}$ | 0.209 | 0.970 | $0.016$ | 0.003 | $\begin{gathered} 1.60 \mathrm{E} \\ -08 \end{gathered}$ |
| rs1228024 | 11 | 47951353 | C | A | 0.340 | 0.986 | 0.014 | 0.002 | $\begin{gathered} 1.30 \mathrm{E}- \\ 08 \\ \hline \end{gathered}$ | Combi ned | 1 | 2 | 0.340 | 0.986 | 0.014 | 0.002 | $\begin{gathered} 1.30 \\ \mathrm{E}-08 \end{gathered}$ | 0.340 | 0.986 | 0.007 | 0.002 | $\begin{gathered} 2.60 \mathrm{E} \\ -03 \end{gathered}$ | 0.340 | 0.986 | 0.008 | 0.002 | $\begin{gathered} 1.00 \mathrm{E} \\ -03 \end{gathered}$ |
| rs 199602679 | 16 | 63031361 | G | GT | 0.784 | 0.936 | $0.016$ | 0.003 | $\begin{gathered} 1.00 \mathrm{E}- \\ 08 \end{gathered}$ | Tea | 1 | 3 | 0.784 | 0.936 | $0.008$ | 0.003 | $\begin{aligned} & \hline 3.80 \\ & \text { E-03 } \end{aligned}$ | 0.784 | 0.936 | 0.003 | 0.003 | $\begin{gathered} \hline 2.60 \mathrm{E} \\ -01 \end{gathered}$ | 0.784 | 0.936 | $0.016$ | 0.003 | $\begin{gathered} \hline 1.00 \mathrm{E} \\ -08 \\ \hline \end{gathered}$ |
| rs76881016 | 10 | 134196286 | A | G | 0.928 | 1.000 | $0.026$ | 0.004 | $\begin{gathered} \text { 6.60E- } \\ 09 \\ \hline \end{gathered}$ | Coffee | 1 | 4 | 0.928 | 1.000 | $0.017$ | 0.005 | $\begin{array}{r} 1.30 \\ \text { E-04 } \\ \hline \end{array}$ | 0.928 | 1.000 | $0.026$ | 0.004 | $\begin{gathered} \hline 6.60 \mathrm{E} \\ -09 \\ \hline \end{gathered}$ | 0.929 | 1.000 | 0.004 | 0.004 | $\begin{gathered} 3.70 \mathrm{E} \\ -01 \\ \hline \end{gathered}$ |
| rs 12785227 | 10 | 65262685 | A | G | 0.686 | 0.997 | 0.015 | 0.003 | $\begin{gathered} 6.50 \mathrm{E}- \\ 09 \\ \hline \end{gathered}$ | Combi ned | 1 | 5 | 0.686 | 0.997 | 0.015 | 0.003 | $\begin{gathered} \hline 6.50 \\ \mathrm{E}-09 \\ \hline \end{gathered}$ | 0.686 | 0.997 | 0.006 | 0.002 | $\begin{gathered} \hline 1.30 \mathrm{E} \\ -02 \\ \hline \end{gathered}$ | 0.685 | 0.997 | 0.010 | 0.002 | $\begin{gathered} 7.50 \mathrm{E} \\ -05 \\ \hline \end{gathered}$ |
| $\begin{gathered} \text { 20:35568001_ } \\ \text { AAAAG_A } \\ \hline \end{gathered}$ | 20 | 35568001 | $\begin{gathered} \text { AAAA } \\ \mathrm{G} \\ \hline \end{gathered}$ | A | 0.685 | 0.989 | 0.015 | 0.003 | $\begin{gathered} 5.20 \mathrm{E}- \\ 09 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \\ \hline \end{gathered}$ | 1 | 6 | 0.685 | 0.989 | 0.015 | 0.003 | $\begin{array}{r} 5.20 \\ \text { E-09 } \\ \hline \end{array}$ | 0.685 | 0.989 | 0.011 | 0.002 | $\begin{gathered} \hline 4.60 \mathrm{E} \\ \hline-06 \\ \hline \end{gathered}$ | 0.685 | 0.989 | 0.006 | 0.002 | $\begin{gathered} 1.90 \mathrm{E} \\ -02 \\ \hline \end{gathered}$ |
| rs62534435 | 9 | 7042938 | C | G | 0.797 | 0.997 | $0.016$ | 0.003 | $\begin{gathered} 4.40 \mathrm{E}- \\ 09 \\ \hline \end{gathered}$ | Tea | 1 | 7 | 0.797 | 0.997 | $0.010$ | 0.003 | $\begin{aligned} & \hline 6.80 \\ & \text { E-04 } \end{aligned}$ | 0.797 | 0.997 | 0.003 | 0.003 | $\begin{gathered} \hline 3.70 \mathrm{E} \\ -01 \end{gathered}$ | 0.797 | 0.997 | $0.016$ | 0.003 | $\begin{gathered} 4.40 \mathrm{E} \\ -09 \end{gathered}$ |
| rs754177720 | 6 | 98555544 | CA | C | 0.480 | 0.972 | $0.014$ | 0.002 | $\begin{gathered} 4.40 \mathrm{E}- \\ 09 \\ \hline \end{gathered}$ | Combi ned | 1 | 8 | 0.480 | 0.972 | $0.014$ | 0.002 | $\begin{array}{r} \hline 4.40 \\ \text { E-09 } \\ \hline \end{array}$ | 0.479 | 0.972 | $0.012$ | 0.002 | $\begin{gathered} \hline 4.20 \mathrm{E} \\ -07 \\ \hline \end{gathered}$ | 0.480 | 0.972 | $0.005$ | 0.002 | $\begin{gathered} 1.80 \mathrm{E} \\ -02 \\ \hline \end{gathered}$ |
| rs2117137 | 3 | 89525505 | A | G | 0.595 | 1.000 | $0.013$ | 0.002 | $\begin{gathered} 2.90 \mathrm{E}- \\ 09 \\ \hline \end{gathered}$ | Tea | 1 | 9 | 0.595 | 1.000 | $0.004$ | 0.002 | $\begin{aligned} & \hline 9.50 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$ | 0.595 | 1.000 | 0.005 | 0.002 | $\begin{gathered} 2.40 \mathrm{E} \\ -02 \\ \hline \end{gathered}$ | 0.595 | 1.000 | $0.013$ | 0.002 | $\begin{gathered} \hline 2.90 \mathrm{E} \\ -09 \\ \hline \end{gathered}$ |
| rs2667773 | 15 | 77872191 | A | G | 0.687 | 0.995 | 0.015 | 0.003 | $\begin{gathered} 2.50 \mathrm{E}- \\ 09 \end{gathered}$ | Combi ned | 1 | 10 | 0.687 | 0.995 | 0.015 | 0.003 | $\begin{aligned} & 2.50 \\ & \text { E-09 } \end{aligned}$ | 0.687 | 0.995 | 0.010 | 0.002 | $\begin{gathered} 3.40 \mathrm{E} \\ -05 \end{gathered}$ | 0.687 | 0.995 | 0.001 | 0.002 | $\begin{gathered} 6.40 \mathrm{E} \\ -01 \end{gathered}$ |
| rs141180025 | 7 | 39295736 | CT | C | 0.391 | 0.956 | $0.014$ | 0.002 | $\begin{gathered} 2.10 \mathrm{E}- \\ 09 \\ \hline \end{gathered}$ | Tea | 1 | 11 | 0.391 | 0.956 | $0.004$ | 0.002 | $\begin{array}{r} 8.70 \\ \mathrm{E}-02 \\ \hline \end{array}$ | 0.391 | 0.956 | 0.005 | 0.002 | $\begin{gathered} 2.40 \mathrm{E} \\ -02 \\ \hline \end{gathered}$ | 0.391 | 0.956 | $0.014$ | 0.002 | $\begin{gathered} 2.10 \mathrm{E} \\ -09 \\ \hline \end{gathered}$ |
| $\begin{gathered} \text { 6:108876096_- } \\ \text { CAAT_C } \end{gathered}$ | 6 | 108876096 | CAAT | C | 0.839 | 0.990 | 0.019 | 0.003 | $\begin{gathered} 2.00 \mathrm{E}- \\ 09 \\ \hline \end{gathered}$ | Combi ned | 1 | 12 | 0.839 | 0.990 | 0.019 | 0.003 | $\begin{aligned} & \hline 2.00 \\ & \text { E-09 } \\ & \hline \end{aligned}$ | 0.839 | 0.990 | 0.012 | 0.003 | $\begin{gathered} \hline 7.10 \mathrm{E} \\ -05 \\ \hline \end{gathered}$ | 0.839 | 0.990 | 0.009 | 0.003 | $\begin{gathered} 2.70 \mathrm{E} \\ -03 \\ \hline \end{gathered}$ |
| rs2521501 | 15 | 91437388 | A | T | 0.677 | 0.983 | 0.015 | 0.002 | $\begin{gathered} 1.60 \mathrm{E}- \\ 09 \\ \hline \end{gathered}$ | Coffee | 1 | 13 | 0.677 | 0.983 | 0.010 | 0.002 | $\begin{aligned} & 4.80 \\ & \mathrm{E}-05 \\ & \hline \end{aligned}$ | 0.677 | 0.983 | 0.015 | 0.002 | $\begin{gathered} \hline 1.60 \mathrm{E} \\ -09 \\ \hline \end{gathered}$ | 0.677 | 0.983 | $0.005$ | 0.002 | $\begin{gathered} 4.40 \mathrm{E} \\ -02 \end{gathered}$ |
| rs6893807 | 5 | 87965021 | A | G | 0.844 | 0.997 | $0.019$ | 0.003 | $\begin{gathered} 1.30 \mathrm{E}- \\ 09 \end{gathered}$ | Coffee | 1 | 14 | 0.844 | 0.997 | $0.012$ | 0.003 | $\begin{gathered} 1.90 \\ \text { E-04 } \end{gathered}$ | 0.844 | 0.997 | $0.019$ | 0.003 | $\begin{gathered} \hline 1.30 \mathrm{E} \\ -09 \\ \hline \end{gathered}$ | 0.844 | 0.997 | 0.007 | 0.003 | $\begin{gathered} 2.60 \mathrm{E} \\ -02 \end{gathered}$ |
| rs11022752 | 11 | 13307622 | A | G | 0.731 | 0.992 | $0.015$ | 0.003 | $\begin{gathered} 1.20 \mathrm{E}- \\ 09 \end{gathered}$ | Tea | 1 | 15 | 0.731 | 0.992 | $0.014$ | 0.003 | $\begin{aligned} & \hline 5.00 \\ & \text { E-08 } \\ & \hline \end{aligned}$ | 0.731 | 0.992 | $0.003$ | 0.003 | $\begin{gathered} \hline 2.30 \mathrm{E} \\ \hline-01 \\ \hline \end{gathered}$ | 0.731 | 0.992 | $0.015$ | 0.003 | $\begin{gathered} 1.20 \mathrm{E} \\ -09 \end{gathered}$ |
| rs78456557 | 3 | 123300686 | C | G | 0.900 | 0.987 | $0.024$ | 0.004 | $\begin{gathered} 1.20 \mathrm{E}- \\ 09 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \end{gathered}$ | 1 | 16 | 0.900 | 0.987 | $0.024$ | 0.004 | $\begin{array}{r} 1.20 \\ \text { E-09 } \\ \hline \end{array}$ | 0.900 | 0.987 | $0.016$ | 0.004 | $\begin{gathered} 4.40 \mathrm{E} \\ -05 \\ \hline \end{gathered}$ | 0.900 | 0.987 | $0.011$ | 0.004 | $\begin{gathered} 3.10 \mathrm{E} \\ -03 \\ \hline \end{gathered}$ |
| rs376877108 | 12 | 112020797 | GTT | G | 0.201 | 0.987 | 0.018 | 0.003 | $\begin{gathered} \hline 9.10 \mathrm{E}- \\ 10 \end{gathered}$ | Combi ned | 1 | 17 | 0.201 | 0.987 | 0.018 | 0.003 | $\begin{aligned} & \hline 9.10 \\ & \text { E-10 } \end{aligned}$ | 0.201 | 0.987 | 0.007 | 0.003 | $\begin{gathered} 9.80 \mathrm{E} \\ -03 \end{gathered}$ | 0.201 | 0.987 | 0.013 | 0.003 | $\begin{gathered} 3.00 \mathrm{E} \\ -06 \end{gathered}$ |
| rs35198275 | 3 | 50536092 | A | G | 0.866 | 0.982 | 0.021 | 0.003 | $\begin{gathered} 8.20 \mathrm{E}- \\ 10 \end{gathered}$ | Coffee | 1 | 20 | 0.866 | 0.982 | 0.019 | 0.003 | $\begin{aligned} & \hline 2.40 \\ & \text { E-08 } \end{aligned}$ | 0.866 | 0.982 | 0.021 | 0.003 | $\begin{gathered} 8.20 \mathrm{E} \\ -10 \end{gathered}$ | 0.866 | 0.982 | $\overline{-}$ | 0.003 | $\begin{gathered} \hline 3.70 \mathrm{E} \\ -03 \end{gathered}$ |
| rs145755097 | 3 | 50254188 | C | $\begin{gathered} \text { CTTT } \\ \text { GT } \end{gathered}$ | 0.853 | 0.935 | $0.018$ | 0.003 | $\begin{gathered} 1.40 \mathrm{E}- \\ 08 \end{gathered}$ | Tea | 0 | 20 | 0.853 | 0.935 | 0.000 | 0.003 | $\begin{aligned} & 8.90 \\ & \text { E-01 } \end{aligned}$ | 0.853 | 0.935 | 0.009 | 0.003 | $\begin{gathered} 7.20 \mathrm{E} \\ -03 \\ \hline \end{gathered}$ | 0.853 | 0.935 | $0.018$ | 0.003 | $\begin{gathered} 1.40 \mathrm{E} \\ -08 \\ \hline \end{gathered}$ |
| $\begin{gathered} 3: 50895869 \\ \text { ATAATAAT } \\ \text { AAT_A } \\ \hline \end{gathered}$ | 3 | 50895869 | $\begin{aligned} & \hline \text { ATAA } \\ & \text { TAAT } \\ & \text { AAT } \\ & \hline \end{aligned}$ | A | 0.915 | 0.735 | 0.028 | 0.005 | $\begin{gathered} 6.60 \mathrm{E}- \\ 09 \end{gathered}$ | Combi ned | 0 | 20 | 0.915 | 0.735 | 0.028 | 0.005 | $\begin{aligned} & 6.60 \\ & \text { E-09 } \end{aligned}$ | 0.915 | 0.735 | 0.022 | 0.005 | $\begin{gathered} 5.10 \mathrm{E} \\ -06 \end{gathered}$ | 0.915 | 0.735 | 0.002 | 0.005 | $\begin{gathered} 6.60 \mathrm{E} \\ -01 \end{gathered}$ |
| rs4418728 | 10 | 94839724 | G | T | 0.551 | 0.999 | 0.014 | 0.002 | $\begin{gathered} 7.00 \mathrm{E}- \\ 10 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \end{gathered}$ | 1 | 21 | 0.551 | 0.999 | 0.014 | 0.002 | $\begin{array}{r} 7.00 \\ \mathrm{E}-10 \\ \hline \end{array}$ | 0.551 | 0.999 | 0.006 | 0.002 | $\begin{gathered} \hline 1.10 \mathrm{E} \\ -02 \\ \hline \end{gathered}$ | 0.551 | 0.999 | 0.010 | 0.002 | $\begin{gathered} 2.90 \mathrm{E} \\ -06 \\ \hline \end{gathered}$ |
| rs215601 | 7 | 32333921 | A | C | 0.373 | 0.998 | 0.015 | 0.002 | $\begin{gathered} 6.00 \mathrm{E}- \\ 10 \end{gathered}$ | Combi ned | 1 | 22 | 0.373 | 0.998 | 0.015 | 0.002 | $\begin{aligned} & \hline 6.00 \\ & \text { E-10 } \\ & \hline \end{aligned}$ | 0.373 | 0.998 | 0.009 | 0.002 | $\begin{gathered} 8.50 \mathrm{E} \\ -05 \end{gathered}$ | 0.373 | 0.998 | 0.007 | 0.002 | $\begin{gathered} 1.20 \mathrm{E} \\ -03 \\ \hline \end{gathered}$ |
| rs12591786 | 15 | 60902512 | C | T | 0.842 | 0.967 | 0.020 | 0.003 | $\begin{gathered} 3.00 \mathrm{E}- \\ 10 \end{gathered}$ | Tea | 1 | 24 | 0.842 | 0.967 | 0.020 | 0.003 | $\begin{aligned} & 3.90 \\ & \text { E-10 } \end{aligned}$ | 0.842 | 0.967 | 0.006 | 0.003 | $\begin{gathered} \hline 7.40 \mathrm{E} \\ -02 \end{gathered}$ | 0.842 | 0.967 | 0.020 | 0.003 | $\begin{gathered} \hline 3.00 \mathrm{E} \\ -10 \end{gathered}$ |
| $\begin{gathered} 16: 18776851_{-} \\ \text {G_GA } \\ \hline \end{gathered}$ | 16 | 18776851 | G | GA | 0.651 | 0.797 | 0.017 | 0.003 | $\begin{gathered} 1.90 \mathrm{E}- \\ 10 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \\ \hline \end{gathered}$ | 1 | 25 | 0.651 | 0.797 | 0.017 | 0.003 | $\begin{array}{r} 1.90 \\ \mathrm{E}-10 \\ \hline \end{array}$ | 0.652 | 0.797 | 0.011 | 0.003 | $\begin{gathered} \hline 4.50 \mathrm{E} \\ -05 \\ \hline \end{gathered}$ | 0.651 | 0.797 | 0.008 | 0.003 | $\begin{gathered} 2.20 \mathrm{E} \\ -03 \\ \hline \end{gathered}$ |
| rs10741694 | 11 | 16286183 | T | C | 0.373 | 0.994 | $0.015$ | 0.002 | $\begin{aligned} & 1.80 \mathrm{E}- \\ & 10 \end{aligned}$ | Tea | 1 | 26 | 0.373 | 0.994 | $\stackrel{-}{0.008}$ | 0.002 | $\begin{aligned} & 4.60 \\ & \text { E-04 } \end{aligned}$ | 0.373 | 0.994 | 0.002 | 0.002 | $\begin{gathered} 3.60 \mathrm{E} \\ -01 \end{gathered}$ | 0.373 | 0.994 | $0.015$ | 0.002 | $\begin{gathered} 1.80 \mathrm{E} \\ -10 \end{gathered}$ |


|  |  |  |  |  |  |  |  |  |  |  |  |  | Combined Caffeine intake |  |  |  |  | Caffeine from coffee |  |  |  |  | Caffeine from tea |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNP | $\begin{gathered} \mathbf{C H} \\ \mathbf{R} \\ \hline \end{gathered}$ | hg19 | EFAL | $\begin{gathered} \text { NEFA } \\ \mathbf{L} \\ \hline \end{gathered}$ | $\begin{gathered} \text { EF } \\ \text { Freq } \end{gathered}$ | $\begin{gathered} \text { INF } \\ \mathbf{O} \\ \hline \end{gathered}$ | $\begin{gathered} \text { BET } \\ \text { A } \\ \hline \end{gathered}$ | SE | $\begin{gathered} \mathbf{P} \\ \text { value } \end{gathered}$ | $\begin{aligned} & \text { Origi } \\ & \mathbf{n} \end{aligned}$ | $\begin{gathered} \mathrm{LO} \\ \text { CUS } \\ \hline \end{gathered}$ | $\begin{array}{\|l\|} \hline \text { LOC } \\ \text { USID } \\ \hline \end{array}$ | $\begin{gathered} \text { EF } \\ \text { Freq } \end{gathered}$ | $\begin{gathered} \text { INF } \\ \mathbf{O} \\ \hline \end{gathered}$ | $\begin{gathered} \text { BET } \\ \text { A } \\ \hline \end{gathered}$ | SE | $\begin{gathered} \mathbf{P} \\ \text { value } \end{gathered}$ | $\begin{gathered} \text { EF } \\ \text { Freq } \end{gathered}$ | $\begin{gathered} \text { INF } \\ \mathbf{O} \end{gathered}$ | $\begin{gathered} \text { BET } \\ \text { A } \end{gathered}$ | SE | $\begin{gathered} \mathbf{P} \\ \text { value } \end{gathered}$ | $\begin{gathered} \text { EF } \\ \text { Freq } \end{gathered}$ | $\begin{gathered} \text { INF } \\ \mathbf{O} \end{gathered}$ | $\begin{gathered} \text { BET } \\ \text { A } \\ \hline \end{gathered}$ | SE | $\begin{gathered} \mathbf{P} \\ \text { value } \end{gathered}$ |
| rs2298527 | 11 | 112851961 | G | C | 0.406 | 0.996 | 0.015 | 0.002 | $\begin{gathered} 1.60 \mathrm{E}- \\ 10 \end{gathered}$ | Coffee | 1 | 28 | 0.406 | 0.996 | 0.014 | 0.002 | $\begin{aligned} & \hline 2.40 \\ & \text { E-09 } \end{aligned}$ | 0.406 | 0.996 | 0.015 | 0.002 | $\begin{gathered} 1.60 \mathrm{E} \\ -10 \end{gathered}$ | 0.405 | 0.996 | $0.002$ | 0.002 | $\begin{array}{\|c\|} \hline 4.10 \mathrm{E} \\ \hline-01 \\ \hline \end{array}$ |
| rs7105462 | 11 | 112912048 | G | A | 0.406 | 0.993 | 0.014 | 0.002 | $\begin{gathered} 2.10 \mathrm{E}- \\ 09 \end{gathered}$ | Combi ned | 0 | 28 | 0.406 | 0.993 | 0.014 | 0.002 | $\begin{aligned} & \hline 2.10 \\ & \text { E-09 } \end{aligned}$ | 0.406 | 0.993 | 0.015 | 0.002 | $\begin{gathered} 1.90 \mathrm{E} \\ -10 \end{gathered}$ | 0.405 | 0.993 | $0.002$ | 0.002 | $\begin{gathered} 4.30 \mathrm{E} \\ -01 \end{gathered}$ |
| rs192084998 | 5 | 152077481 | G | A | 0.704 | 0.989 | 0.016 | 0.002 | $\begin{gathered} 1.20 \mathrm{E}- \\ 10 \\ \hline \end{gathered}$ | Tea | 1 | 29 | 0.704 | 0.989 | 0.009 | 0.003 | $\begin{aligned} & 4.40 \\ & \text { E-04 } \end{aligned}$ | 0.704 | 0.989 | $0.002$ | 0.003 | $\begin{gathered} 5.30 \mathrm{E} \\ -01 \\ \hline \end{gathered}$ | 0.704 | 0.989 | 0.016 | 0.002 | $\begin{array}{\|c\|} \hline 1.20 \mathrm{E} \\ \hline-10 \\ \hline \end{array}$ |
| rs115454798 | 3 | 142092190 | A | G | 0.872 | 0.990 | $0.023$ | 0.003 | $\begin{gathered} 1.10 \mathrm{E}- \\ 10 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \end{gathered}$ | 1 | 30 | 0.872 | 0.990 | $0.023$ | 0.003 | $\begin{array}{\|c} \hline 1.10 \\ \text { E-10 } \\ \hline \end{array}$ | 0.872 | 0.990 | $0.013$ | 0.003 | $\begin{gathered} 1.60 \mathrm{E} \\ -04 \end{gathered}$ | 0.872 | 0.990 | $0.010$ | 0.003 | $\begin{array}{\|c\|} \hline 4.30 \mathrm{E} \\ \hline 03 \\ \hline \end{array}$ |
| rs139937261 | 17 | 17585130 | C | CG | 0.488 | 0.988 | $0.015$ | 0.002 | $\begin{gathered} 9.80 \mathrm{E}- \\ 11 \\ \hline \end{gathered}$ | Coffee | 1 | 31 | 0.488 | 0.988 | $0.009$ | 0.002 | $\begin{aligned} & 1.00 \\ & \text { E-04 } \end{aligned}$ | 0.488 | 0.988 | $0.015$ | 0.002 | $\begin{gathered} 9.80 \mathrm{E} \\ -11 \end{gathered}$ | 0.488 | 0.988 | 0.006 | 0.002 | $\begin{array}{\|c\|} \hline 7.60 \mathrm{E} \\ -03 \\ \hline \end{array}$ |
| rs4615895 | 1 | 96274668 | G | A | 0.260 | 0.991 | $0.017$ | 0.003 | $\begin{gathered} 8.60 \mathrm{E}- \\ 11 \\ \hline \end{gathered}$ | Coffee | 1 | 32 | 0.260 | 0.991 | $0.009$ | 0.003 | $\begin{array}{\|l\|} \hline 8.10 \\ \text { E-04 } \\ \hline \end{array}$ | 0.260 | 0.991 | $0.017$ | 0.003 | $\begin{gathered} 8.60 \mathrm{E} \\ -11 \end{gathered}$ | 0.260 | 0.991 | 0.005 | 0.003 | $\begin{gathered} \hline 5.00 \mathrm{E} \\ -02 \\ \hline \end{gathered}$ |
| rs4817505 | 21 | 34343828 | T | C | 0.608 | 0.993 | $0.015$ | 0.002 | $\begin{gathered} 4.20 \mathrm{E}- \\ 11 \end{gathered}$ | Tea | 1 | 33 | 0.608 | 0.993 | $0.003$ | 0.002 | $\begin{aligned} & 1.80 \\ & \text { E-01 } \end{aligned}$ | 0.608 | 0.993 | 0.008 | 0.002 | $\begin{gathered} 3.20 \mathrm{E} \\ -04 \end{gathered}$ | 0.608 | 0.993 | $0.015$ | 0.002 | $\begin{array}{\|c\|} \hline 4.20 \mathrm{E} \\ -11 \end{array}$ |
| rs6063085 | 20 | 45840459 | A | C | 0.625 | 1.000 | $0.016$ | 0.002 | $\begin{gathered} 3.40 \mathrm{E}- \\ 11 \\ \hline \end{gathered}$ | Coffee | 1 | 34 | 0.625 | 1.000 | $0.007$ | 0.002 | $\begin{array}{\|c\|} \hline 3.20 \\ \mathrm{E}-03 \\ \hline \end{array}$ | 0.625 | 1.000 | $0.016$ | 0.002 | $\begin{gathered} 3.40 \mathrm{E} \\ -11 \\ \hline \end{gathered}$ | 0.625 | 1.000 | 0.008 | 0.002 | $\begin{array}{\|c} \hline 8.40 \mathrm{E} \\ -04 \\ \hline \end{array}$ |
| rs4240624 | 8 | 9184231 | G | A | 0.092 | 0.999 | 0.027 | 0.004 | $\begin{gathered} 1.90 \mathrm{E}- \\ 11 \end{gathered}$ | Combi ned | 1 | 35 | 0.092 | 0.999 | 0.027 | 0.004 | $\begin{aligned} & 1.90 \\ & \text { E-11 } \end{aligned}$ | 0.092 | 0.999 | 0.016 | 0.004 | $\begin{gathered} 6.40 \mathrm{E} \\ -05 \end{gathered}$ | 0.092 | 0.999 | 0.013 | 0.004 | $\begin{gathered} 5.90 \mathrm{E} \\ \hline-04 \end{gathered}$ |
| rs61141867 | 19 | 47556375 | T | TG | 0.254 | 0.955 | $0.018$ | 0.003 | $\begin{gathered} 1.40 \mathrm{E}- \\ 11 \end{gathered}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \end{gathered}$ | 1 | 36 | 0.254 | 0.955 | $0.018$ | 0.003 | $\begin{gathered} 1.40 \\ \text { E-11 } \end{gathered}$ | 0.253 | 0.955 | $0.011$ | 0.003 | $\begin{gathered} 4.20 \mathrm{E} \\ -05 \\ \hline \end{gathered}$ | 0.254 | 0.955 | $0.008$ | 0.003 | $\begin{gathered} 1.70 \mathrm{E} \\ -03 \\ \hline \end{gathered}$ |
| rs7571970 | 2 | 646849 | T | C | 0.173 | 0.990 | $0.021$ | 0.003 | $\begin{gathered} 9.40 \mathrm{E}- \\ 12 \\ \hline \end{gathered}$ | Coffee | 1 | 37 | 0.173 | 0.990 | $0.017$ | 0.003 | $\begin{aligned} & \hline 4.10 \\ & \text { E-08 } \\ & \hline \end{aligned}$ | 0.173 | 0.990 | $0.021$ | 0.003 | $\begin{gathered} \hline 9.40 \mathrm{E} \\ -12 \\ \hline \end{gathered}$ | 0.174 | 0.990 | 0.007 | 0.003 | $\begin{array}{\|c} \hline 2.00 \mathrm{E} \\ -02 \\ \hline \end{array}$ |
| rs1490384 | 6 | 126851160 | C | T | 0.501 | 1.000 | $0.016$ | 0.002 | $\begin{gathered} 8.30 \mathrm{E}- \\ 12 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \end{gathered}$ | 1 | 38 | 0.501 | 1.000 | $0.016$ | 0.002 | $\begin{array}{\|l\|} \hline 8.30 \\ \mathrm{E}-12 \\ \hline \end{array}$ | 0.502 | 1.000 | $0.009$ | 0.002 | $\begin{gathered} \hline 2.10 \mathrm{E} \\ -04 \\ \hline \end{gathered}$ | 0.502 | 1.000 | $0.008$ | 0.002 | $\begin{gathered} \hline 2.20 \mathrm{E} \\ -04 \end{gathered}$ |
| rs12514566 | 5 | 7391462 | G | A | 0.665 | 0.998 | 0.017 | 0.002 | $\begin{gathered} 2.20 \mathrm{E}- \\ 12 \end{gathered}$ | Combi ned | 1 | 40 | 0.665 | 0.998 | 0.017 | 0.002 | $\begin{aligned} & 2.20 \\ & \text { E-12 } \end{aligned}$ | 0.665 | 0.998 | 0.015 | 0.002 | $\begin{gathered} 1.00 \mathrm{E} \\ -09 \\ \hline \end{gathered}$ | 0.664 | 0.998 | 0.004 | 0.002 | $\begin{gathered} 7.60 \mathrm{E} \\ -02 \end{gathered}$ |
| rs73053413 | 12 | 11329548 | C | T | 0.837 | 0.997 | 0.022 | 0.003 | $\begin{gathered} 7.10 \mathrm{E}- \\ 13 \\ \hline \end{gathered}$ | Tea | 1 | 41 | 0.836 | 0.997 | 0.005 | 0.003 | $\begin{aligned} & \hline 9.10 \\ & \text { E-02 } \\ & \hline \end{aligned}$ | 0.836 | 0.997 | $0.015$ | 0.003 | $\begin{gathered} \hline 1.20 \mathrm{E} \\ -06 \\ \hline \end{gathered}$ | 0.837 | 0.997 | 0.022 | 0.003 | $\begin{array}{\|c\|} \hline 7.10 \mathrm{E} \\ -13 \\ \hline \end{array}$ |
| rs6265 | 11 | 27679916 | C | T | 0.811 | 1.000 | 0.022 | 0.003 | $\begin{gathered} 3.40 \mathrm{E}- \\ 13 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \end{gathered}$ | 1 | 42 | 0.811 | 1.000 | 0.022 | 0.003 | $\begin{array}{r} \hline 3.40 \\ \text { E- } 13 \\ \hline \end{array}$ | 0.811 | 1.000 | 0.015 | 0.003 | $\begin{gathered} \hline 5.60 \mathrm{E} \\ -07 \\ \hline \end{gathered}$ | 0.811 | 1.000 | 0.012 | 0.003 | $\begin{array}{\|c} \hline 3.20 \mathrm{E} \\ -05 \\ \hline \end{array}$ |
| rs531431865 | 17 | 46165234 | C | CA | 0.679 | 0.959 | $0.019$ | 0.003 | $\begin{gathered} 2.70 \mathrm{E}- \\ 13 \end{gathered}$ | Combi ned | 1 | 44 | 0.679 | 0.959 | $0.019$ | 0.003 | $\begin{aligned} & 2.70 \\ & \text { E-13 } \end{aligned}$ | 0.679 | 0.959 | $0.017$ | 0.003 | $\begin{gathered} 9.00 \mathrm{E} \\ \hline-12 \end{gathered}$ | 0.679 | 0.959 | $0.003$ | 0.002 | $\begin{array}{\|c\|} \hline 2.70 \mathrm{E} \\ \hline-01 \end{array}$ |
| rs56188862 | 1 | 174189269 | T | C | 0.615 | 0.998 | 0.017 | 0.002 | $\begin{gathered} 2.40 \mathrm{E}- \\ 13 \end{gathered}$ | Tea | 1 | 46 | 0.615 | 0.998 | 0.015 | 0.002 | $\begin{aligned} & 5.10 \\ & \text { E-10 } \end{aligned}$ | 0.615 | 0.998 | 0.001 | 0.002 | $\begin{gathered} 7.80 \mathrm{E} \\ -01 \end{gathered}$ | 0.615 | 0.998 | 0.017 | 0.002 | $\begin{array}{\|c\|} \hline 2.40 \mathrm{E} \\ -13 \\ \hline \end{array}$ |
| $\begin{gathered} 1: 174856749 \_ \\ \text {TG_T } \end{gathered}$ | 1 | 174856749 | TG | T | 0.539 | 0.980 | 0.016 | 0.002 | $\begin{gathered} 9.70 \mathrm{E}- \\ 12 \end{gathered}$ | Combi ned | 0 | 46 | 0.539 | 0.980 | 0.016 | 0.002 | $\begin{aligned} & \hline 9.70 \\ & \text { E-12 } \\ & \hline \end{aligned}$ | 0.538 | 0.980 | 0.003 | 0.002 | $\begin{gathered} \hline 2.50 \mathrm{E} \\ -01 \\ \hline \end{gathered}$ | 0.539 | 0.980 | 0.015 | 0.002 | $\begin{array}{\|c\|} \hline 5.90 \mathrm{E} \\ -11 \end{array}$ |
| rs117810762 | 10 | 135315795 | G | A | 0.982 | 0.987 | $0.068$ | 0.009 | $\begin{gathered} 1.30 \mathrm{E}- \\ 14 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \end{gathered}$ | 1 | 48 | 0.982 | 0.987 | $0.068$ | 0.009 | $\begin{gathered} 1.30 \\ \text { E-14 } \\ \hline \end{gathered}$ | 0.982 | 0.987 | $0.050$ | 0.009 | $\begin{gathered} \hline 1.10 \mathrm{E} \\ -08 \\ \hline \end{gathered}$ | 0.982 | 0.987 | $0.025$ | 0.009 | $\begin{gathered} \hline 3.10 \mathrm{E} \\ \hline 03 \\ \hline \end{gathered}$ |
| rs62332762 | 4 | 106143492 | C | T | 0.598 | 0.998 | 0.018 | 0.002 | $\begin{gathered} 1.20 \mathrm{E}- \\ 14 \end{gathered}$ | Combi ned | 1 | 50 | 0.598 | 0.998 | 0.018 | 0.002 | $\begin{aligned} & 1.20 \\ & \text { E-14 } \end{aligned}$ | 0.598 | 0.998 | 0.015 | 0.002 | $\begin{gathered} 1.20 \mathrm{E} \\ -10 \end{gathered}$ | 0.598 | 0.998 | 0.005 | 0.002 | $\begin{gathered} \hline 3.80 \mathrm{E} \\ -02 \\ \hline \end{gathered}$ |
| rs2726513 | 4 | 106217358 | G | T | 0.587 | 0.984 | 0.015 | 0.002 | $\begin{gathered} \hline 7.00 \mathrm{E}- \\ 11 \end{gathered}$ | Coffee | 0 | 50 | 0.587 | 0.984 | 0.018 | 0.002 | $\begin{aligned} & 2.60 \\ & \text { E-14 } \end{aligned}$ | 0.587 | 0.984 | 0.015 | 0.002 | $\begin{gathered} \hline 7.00 \mathrm{E} \\ -11 \end{gathered}$ | 0.587 | 0.984 | 0.004 | 0.002 | $\begin{gathered} 1.00 \mathrm{E} \\ -01 \end{gathered}$ |
| rs139797380 | 6 | 137244957 | C | G | 0.992 | 0.867 | 0.107 | 0.014 | $\begin{gathered} 3.70 \mathrm{E}- \\ 15 \end{gathered}$ | Combi ned | 1 | 52 | 0.992 | 0.867 | 0.107 | 0.014 | $\begin{aligned} & 3.70 \\ & \text { E-15 } \end{aligned}$ | 0.992 | 0.867 | 0.056 | 0.013 | $\begin{gathered} 2.60 \mathrm{E} \\ \hline-05 \end{gathered}$ | 0.992 | 0.867 | 0.075 | 0.013 | $\begin{gathered} 8.70 \mathrm{E} \\ -09 \\ \hline \end{gathered}$ |
| rs9611527 | 22 | 41644428 | G | A | 0.664 | 0.994 | 0.020 | 0.002 | $\begin{gathered} 1.00 \mathrm{E}- \\ 15 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \end{gathered}$ | 1 | 54 | 0.664 | 0.994 | 0.020 | 0.002 | $\begin{array}{\|c} \hline 1.00 \\ \mathrm{E}-15 \end{array}$ | 0.664 | 0.994 | 0.009 | 0.002 | $\begin{gathered} 1.70 \mathrm{E} \\ \hline-04 \end{gathered}$ | 0.664 | 0.994 | 0.015 | 0.002 | $\begin{gathered} 3.60 \mathrm{E} \\ -10 \end{gathered}$ |
| rs132919 | 22 | 41809903 | G | C | 0.226 | 0.980 | $0.017$ | 0.003 | $\begin{gathered} 2.40 \mathrm{E}- \\ 10 \\ \hline \end{gathered}$ | Tea | 0 | 54 | 0.226 | 0.980 | $0.019$ | 0.003 | $\begin{aligned} & 3.90 \\ & \text { E-12 } \\ & \hline \end{aligned}$ | 0.226 | 0.980 | $0.006$ | 0.003 | $\begin{gathered} \hline 4.60 \mathrm{E} \\ -02 \\ \hline \end{gathered}$ | 0.226 | 0.980 | $0.017$ | 0.003 | $\begin{array}{\|c} \hline 2.40 \mathrm{E} \\ -10 \\ \hline \end{array}$ |
| rs66723169 | 18 | 57808978 | C | A | 0.769 | 0.992 | $0.022$ | 0.003 | $\begin{gathered} 1.80 \mathrm{E}- \\ 16 \end{gathered}$ | Coffee | 1 | 56 | 0.769 | 0.992 | $0.019$ | 0.003 | $\begin{aligned} & \hline 3.90 \\ & \text { E-12 } \end{aligned}$ | 0.769 | 0.992 | $0.022$ | 0.003 | $\begin{gathered} 1.80 \mathrm{E} \\ -16 \end{gathered}$ | 0.769 | 0.992 | 0.002 | 0.003 | $\begin{array}{\|c\|} \hline 3.60 \mathrm{E} \\ -01 \end{array}$ |
| rs489693 | 18 | 57882787 | C | A | 0.675 | 1.000 | $0.018$ | 0.002 | $\begin{gathered} 1.30 \mathrm{E}- \\ 12 \end{gathered}$ | Combi ned | 0 | 56 | 0.675 | 1.000 | $0.018$ | 0.002 | $\begin{aligned} & \hline 1.30 \\ & \text { E-12 } \\ & \hline \end{aligned}$ | 0.674 | 1.000 | $0.016$ | 0.002 | $\begin{gathered} 4.30 \mathrm{E} \\ -11 \end{gathered}$ | 0.674 | 1.000 | $0.003$ | 0.002 | $\begin{array}{\|c\|} \hline 2.10 \mathrm{E} \\ \hline-01 \end{array}$ |
| rs2465018 | 6 | 51241140 | G | A | 0.769 | 0.987 | $0.022$ | 0.003 | $\begin{gathered} 1.10 \mathrm{E}- \\ 16 \\ \hline \end{gathered}$ | Tea | 1 | 58 | 0.770 | 0.987 | $0.001$ | 0.003 | $\begin{array}{\|l\|l\|} \hline 6.00 \\ \mathrm{E}-01 \\ \hline \end{array}$ | 0.770 | 0.987 | 0.016 | 0.003 | $\begin{gathered} 2.20 \mathrm{E} \\ -09 \\ \hline \end{gathered}$ | 0.769 | 0.987 | $0.022$ | 0.003 | $\begin{array}{\|c\|} \hline 1.10 \mathrm{E} \\ -16 \\ \hline \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


|  |  |  |  |  |  |  |  |  |  |  |  |  | Combined Caffeine intake |  |  |  |  | Caffeine from coffee |  |  |  |  | Caffeine from tea |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNP | $\begin{gathered} \mathrm{CH} \\ \mathrm{R} \\ \hline \end{gathered}$ | hg19 | EFAL | $\begin{gathered} \text { NEFA } \\ \mathrm{L} \\ \hline \end{gathered}$ | $\begin{gathered} \text { EF } \\ \text { Freq } \\ \hline \end{gathered}$ | $\begin{gathered} \text { INF } \\ \mathbf{O} \\ \hline \end{gathered}$ | $\begin{gathered} \text { BET } \\ \mathbf{A} \\ \hline \end{gathered}$ | SE | $\begin{gathered} \mathbf{P} \\ \text { value } \end{gathered}$ | $\begin{array}{\|c} \hline \text { Origi } \\ \text { n } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { LO } \\ \text { CUS } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { LOC } \\ \text { USID } \\ \hline \end{array}$ | $\begin{gathered} \text { EF } \\ \text { Freq } \end{gathered}$ | $\begin{gathered} \text { INF } \\ \mathbf{O} \\ \hline \end{gathered}$ | $\begin{gathered} \text { BET } \\ \mathbf{A} \\ \hline \end{gathered}$ | SE | $\begin{gathered} \mathbf{P} \\ \text { value } \end{gathered}$ | $\begin{gathered} \text { EF } \\ \text { Freq } \\ \hline \end{gathered}$ | $\begin{gathered} \text { INF } \\ \mathbf{O} \\ \hline \end{gathered}$ | $\begin{gathered} \text { BET } \\ \text { A } \\ \hline \end{gathered}$ | SE | $\begin{array}{\|c\|} \hline \mathbf{P} \\ \text { value } \\ \hline \end{array}$ | $\begin{gathered} \text { EF } \\ \text { Freq } \end{gathered}$ | $\begin{gathered} \text { INF } \\ \mathbf{O} \\ \hline \end{gathered}$ | $\begin{gathered} \text { BET } \\ \mathbf{A} \\ \hline \end{gathered}$ | SE | $\begin{array}{\|c\|} \hline \mathbf{P} \\ \text { value } \end{array}$ |
| rs1327259 | 6 | 51177811 | A | G | 0.614 | 0.992 | 0.016 | 0.002 | $\begin{array}{\|c} \hline 3.10 \mathrm{E}- \\ 11 \\ \hline \end{array}$ | Coffee | 0 | 58 | 0.614 | 0.992 | 0.004 | 0.002 | $\begin{array}{\|c\|} \hline 1.10 \\ \mathrm{E}-01 \\ \hline \end{array}$ | 0.614 | 0.992 | 0.016 | 0.002 | $\begin{array}{\|c} \hline 3.10 \mathrm{E} \\ -11 \\ \hline \end{array}$ | 0.614 | 0.992 | $0.013$ | 0.002 | $\begin{gathered} 5.50 \mathrm{E} \\ -08 \\ \hline \end{gathered}$ |
| rs201399553 | 16 | 53829963 | T | TTC | 0.594 | 0.965 | $0.023$ | 0.002 | $\begin{array}{\|c\|} \hline 2.60 \mathrm{E}- \\ 21 \\ \hline \end{array}$ | Coffee | 1 | 60 | 0.594 | 0.965 | $0.011$ | 0.002 | $\begin{aligned} & \hline 9.00 \\ & \text { E-06 } \\ & \hline \end{aligned}$ | 0.594 | 0.965 | $0.023$ | 0.002 | $\begin{array}{\|c\|} \hline 2.60 \mathrm{E} \\ \hline-21 \\ \hline \end{array}$ | 0.594 | 0.965 | 0.011 | 0.002 | $\begin{array}{\|c\|} \hline 4.30 \mathrm{E} \\ \hline-06 \\ \hline \end{array}$ |
| rs28429148 | 16 | 53798319 | G | A | 0.565 | 0.970 | 0.013 | 0.002 | $\begin{gathered} 8.20 \mathrm{E}- \\ 09 \end{gathered}$ | Tea | 0 | 60 | 0.565 | 0.970 | $0.008$ | 0.002 | $\begin{array}{r} 1.20 \\ \text { E-03 } \\ \hline \end{array}$ | 0.565 | 0.970 | $0.021$ | 0.002 | $\begin{gathered} 8.50 \mathrm{E} \\ -19 \\ \hline \end{gathered}$ | 0.565 | 0.970 | 0.013 | 0.002 | $\begin{gathered} 8.20 \mathrm{E} \\ -09 \end{gathered}$ |
| rs6062679 | 20 | 62889991 | T | C | 0.535 | 0.973 | $0.023$ | 0.002 | $\begin{gathered} \hline 4.50 \mathrm{E}- \\ 22 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \end{gathered}$ | 1 | 62 | 0.535 | 0.973 | $0.023$ | 0.002 | $\begin{aligned} & 4.50 \\ & \text { E- } 22 \\ & \hline \end{aligned}$ | 0.535 | 0.973 | $0.013$ | 0.002 | $\begin{gathered} 2.00 \mathrm{E} \\ -08 \\ \hline \end{gathered}$ | 0.535 | 0.973 | $0.014$ | 0.002 | $\begin{array}{\|c} \hline 2.60 \mathrm{E} \\ -10 \\ \hline \end{array}$ |
| rs140775622 | 20 | 62962869 | C | T | 0.831 | 0.859 | $0.023$ | 0.003 | $\begin{array}{\|c} \hline 1.80 \mathrm{E}- \\ 12 \\ \hline \end{array}$ | Tea | 0 | 62 | 0.830 | 0.859 | $0.025$ | 0.003 | $\begin{gathered} 1.20 \\ \text { E-13 } \end{gathered}$ | 0.830 | 0.859 | 0.012 | 0.003 | $\begin{gathered} \hline 4.70 \mathrm{E} \\ -04 \end{gathered}$ | 0.831 | 0.859 | $0.023$ | 0.003 | $\begin{gathered} 1.80 \mathrm{E} \\ -12 \end{gathered}$ |
| rs1260326 | 2 | 27730940 | T | C | 0.392 | 1.000 | $0.023$ | 0.002 | $\begin{gathered} 4.20 \mathrm{E}- \\ 22 \end{gathered}$ | Combi ned | 1 | 64 | 0.392 | 1.000 | $0.023$ | 0.002 | $\begin{aligned} & 4.20 \\ & \text { E- } 22 \\ & \hline \end{aligned}$ | 0.392 | 1.000 | $0.020$ | 0.002 | $\begin{gathered} \hline 1.00 \mathrm{E} \\ -16 \\ \hline \end{gathered}$ | 0.392 | 1.000 | $0.006$ | 0.002 | $\begin{gathered} 1.30 \mathrm{E} \\ -02 \\ \hline \end{gathered}$ |
| rs11127048 | 2 | 27752463 | G | A | 0.381 | 0.968 | $0.020$ | 0.002 | $\begin{array}{\|c} \hline 8.10 \mathrm{E}- \\ 17 \\ \hline \end{array}$ | Coffee | 0 | 64 | 0.381 | 0.968 | $0.023$ | 0.002 | $\begin{aligned} & 1.20 \\ & \text { E-20 } \\ & \hline \end{aligned}$ | 0.381 | 0.968 | $0.020$ | 0.002 | $\begin{array}{\|c\|} \hline 8.10 \mathrm{E} \\ -17 \\ \hline \end{array}$ | 0.382 | 0.968 | $0.005$ | 0.002 | $\begin{gathered} 5.00 \mathrm{E} \\ -02 \\ \hline \end{gathered}$ |
| rs768283768 | 1 | 150701510 | A | AC | 0.420 | 0.913 | 0.025 | 0.002 | $\begin{gathered} 1.20 \mathrm{E}- \\ 23 \\ \hline \end{gathered}$ | Combi ned | 1 | 67 | 0.420 | 0.913 | 0.025 | 0.002 | $\begin{aligned} & 1.20 \\ & \text { E- } 23 \\ & \hline \end{aligned}$ | 0.420 | 0.913 | 0.014 | 0.002 | $\begin{gathered} \hline 5.20 \mathrm{E} \\ -09 \\ \hline \end{gathered}$ | 0.420 | 0.913 | 0.014 | 0.002 | $\begin{gathered} \hline 2.80 \mathrm{E} \\ -09 \\ \hline \end{gathered}$ |
| rs11204711 | 1 | 150682115 | A | G | 0.616 | 0.964 | $0.014$ | 0.002 | $\begin{array}{\|c} \hline 6.40 \mathrm{E}- \\ 10 \\ \hline \end{array}$ | Tea | 0 | 67 | 0.617 | 0.964 | $0.023$ | 0.002 | $\begin{aligned} & \hline 9.00 \\ & \text { E-21 } \\ & \hline \end{aligned}$ | 0.616 | 0.964 | $0.012$ | 0.002 | $\begin{gathered} 2.30 \mathrm{E} \\ \hline-07 \\ \hline \end{gathered}$ | 0.616 | 0.964 | $0.014$ | 0.002 | $\begin{array}{\|c\|} \hline 6.40 \mathrm{E} \\ -10 \\ \hline \end{array}$ |
| $\begin{gathered} \hline \text { 7:73042302_ } \\ \text { GCTTT_G } \\ \hline \end{gathered}$ | 7 | 73042302 | $\begin{gathered} \text { GCTT } \\ \mathrm{T} \\ \hline \end{gathered}$ | G | 0.866 | 0.994 | $0.036$ | 0.003 | $\begin{array}{\|c} \hline 6.60 \mathrm{E}- \\ 26 \\ \hline \end{array}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \end{gathered}$ | 1 | 69 | 0.866 | 0.994 | $0.036$ | 0.003 | $\begin{array}{r} 6.60 \\ \text { E- } 26 \\ \hline \end{array}$ | 0.866 | 0.994 | $0.025$ | 0.003 | $\begin{array}{\|c} \hline 8.70 \mathrm{E} \\ \hline-14 \\ \hline \end{array}$ | 0.867 | 0.994 | $0.011$ | 0.003 | $\begin{gathered} 1.20 \mathrm{E} \\ -03 \\ \hline \end{gathered}$ |
| rs34060476 | 7 | 73037956 | A | G | 0.866 | 0.995 | $0.025$ | 0.003 | $\begin{array}{\|c} \hline 7.10 \mathrm{E}- \\ 14 \\ \hline \end{array}$ | Coffee | 0 | 69 | 0.866 | 0.995 | $0.035$ | 0.003 | $\begin{aligned} & 2.90 \\ & \text { E- } 25 \end{aligned}$ | 0.866 | 0.995 | $0.025$ | 0.003 | $\begin{gathered} 7.10 \mathrm{E} \\ -14 \end{gathered}$ | 0.866 | 0.995 | $0.010$ | 0.003 | $\begin{gathered} 2.30 \mathrm{E} \\ -03 \\ \hline \end{gathered}$ |
| rs2231142 | 4 | 89052323 | G | T | 0.887 | 1.000 | 0.039 | 0.004 | $\begin{array}{\|c} \hline 1.10 \mathrm{E}- \\ 26 \\ \hline \end{array}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \end{gathered}$ | 1 | 71 | 0.887 | 1.000 | 0.039 | 0.004 | $\begin{aligned} & 1.10 \\ & \text { E- } 26 \\ & \hline \end{aligned}$ | 0.887 | 1.000 | 0.019 | 0.004 | $\begin{gathered} 1.10 \mathrm{E} \\ \hline-07 \\ \hline \end{gathered}$ | 0.886 | 1.000 | 0.026 | 0.004 | $\begin{array}{\|c\|} \hline 2.40 \mathrm{E} \\ \hline \end{array}$ |
| rs1481012 | 4 | 89039082 | A | G | 0.887 | 0.994 | 0.026 | 0.004 | $\begin{array}{\|c} \hline 1.90 \mathrm{E}- \\ 13 \\ \hline \end{array}$ | Tea | 0 | 71 | 0.888 | 0.994 | 0.039 | 0.004 | $\begin{array}{r} 2.70 \\ \text { E- } 26 \\ \hline \end{array}$ | 0.888 | 0.994 | 0.019 | 0.004 | $\begin{gathered} \hline 2.00 \mathrm{E} \\ -07 \\ \hline \end{gathered}$ | 0.887 | 0.994 | 0.026 | 0.004 | $\begin{array}{\|c\|} \hline 1.90 \mathrm{E} \\ -13 \\ \hline \end{array}$ |
| rs9624470 | 22 | 24820268 | G | A | 0.419 | 0.989 | $0.025$ | 0.002 | $\begin{gathered} 6.80 \mathrm{E}- \\ 29 \end{gathered}$ | Tea | 1 | 74 | 0.419 | 0.989 | 0.019 | 0.002 | $\begin{aligned} & \hline 3.40 \\ & \text { E-16 } \end{aligned}$ | 0.419 | 0.989 | 0.003 | 0.002 | $\begin{gathered} 2.20 \mathrm{E} \\ -01 \end{gathered}$ | 0.419 | 0.989 | $0.025$ | 0.002 | $\begin{gathered} 6.80 \mathrm{E} \\ -29 \\ \hline \end{gathered}$ |
| rs199612805 | 22 | 24843991 | T | $\begin{aligned} & \hline \text { TGAA } \\ & \text { ACCA } \\ & \hline \end{aligned}$ | 0.986 | 0.984 | 0.096 | 0.010 | $\begin{array}{\|c} \hline 3.10 \mathrm{E}- \\ 21 \\ \hline \end{array}$ | $\begin{array}{\|c} \hline \begin{array}{c} \text { Combi } \\ \text { ned } \end{array} \\ \hline \end{array}$ | 0 | 74 | 0.986 | 0.984 | 0.096 | 0.010 | $\begin{aligned} & 3.10 \\ & \text { E-21 } \\ & \hline \end{aligned}$ | 0.986 | 0.984 | 0.073 | 0.010 | $\begin{array}{\|c} \hline 2.40 \mathrm{E} \\ -13 \\ \hline \end{array}$ | 0.986 | 0.984 | 0.035 | 0.010 | $\begin{gathered} 3.10 \mathrm{E} \\ -04 \\ \hline \end{gathered}$ |
| rs181251778 | 22 | 24901968 | A | G | 0.986 | 0.992 | 0.073 | 0.010 | $\begin{array}{\|c\|} \hline 1.50 \mathrm{E}- \\ 13 \\ \hline \end{array}$ | Coffee | 0 | 74 | 0.986 | 0.992 | 0.093 | 0.010 | $\begin{aligned} & \hline 7.00 \\ & \text { E-21 } \end{aligned}$ | 0.986 | 0.992 | 0.073 | 0.010 | $\begin{gathered} \hline 1.50 \mathrm{E} \\ -13 \\ \hline \end{gathered}$ | 0.986 | 0.992 | 0.034 | 0.010 | $\begin{gathered} \hline 3.30 \mathrm{E} \\ -04 \end{gathered}$ |
| rs56113850 | 19 | 41353107 | T | C | 0.422 | 0.994 | $0.026$ | 0.002 | $\begin{gathered} 1.90 \mathrm{E}- \\ 29 \\ \hline \end{gathered}$ | Combi ned | 1 | 76 | 0.422 | 0.994 | $0.026$ | 0.002 | $\begin{array}{r} \mathrm{L}-21 \\ \hline 1.90 \\ \text { E- } 29 \\ \hline \end{array}$ | 0.422 | 0.994 | $0.021$ | 0.002 | $\begin{array}{\|c\|} \hline 4.90 \mathrm{E} \\ \hline-19 \\ \hline \end{array}$ | 0.422 | 0.994 | $0.008$ | 0.002 | $\begin{gathered} 3.50 \mathrm{E} \\ -04 \\ \hline \end{gathered}$ |
| rs17685 | 7 | 75616105 | G | A | 0.721 | 1.000 | $0.041$ | 0.003 | $\begin{gathered} 3.80 \mathrm{E}- \\ 56 \\ \hline \end{gathered}$ | Combi ned | 1 | 79 | 0.721 | 1.000 | $0.041$ | 0.003 | $\begin{aligned} & 3.80 \\ & \hline \text { E-56 } \end{aligned}$ | 0.721 | 1.000 | $0.024$ | 0.003 | $\begin{gathered} 9.20 \mathrm{E} \\ -22 \\ \hline \end{gathered}$ | 0.722 | 1.000 | $0.024$ | 0.002 | $\begin{gathered} \hline 7.20 \mathrm{E} \\ -22 \end{gathered}$ |
| rs1057868 | 7 | 75615006 | C | T | 0.714 | 1.000 | $0.024$ | 0.003 | $\begin{array}{\|c} \hline 5.50 \mathrm{E}- \\ 22 \\ \hline \end{array}$ | Coffee | 0 | 79 | 0.714 | 1.000 | $0.040$ | 0.003 | $\begin{aligned} & \hline 9.00 \\ & \text { E-56 } \end{aligned}$ | 0.714 | 1.000 | $0.024$ | 0.003 | $\begin{gathered} 5.50 \mathrm{E} \\ \hline-22 \\ \hline \end{gathered}$ | 0.715 | 1.000 | $0.023$ | 0.002 | $\begin{array}{\|c\|} \hline 2.70 \mathrm{E} \\ -21 \\ \hline \end{array}$ |
| rs4410790 | 7 | 17284577 | T | C | 0.364 | 1.000 | $0.081$ | 0.002 | $\begin{aligned} & 1.50 \mathrm{E}- \\ & 249 \end{aligned}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \end{gathered}$ | 1 | 82 | 0.364 | 1.000 | $\stackrel{-}{0.081}$ | 0.002 | $\begin{gathered} 1.50 \\ \text { E- } \\ 249 \\ \hline \end{gathered}$ | 0.364 | 1.000 | $0.052$ | 0.002 | $\begin{gathered} 2.80 \mathrm{E} \\ -104 \end{gathered}$ | 0.365 | 1.000 | $0.040$ | 0.002 | $\begin{gathered} 1.10 \mathrm{E} \\ -67 \end{gathered}$ |
| rs2472297 | 15 | 75027880 | C | T | 0.732 | 1.000 | $0.105$ | 0.003 | $\begin{gathered} \hline 2.4 \mathrm{E}- \\ 351 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Combi } \\ \text { ned } \end{gathered}$ | 1 | 85 | 0.732 | 1.000 | $0.105$ | 0.003 | $\begin{array}{\|c\|} \hline 2.4 \mathrm{E}- \\ 351 \\ \hline \end{array}$ | 0.732 | 1.000 | $0.065$ | 0.003 | $\begin{gathered} \hline 3.10 \mathrm{E} \\ -140 \end{gathered}$ | 0.733 | 1.000 | $0.054$ | 0.003 | $\begin{array}{\|l\|} \hline 3.30 \mathrm{E} \\ -102 \\ \hline \end{array}$ |

Sentinel SNSs at each locus over alt traits combined based on lowest P value are indicated by a in ine LOCUS column. Non-sentine SNPs are indicated by a 0 in the LOCUS
Abbreviations: SNP, single nucleotide polymorphism; CHR, chromosome; EFAL, effect allele; NEFAL, non-effect allele; EF Freq, effect allele frequency; SE, standard error

Table S16. Previously reported SNPs associated with caffeine intake or coffee consumption

| Study | Author | Year | PMID | Population | SNPs | Chr | hg19 | EFAL/ NEFA L | Beta (SE) | $\mathbf{P}$ value | Comment | $\begin{gathered} \hline \text { Within 1MB } \\ \text { of sentinel } \\ \text { SNP } \end{gathered}$ | Sentinel SNP | Sentinel SNP GWAS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Non-additive genome-wide association scan reveals a new gene associated with habitual coffee consumption. | Pirastu | 2016 | $\underline{27561104}$ | Italian | rs2216084 | 6 | 107553312 | T/C | $\begin{gathered} \hline 0.082 \\ (0.014) \end{gathered}$ | $9.25 \mathrm{E}-09$ | Only significant in discovery stage | No |  |  |
|  |  |  |  |  | rs6942255 | 6 | 107555018 | A/G | $\begin{gathered} 0.082 \\ (0.014) \\ \hline \end{gathered}$ | $9.79 \mathrm{E}-09$ | Only significant in discovery stage | No |  |  |
|  |  |  |  |  | rs7745311 | 6 | 107565060 | C/T | $\begin{gathered} \hline 0.082 \\ (0.014) \\ \hline \end{gathered}$ | $1.23 \mathrm{E}-08$ | Only significant in discovery stage | No |  |  |
|  |  |  |  |  | rs7754744 | 6 | 107551281 | G/A | $\begin{gathered} 0.082 \\ (0.014) \\ \hline \end{gathered}$ | 8.80E-09 | Only significant in discovery stage | No |  |  |
|  |  |  |  |  | rs9386630 | 6 | 107562914 | G/T | $\begin{gathered} 0.082 \\ (0.014) \\ \hline \end{gathered}$ | $1.07 \mathrm{E}-08$ | Only significant in discovery stage | No |  |  |
| Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. | Coffee and Caffeine Genetics Consortium | 2015 | $\underline{25288136}$ | European/Af rican | rs6968554 | 7 | 17287106 | A/G | $\begin{aligned} & -0.07 \\ & (0.01) \end{aligned}$ | $2.78 \mathrm{E}-10$ | Significant in stage <br> 2 | $\begin{gathered} \text { Yes, not } \\ \text { sentinel SNP } \end{gathered}$ | rs4410790 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs2470893 | 15 | 75019449 | T/C | 0.09 (0.01) | $9.92 \mathrm{E}-11$ | Significant in stage 2 | Yes, not sentinel SNP | rs2472297 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs2472297 | 15 | 75027880 | T/C | 0.11 (0.01) | 3.26E-16 | Significant in stage 2 | Yes, sentinel SNP | rs2472297 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs4410790 | 7 | 17284577 | T/C | $\begin{gathered} -0.14 \\ (0.01) \end{gathered}$ | $1.48 \mathrm{E}-57$ | Significant in stage <br> 1 | Yes, sentinel SNP | rs4410790 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs7800944 | 7 | 73035857 | T/C | $\begin{aligned} & \hline-0.05 \\ & (0.01) \\ & \hline \end{aligned}$ | 7.82E-09 | $\begin{gathered} \hline \text { Significant in stage } \\ 1 \end{gathered}$ | $\begin{gathered} \text { Yes, not } \\ \text { sentinel SNP } \\ \hline \end{gathered}$ | $\begin{gathered} \text { 7:73042302_- } \\ \text { GCTTT_G } \end{gathered}$ | Caffeine combined, Caffeine from Coffee |
|  |  |  |  |  | rs 17685 | 7 | 75616105 | A/G | 0.07 (0.01) | $9.06 \mathrm{E}-14$ | Significant in stage 1 | Yes, sentinel SNP | rs17685 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
| Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM | Amin | 2012 | $\underline{21876539}$ | Northern European | rs2470893 | 15 | 75019449 | T/C | $\begin{aligned} & \hline 0.0675 \\ & (0.010) \end{aligned}$ | $2.39 \mathrm{E}-08$ | Meta-analysis results | $\begin{gathered} \text { Yes, not } \\ \text { sentinel SNP } \end{gathered}$ | rs2472297 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs2472297 | 15 | 75027880 | T/C | $\begin{gathered} 0.076 \\ (0.011) \end{gathered}$ | $2.70 \mathrm{E}-11$ | Meta-analysis results | Yes, sentinel SNP | rs2472297 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs6495122 | 15 | 75125645 | C/A | $\begin{gathered} -0.05 \\ (0.008) \end{gathered}$ | 7.10E-09 | Meta-analysis results | $\begin{gathered} \text { Yes, not } \\ \text { sentinel SNP } \end{gathered}$ | rs2472297 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs382140 | 7 | 107782200 | A/G | $\begin{gathered} 0.079 \\ (0.014) \\ \hline \end{gathered}$ | 3.90E-09 | $\begin{aligned} & \text { Meta-analysis } \\ & \text { results } \end{aligned}$ | No |  |  |
| Sequence variants at CYP1A1CYP1A2 and AHR associate with coffee consumption | Sulem | 2011 | 21357676 | European | rs2472297 | 15 | 75027880 | T/C | NA | 5.40E-14 | No effect size reported in combined analysis | Yes, sentinel SNP | rs2472297 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs6968865 | 7 | 17287269 | T/A | NA | 2.30E-11 | $\qquad$ | $\begin{gathered} \text { Yes, not } \\ \text { sentinel SNP } \end{gathered}$ | rs4410790 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
| A genome-wide association study in the Japanese population identifies the 12q24 locus for habitual coffee consumption: The J-MICC Study. | NakagawaSenda | 2018 | 29367735 | Japanese | rs2074356 | 12 | 112645401 | A/G | $\begin{gathered} 0.1920 \\ (0.0234) \end{gathered}$ | 2.20E-16 | NA | $\begin{gathered} \text { Yes, not } \\ \text { sentinel SNP } \end{gathered}$ | rs376877108 | Caffeine combined |


| Study | Author | Year | PMID | Population | SNPs | Chr | hg19 | $\begin{gathered} \hline \text { EFAL/ } \\ \text { NEFA } \\ \mathbf{L} \end{gathered}$ | Beta (SE) | $\mathbf{P}$ value | Comment | $\begin{gathered} \hline \text { Within 1MB } \\ \text { of sentinel } \\ \text { SNP } \\ \hline \end{gathered}$ | $\begin{aligned} & \hline \text { Sentinel } \\ & \text { SNP } \end{aligned}$ | Sentinel SNP GWAS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. | Cornelis | 2011 | $\underline{21490707}$ | European descent in the US | rs4410790 | 7 | 17284577 | T/C | $\begin{gathered} -0.15 \\ (0.02) \end{gathered}$ | 2.40E-19 | NA | Yes, sentinel SNP | rs4410790 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs2470893 | 15 | 75019449 | T/C | 0.12 (0.02) | 5.20E-14 | NA | $\begin{gathered} \hline \text { Yes, not } \\ \text { sentinel SNP } \end{gathered}$ | rs2472297 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
| Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior | Cornelis | 2016 | $\underline{27702941}$ | European ancestry | rs4410790 | 7 | 17284577 | T/C | NA | $1.80 \mathrm{E}-13$ | Significant for caffeine | $\begin{gathered} \text { Yes, sentinel } \\ \text { SNP } \end{gathered}$ | rs4410790 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs6968554 | 7 | 17287106 | A/G | NA | $5.40 \mathrm{E}-13$ | Significant for caffeine | $\begin{gathered} \hline \text { Yes, not } \\ \text { sentinel SNP } \end{gathered}$ | rs4410790 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs 10275488 | 7 | 17303778 | T/C | NA | 4.80E-09 | Significant for caffeine | $\begin{gathered} \text { Yes, not } \\ \text { sentinel SNP } \end{gathered}$ | rs4410790 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs12909047 | 15 | 74782356 | A/G | NA | $1.30 \mathrm{E}-11$ | Significant for caffeine | $\begin{gathered} \text { Yes, not } \\ \text { sentinel SNP } \end{gathered}$ | rs2472297 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs35107470 | 15 | 74817689 | A/G | NA | $2.40 \mathrm{E}-16$ | Significant for caffeine | Yes, not sentinel SNP | rs2472297 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs62005807 | 15 | 74890981 | C/G | NA | 3.20E-09 | Significant for caffeine | $\begin{gathered} \text { Yes, not } \\ \text { sentinel SNP } \end{gathered}$ | rs2472297 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs2470893 | 15 | 75019449 | T/C | NA | 5.30E-18 | Significant for caffeine | $\begin{gathered} \text { Yes, not } \\ \text { sentinel SNP } \end{gathered}$ | rs2472297 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |
|  |  |  |  |  | rs2472297 | 15 | 75027880 | T/C | NA | $1.00 \mathrm{E}-20$ | Significant for caffeine | Yes, sentinel SNP | rs2472297 | Caffeine combined, Caffeine from Coffee, Caffeine from Tea |

Table S17. Cups of different coffee type relating to one unit change in genetically determined caffeine intake from coffee

| Type of coffee usually drunk | $\mathbf{N}$ | Median caffeine intake (IQR) | Beta | SE | $\mathbf{9 5 \%}$ confidence interval | P value |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Decaffeinated coffee | 58,060 | $6(3-12)$ | 1.47 | 0.10 | $1.26-1.67$ | $<0.001$ |
| Instant coffee | 167,923 | $180(60-240)$ | 2.10 | 0.06 | $1.97-2.22$ | $<0.001$ |
| Ground coffee | 61,859 | $170(85-255)$ | 1.73 | 0.08 | $1.57-1.90$ | $<0.001$ |

Linear regression estimates adjusted for genotyping chip, age at inclusion, sex, and the first 30 principal components

Table S18. DEPICT tissue and cell type enrichment results for caffeine intake SNPs

|  |  |  |  | Combined Caffeine intake |  | Caffeine from Coffee |  | Caffeine from Tea |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MeSH term | Name | MeSH first level term | MeSH second level term | $\begin{gathered} \text { Nominal P } \\ \text { value } \end{gathered}$ | False discovery rate | Nominal $P$ value | False discovery rate | $\begin{gathered} \text { Nominal P } \\ \text { value } \end{gathered}$ | False discovery rate |
| A08.186.211.132 | Brain Stem | Nervous System | Central Nervous System | $2.78 \mathrm{E}-03$ | $<0.05$ | $8.96 \mathrm{E}-03$ | $>=0.20$ | $9.64 \mathrm{E}-04$ | $<0.01$ |
| A08.186.211.132.810.428.200 | Cerebellum | Nervous System | Central Nervous System | $4.60 \mathrm{E}-04$ | $<0.05$ | $6.13 \mathrm{E}-03$ | $>=0.20$ | $3.65 \mathrm{E}-04$ | $<0.01$ |
| A08.186.211.865.428 | Metencephalon | Nervous System | Central Nervous System | $7.06 \mathrm{E}-04$ | $<0.05$ | $5.21 \mathrm{E}-03$ | $>=0.20$ | $3.87 \mathrm{E}-04$ | $<0.01$ |
| A09.371.729 | Retina | Sense Organs | Eye | $3.40 \mathrm{E}-03$ | $<0.05$ | $4.12 \mathrm{E}-03$ | $>=0.20$ | $5.80 \mathrm{E}-04$ | $<0.01$ |
| A08.186.211.865 | Rhombencephalon | Nervous System | Central Nervous System | $7.06 \mathrm{E}-04$ | $<0.05$ | $5.21 \mathrm{E}-03$ | $>=0.20$ | $3.87 \mathrm{E}-04$ | $<0.01$ |
| A08.186.211 | Brain | Nervous System | Central Nervous System | 0.04 | $>=0.20$ | $6.83 \mathrm{E}-03$ | $>=0.20$ | $8.76 \mathrm{E}-04$ | $<0.01$ |
| A08.186 | Central Nervous System | Nervous System | Central Nervous System | 0.04 | $>=0.20$ | $6.53 \mathrm{E}-03$ | $>=0.20$ | $8.67 \mathrm{E}-04$ | $<0.01$ |
| A08.186.211.464.405 | Hippocampus | Nervous System | Central Nervous System | $8.37 \mathrm{E}-03$ | $<0.20$ | $2.96 \mathrm{E}-03$ | $>=0.20$ | $1.28 \mathrm{E}-03$ | $<0.05$ |
| A08.186.211.464 | Limbic System | Nervous System | Central Nervous System | 0.02 | $>=0.20$ | $3.22 \mathrm{E}-03$ | $>=0.20$ | $2.40 \mathrm{E}-03$ | $<0.05$ |
| $\begin{aligned} & \text { A08.186.211.730.885.287.500.57 } \\ & \text { 1.735 } \end{aligned}$ | Visual Cortex | Nervous System | Central Nervous System | 0.01 | $<0.20$ | 0.01 | $>=0.20$ | $8.99 \mathrm{E}-03$ | $<0.20$ |
| A08.186.211.730.885.287.500 | Cerebral Cortex | Nervous System | Central Nervous System | 0.02 | > $=0.20$ | $4.25 \mathrm{E}-03$ | $>=0.20$ | 3.26E-03 | $<0.20$ |
| A08.186.211.730.885.287 | Cerebrum | Nervous System | Central Nervous System | 0.02 | $>=0.20$ | $6.24 \mathrm{E}-03$ | $>=0.20$ | $3.78 \mathrm{E}-03$ | $<0.20$ |
| A08.186.211.464.710.225 | Entorhinal Cortex | Nervous System | Central Nervous System | 0.03 | $>=0.20$ | $4.03 \mathrm{E}-03$ | $>=0.20$ | $3.14 \mathrm{E}-03$ | $<0.20$ |
| A10.272.497 | Epidermis | Tissues | Epithelium | 0.27 | $>=0.20$ | 0.84 | $>=0.20$ | 0.01 | $<0.20$ |
| A11.872.653 | Neural Stem Cells | Cells | Stem Cells | 0.22 | $>=0.20$ | 0.18 | $>=0.20$ | $3.63 \mathrm{E}-03$ | $<0.20$ |
| A08.186.211.730.885.287.500.57 1 | Occipital Lobe | Nervous System | Central Nervous System | 0.01 | $>=0.20$ | 0.01 | $>=0.20$ | $7.79 \mathrm{E}-03$ | $<0.20$ |
| A08.186.211.464.710 | Parahippocampal Gyrus | Nervous System | Central Nervous System | 0.03 | $>=0.20$ | $4.03 \mathrm{E}-03$ | $>=0.20$ | $3.14 \mathrm{E}-03$ | $<0.20$ |
| A08.186.211.730 | Prosencephalon | Nervous System | Central Nervous System | 0.03 | $>=0.20$ | $8.28 \mathrm{E}-03$ | $>=0.20$ | $6.68 \mathrm{E}-03$ | $<0.20$ |
| A08.186.211.730.885 | Telencephalon | Nervous System | Central Nervous System | 0.02 | $>=0.20$ | $6.47 \mathrm{E}-03$ | $>=0.20$ | 3.80E-03 | $<0.20$ |
| A08.186.211.730.885.287.500.86 3 | Temporal Lobe | Nervous System | Central Nervous System | 0.04 | $>=0.20$ | $5.27 \mathrm{E}-03$ | $>=0.20$ | $4.01 \mathrm{E}-03$ | $<0.20$ |
| A06.407.071 | Adrenal Glands | Endocrine System | Endocrine Glands | $2.35 \mathrm{E}-03$ | $<0.05$ | 0.16 | $>=0.20$ | 0.35 | $>=0.20$ |
| A06.407.071.140 | Adrenal Cortex | Endocrine System | Endocrine Glands | $4.35 \mathrm{E}-03$ | $<0.20$ | 0.25 | $>=0.20$ | 0.4 | $>=0.20$ |
| A10.165.114.830.500 | Abdominal Fat | Tissues | Connective Tissue | 0.68 | $>=0.20$ | 0.56 | $>=0.20$ | 0.26 | $>=0.20$ |
| A11.329.114 | Adipocytes | Cells | Connective Tissue Cells | 0.45 | $>=0.20$ | 0.81 | $>=0.20$ | 0.66 | $>=0.20$ |
| A10.165.114 | Adipose Tissue | Tissues | Connective Tissue | 0.61 | $>=0.20$ | 0.59 | $>=0.20$ | 0.28 | $>=0.20$ |
| A10.165.114.830 | Adipose Tissue White | Tissues | Connective Tissue | 0.6 | $>=0.20$ | 0.55 | $>=0.20$ | 0.23 | $>=0.20$ |
| A05.360.319.114 | Adnexa Uteri | Urogenital System | Genitalia | 0.14 | $>=0.20$ | 0.37 | $>=0.20$ | 0.24 | $>=0.20$ |
| A11.872.040 | Adult Stem Cells | Cells | Stem Cells | 0.44 | $>=0.20$ | 0.88 | $>=0.20$ | 0.62 | $>=0.20$ |
| A09.371.060 | Anterior Eye Segment | Sense Organs | Eye | 0.78 | $>=0.20$ | 0.98 | $>=0.20$ | 0.36 | $>=0.20$ |
| A11.063 | Antibody Producing Cells | Cells | Antibody-Producing Cells | 0.79 | $>=0.20$ | 0.08 | $>=0.20$ | 0.98 | $>=0.20$ |
| A11.066 | Antigen Presenting Cells | Cells | Antigen-Presenting Cells | 0.99 | $>=0.20$ | 0.43 | $>=0.20$ | 0.64 | $>=0.20$ |


|  |  |  |  | Combined Caffeine intake |  | Caffeine from Coffee |  | Caffeine from Tea |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MeSH term | Name | MeSH first level term | MeSH second level term | $\begin{gathered} \text { Nominal P } \\ \text { value } \end{gathered}$ | False discovery rate | $\begin{gathered} \text { Nominal P } \\ \text { value } \end{gathered}$ | False discovery rate | $\begin{gathered} \hline \text { Nominal } \mathbf{P} \\ \text { value } \end{gathered}$ | False discovery rate |
| A07.541.510.110 | Aortic Valve | Cardiovascular System | Heart | 0.14 | $>=0.20$ | 0.35 | $>=0.20$ | 0.11 | $>=0.20$ |
| A07.231.114 | Arteries | Cardiovascular System | Blood Vessels | 0.86 | $>=0.20$ | 0.99 | $>=0.20$ | 0.53 | $>=0.20$ |
| A07.541.358.100 | Atrial Appendage | Cardiovascular System | Heart | 0.3 | $>=0.20$ | 0.13 | $>=0.20$ | 0.58 | $>=0.20$ |
| A11.118.637.555.567.562 | B Lymphocytes | Cells | Blood Cells | 0.79 | $>=0.20$ | 0.08 | $>=0.20$ | 0.98 | $>=0.20$ |
| A08.186.211.730.885.287.249 | Basal Ganglia | Nervous System | Central Nervous System | 0.13 | $>=0.20$ | 0.35 | $>=0.20$ | 0.1 | $>=0.20$ |
| A15.145 | Blood | Hemic and Immune Systems | Blood | 0.92 | $>=0.20$ | 0.08 | $>=0.20$ | 0.93 | $>=0.20$ |
| A15.145.229 | Blood Cells | Hemic and Immune Systems | Blood | 0.97 | $>=0.20$ | 0.08 | $>=0.20$ | 0.94 | $>=0.20$ |
| A15.145.229.188 | Blood Platelets | Hemic and Immune Systems | Blood | 0.86 | $>=0.20$ | 0.13 | $>=0.20$ | 1 | $>=0.20$ |
| A07.231 | Blood Vessels | Cardiovascular System | Blood Vessels | 0.95 | $>=0.20$ | 0.98 | $>=0.20$ | 0.87 | $>=0.20$ |
| A02.835.232 | Bone and Bones | Musculoskeletal System | Skeleton | 0.98 | $>=0.20$ | 0.21 | $>=0.20$ | 0.95 | $>=0.20$ |
| A15.382.216 | Bone Marrow | Hemic and Immune Systems | Immune System | 0.97 | $>=0.20$ | 0.18 | $>=0.20$ | 0.95 | $>=0.20$ |
| A15.378.316 | Bone Marrow Cells | Hemic and Immune Systems | Hematopoietic System | 1 | $>=0.20$ | 0.48 | $>=0.20$ | 0.93 | $>=0.20$ |
| A02.835.232.043 | Bones of Lower Extremity | Musculoskeletal System | Skeleton | 0.76 | $>=0.20$ | 0.97 | $>=0.20$ | 0.41 | $>=0.20$ |
| A02.165 | Cartilage | Musculoskeletal System | Cartilage | 0.2 | $>=0.20$ | 0.73 | $>=0.20$ | 0.62 | $>=0.20$ |
| A15.145.229.637.555.567.569.20 0 | CD4 Positive T Lymphocytes | Hemic and Immune Systems | Blood | 0.29 | $>=0.20$ | 0.11 | $>=0.20$ | 0.41 | $>=0.20$ |
| A03.556.249.249.209 | Cecum | Digestive System | Gastrointestinal Tract | 0.31 | $>=0.20$ | 0.57 | $>=0.20$ | 0.71 | $>=0.20$ |
| A02.835.232.834.151 | Cervical Vertebrae | Musculoskeletal System | Skeleton | 0.36 | $>=0.20$ | 0.75 | $>=0.20$ | 0.46 | $>=0.20$ |
| A05.360.319.679.256 | Cervix Uteri | Urogenital System | Genitalia | 0.74 | $>=0.20$ | 0.46 | $>=0.20$ | 0.96 | $>=0.20$ |
| A11.329.171 | Chondrocytes | Cells | Connective Tissue Cells | 0.53 | $>=0.20$ | 0.9 | $>=0.20$ | 0.89 | $>=0.20$ |
| A10.615.284.473 | Chorion | Tissues | Membranes | 0.64 | $>=0.20$ | 0.97 | $>=0.20$ | 0.93 | $>=0.20$ |
| A10.165.450.300 | Cicatrix | Tissues | Connective Tissue | 0.86 | $>=0.20$ | 0.81 | $>=0.20$ | 0.66 | $>=0.20$ |
| A03.556.249.249.356 | Colon | Digestive System | Gastrointestinal Tract | 0.28 | $>=0.20$ | 0.78 | $>=0.20$ | 0.69 | $>=0.20$ |
| A03.556.249.249.356.668 | Colon Sigmoid | Digestive System | Gastrointestinal Tract | 0.31 | $>=0.20$ | 0.45 | $>=0.20$ | 0.56 | $>=0.20$ |
| A09.371.337.168 | Conjunctiva | Sense Organs | Eye | 0.76 | $>=0.20$ | 0.98 | $>=0.20$ | 0.36 | $>=0.20$ |
| A10.165 | Connective Tissue | Tissues | Connective Tissue | 0.98 | $>=0.20$ | 0.22 | $>=0.20$ | 0.95 | $>=0.20$ |
| A11.329 | Connective Tissue Cells | Cells | Connective Tissue Cells | 0.98 | $>=0.20$ | 0.98 | $>=0.20$ | 0.84 | $>=0.20$ |
| ```A08.186.211.730.885.287.249.48 7``` | Corpus Striatum | Nervous System | Central Nervous System | 0.09 | $>=0.20$ | 0.47 | $>=0.20$ | 0.09 | $>=0.20$ |
| A06.407.312.497.535.300.500 | Cumulus Cells | Endocrine System | Endocrine Glands | 0.09 | $>=0.20$ | 0.36 | $>=0.20$ | 0.99 | $>=0.20$ |
| A15.382.812.260 | Dendritic Cells | Hemic and Immune Systems | Immune System | 0.99 | $>=0.20$ | 0.43 | $>=0.20$ | 0.64 | $>=0.20$ |
| A14.549.167 | Dentition | Stomatognathic System | Mouth | 0.97 | $>=0.20$ | 0.92 | $>=0.20$ | 0.85 | $>=0.20$ |
| A08.186.211.730.317 | Diencephalon | Nervous System | Central Nervous System | 0.55 | $>=0.20$ | 0.21 | $>=0.20$ | 0.5 | $>=0.20$ |
| A11.872.190.260 | Embryoid Bodies | Cells | Stem Cells | 0.87 | $>=0.20$ | 0.99 | $>=0.20$ | 0.98 | $>=0.20$ |
| A11.872.190 | Embryonic Stem Cells | Cells | Stem Cells | 0.45 | $>=0.20$ | 0.82 | $>=0.20$ | 0.25 | $>=0.20$ |
| A11.382 | Endocrine Cells | Cells | Endocrine Cells | 0.07 | $>=0.20$ | 0.69 | $>=0.20$ | 0.92 | $>=0.20$ |
| A06.407 | Endocrine Glands | Endocrine System | Endocrine Glands | 0.05 | $>=0.20$ | 0.38 | $>=0.20$ | 0.24 | $>=0.20$ |
| A05.360.319.679.490 | Endometrium | Urogenital System | Genitalia | 0.13 | $>=0.20$ | 0.55 | $>=0.20$ | 0.26 | $>=0.20$ |
| A11.436.275 | Endothelial Cells | Cells | Epithelial Cells | 0.9 | $>=0.20$ | 0.98 | $>=0.20$ | 0.69 | $>=0.20$ |
| A11.382.625 | Enteroendocrine Cells | Cells | Endocrine Cells | 0.28 | $>=0.20$ | 0.95 | $>=0.20$ | 0.39 | $>=0.20$ |


|  |  |  |  | Combined Caffeine intake |  | Caffeine from Coffee |  | Caffeine from Tea |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MeSH term | Name | MeSH first level term | MeSH second level term | $\begin{gathered} \text { Nominal } \mathbf{P} \\ \text { value } \end{gathered}$ | False discovery rate | $\begin{gathered} \hline \text { Nominal } \mathbf{P} \\ \text { value } \end{gathered}$ | False discovery rate | $\begin{gathered} \hline \text { Nominal } \mathbf{P} \\ \text { value } \end{gathered}$ | False discovery rate |
| A11.436 | Epithelial Cells | Cells | Epithelial Cells | 0.86 | $>=0.20$ | 1 | $>=0.20$ | 0.77 | $>=0.20$ |
| A10.272 | Epithelium | Tissues | Epithelium | 0.21 | $>=0.20$ | 0.92 | $>=0.20$ | 0.09 | $>=0.20$$>=0.20$ |
| A15.145.229.334 | Erythrocytes | Hemic and Immune Systems | Blood | 0.91 | $>=0.20$ | 0.56 | $>=0.20$ | 0.96 |  |
| A11.443 | Erythroid Cells | Cells | Erythroid Cells | 0.92 | $>=0.20$ | 0.57 | $>=0.20$ | 0.96 | $>=0.20$ |
| A15.378.316.378.590.837.250 | Erythroid Precursor Cells | Hemic and Immune Systems | Hematopoietic System | 0.79 | $>=0.20$ | 0.82 | $>=0.20$ | 0.37 | $>=0.20$ |
| A03.556.875.500 | Esophagus | Digestive System | Gastrointestinal Tract | 0.31 | $>=0.20$ | 0.89 | $>=0.20$ | 0.67 | > $\quad$ 0.20 |
| A10.336 | Exocrine Glands | Tissues | Exocrine Glands | 0.11 | $>=0.20$ | 0.97 | $>=0.20$ | 0.58 | $>=0.20$ |
| A10.615.284 | Extraembryonic Membranes | Tissues | Membranes | 0.64 | $>=0.20$ | 0.97 | $>=0.20$ | 0.93 | $>=0.20$ |
| A09.371 | Eye | Sense Organs | Eye | 0.29 | $>=0.20$ | 0.23 | $>=0.20$ | 0.05 | $>=0.20$ |
| A09.371.337 | Eyelids | Sense Organs | Eye | 0.76 | $>=0.20$ | 0.98 | $>=0.20$ | 0.36 | $>=0.20$ |
| A05.360.319.114.373 | Fallopian Tubes | Urogenital System | Genitalia | 0.19 | $>=0.20$ | 0.36 | $>=0.20$ | 0.12 | $>=0.20$ |
| A15.145.300 | Fetal Blood | Hemic and Immune Systems | Blood | 0.98 | $>=0.20$ | 0.18 | $>=0.20$ | 0.96 | $>=0.20$ |
| A11.329.228 | Fibroblasts | Cells | Connective Tissue Cells | 0.27 | $>=0.20$ | 0.94 | $>=0.20$ | 0.83 | $>=0.20$ |
| A02.835.232.043.300 | Foot Bones | Musculoskeletal System | Skeleton | 0.76 | $>=0.20$ | 0.97 | $>=0.20$ | 0.41 | $>=0.20$ |
| A05.360.444.492.362 | Foreskin | Urogenital System | Genitalia | 0.35 | $>=0.20$ | 1 | $>=0.20$ | 0.75 | $>=0.20$ |
| $\begin{aligned} & \mathrm{A} 08.186 .211 .730 .885 .287 .500 .27 \\ & 0 \end{aligned}$ | Frontal Lobe | Nervous System | Central Nervous System | 0.39 | $>=0.20$ | 0.12 | $>=0.20$ | 0.29 | $>=0.20$ |
| A03.556 | Gastrointestinal Tract | Digestive System | Gastrointestinal Tract | 0.47 | $>=0.20$ | 0.93 | $>=0.20$ | 0.81 | $>=0.20$ |
| A05.360 | Genitalia | Urogenital System | Genitalia | 0.08 | $>=0.20$ | 0.82 | $>=0.20$ | 0.37 | $>=0.20$ |
| A05.360.319 | Genitalia Female | Urogenital System | Genitalia | 0.13 | $>=0.20$ | 0.45 | $>=0.20$ | 0.24 | $>=0.20$ |
| A05.360.444 | Genitalia Male | Urogenital System | Genitalia | 0.10.32 | $>=0.20$ | 0.98 | $>=0.20$ | 0.57 | $>=0.20$ |
| A05.360.490 | Germ Cells | Urogenital System | Genitalia |  | $>=0.20$ | 0.99 | $>=0.20$ | 0.91 | $>=0.20$ |
| A11.436.294.064 | Glucagon Secreting Cells | Cells | Epithelial Cells | 0.28 | $>=0.20$ | 0.95 | $>=0.20$ | 0.39 | $>=0.20$ |
| A06.407.312 | Gonads | Endocrine System | Endocrine Glands | 0.13 | $>=0.20$ | 0.44 | $>=0.20$ | 0.26 | $>=0.20$ |
| A10.165.450 | Granulation Tissue | Tissues | Connective Tissue | 0.86 | $>=0.20$ | 0.81 | $>=0.20$ | 0.66 | $>=0.20$ |
| A11.872.378.590.635 | Granulocyte Macrophage Progenito Cells | \% $\quad$ Cells | Stem Cells | 1 | $>=0.20$ | 0.76 | $>=0.20$ | 0.99 | $>=0.20$ |
| A11.627.340.360 | Granulocyte Precursor Cells | Cells | Myeloid Cells | 0.98 | $>=0.20$ | 0.55 | $>=0.20$ | 0.6 | $>=0.20$ |
| A11.118.637.415 | Granulocytes | Cells | Blood Cells | 0.96 | $>=0.20$ | 0.42 | $>=0.20$ | 0.77 | $>=0.20$ |
| A11.436.329 | Granulosa Cells | Cells | Epithelial Cells | 0.09 | $>=0.20$ | 0.36 | $>=0.20$ | 0.99 | $>=0.20$ |
| A07.541 | Heart | Cardiovascular System | Heart | 0.77 | $>=0.20$ | 0.55 | $>=0.20$ | 0.78 | $>=0.20$ |
| A07.541.358 | Heart Atria | Cardiovascular System | Heart | 0.35 | $>=0.20$ | 0.16 | $>=0.20$ | 0.65 | $>=0.20$ |
| A07.541.510 | Heart Valves | Cardiovascular System | Heart | 0.14 | $>=0.20$ | 0.35 | $>=0.20$ | 0.11 | $>=0.20$ |
| A07.541.560 | Heart Ventricles | Cardiovascular System | Heart | 0.83 | $>=0.20$ | 0.6 | $>=0.20$ | 0.83 | $>=0.20$ |
| A11.872.378 | Hematopoietic Stem Cells | Cells | Stem Cells | 0.99 | $>=0.20$ | 0.7 | $>=0.20$ | 0.85 | $>=0.20$ |
| A15.378 | Hematopoietic System | Hemic and Immune Systems | Hematopoietic System | 1 | $>=0.20$ | 0.48 | $>=0.20$ | 0.93 | $>=0.20$ |
| A11.436.348 | Hepatocytes | Cells | Epithelial Cells | 0.48 | $>=0.20$ | 0.87 | $>=0.20$ | 0.82 | $>=0.20$ |
| ```A08.186.211.730.317.357.352.43 5``` | Hypothalamo Hypophyseal System | Nervous System | Central Nervous System | 0.27 | $>=0.20$ | 0.17 | $>=0.20$ | 0.54 | $>=0.20$ |
| A08.186.211.730.317.357 | Hypothalamus | Nervous System | $\begin{aligned} & \text { Central Nervous } \\ & \text { System } \\ & \hline \end{aligned}$ | 0.34 | $>=0.20$ | 0.18 | $>=0.20$ | 0.53 | $>=0.20$ |
| A08.186.211.730.317.357.352 | Hypothalamus Middle | Nervous System | $\begin{aligned} & \text { Central Nervous } \\ & \text { System } \end{aligned}$ | 0.27 | $>=0.20$ | 0.17 | $>=0.20$ | 0.54 | $>=0.20$ |
| A03.556.249.124 | Ileum | Digestive System | Gastrointestinal Tract | 0.3 | $>=0.20$ | 0.76 | $>=0.20$ | 0.69 | $>=0.20$ |


|  |  |  |  | Combined Caffeine intake |  | Caffeine from Coffee |  | Caffeine from Tea |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MeSH term | Name | MeSH first level term | MeSH second level term | $\begin{gathered} \text { Nominal P } \\ \text { value } \end{gathered}$ | False discovery rate | $\begin{gathered} \text { Nominal } P \\ \text { value } \end{gathered}$ | False discovery rate | $\begin{gathered} \text { Nominal P } \\ \text { value } \end{gathered}$ | False discovery rate |
| A15.382 | Immune System | Hemic and Immune Systems | Immune System | 0.99 | $>=0.20$ | 0.13 | $>=0.20$ | 0.96 | $>=0.20$ |
| A11.872.700.500 | Induced Pluripotent Stem Cells | Cells | Stem Cells | 0.41 | $>=0.20$ | 0.83 | $>=0.20$ | 0.35 | $>=0.20$ |
| A03.556.124.369 | Intestinal Mucosa | Digestive System | Gastrointestinal Tract | 0.63 | $>=0.20$ | 0.99 | $>=0.20$ | 0.71 | $>=0.20$ |
| A03.556.249.249 | Intestine Large | Digestive System | Gastrointestinal Tract | 0.3 | $>=0.20$ | 0.76 | $>=0.20$ | 0.74 | $>=0.20$ |
| A03.556.124.684 | Intestine Small | Digestive System | Gastrointestinal Tract | 0.52 | $>=0.20$ | 0.62 | $>=0.20$ | 0.95 | $>=0.20$ |
| A03.556.124 | Intestines | Digestive System | Gastrointestinal Tract | 0.37 | $>=0.20$ | 0.86 | $>=0.20$ | 0.76 | $>=0.20$ |
| A03.734.414 | Islets of Langerhans | Digestive System | Pancreas | 0.32 | $>=0.20$ | 0.97 | $>=0.20$ | 0.47 | $>=0.20$ |
| A02.835.583.443 | Joint Capsule | Musculoskeletal System | Skeleton | 0.38 | $>=0.20$ | 0.65 | $>=0.20$ | 0.98 | $>=0.20$ |
| A02.835.583 | Joints | Musculoskeletal System | Skeleton | 0.38 | $>=0.20$ | 0.65 | $>=0.20$ | 0.98 | $>=0.20$ |
| A10.165.450.300.425 | Keloid | Tissues | Connective Tissue | 0.89 | $>=0.20$ | 0.86 | $>=0.20$ | 0.53 | $>=0.20$ |
| A11.436.397 | Keratinocytes | Cells | Epithelial Cells | 0.99 | $>=0.20$ | 1 | $>=0.20$ | 0.83 | $>=0.20$ |
| A05.810.453 | Kidney | Urogenital System | Urinary Tract | 0.15 | $>=0.20$ | 0.31 | $>=0.20$ | 0.52 | $>=0.20$ |
| A05.810.453.324 | Kidney Cortex | Urogenital System | Urinary Tract | 0.2 | $>=0.20$ | 0.39 | $>=0.20$ | 0.89 | $>=0.20$ |
| A15.382.490.555.567.537 | Killer Cells Natural | Hemic and Immune Systems | Immune System | 0.47 | $>=0.20$ | 0.22 | $>=0.20$ | 0.67 | $>=0.20$ |
| A11.118.637 | Leukocytes | Cells | Blood Cells | 0.98 | $>=0.20$ | 0.13 | $>=0.20$ | 0.97 | $>=0.20$ |
| A15.145.229.637.555 | Leukocytes Mononuclear | Hemic and Immune Systems | Blood | 0.96 | $>=0.20$ | 0.09 | $>=0.20$ | 0.98 | $>=0.20$ |
| A03.620 | Liver | Digestive System | Liver | 0.05 | $>=0.20$ | 0.37 | $>=0.20$ | 0.4 | $>=0.20$ |
| A03.556.249 | Lower Gastrointestinal Tract | Digestive System | Gastrointestinal Tract | 0.3 | $>=0.20$ | 0.76 | $>=0.20$ | 0.75 | $>=0.20$ |
| A04.411 | Lung | Respiratory System | Lung | 0.15 | $>=0.20$ | 0.74 | $>=0.20$ | 0.42 | $>=0.20$ |
| A10.549.400 | Lymph Nodes | Tissues | Lymphoid Tissue | 0.84 | $>=0.20$ | 0.04 | $>=0.20$ | 0.8 | $>=0.20$ |
| A15.382.520 | Lymphatic System | Hemic and Immune Systems | Immune System | 0.76 | $>=0.20$ | 0.04 | $>=0.20$ | 0.74 | $>=0.20$ |
| A15.382.490.555.567 | Lymphocytes | Hemic and Immune Systems | Immune System | 0.76 | $>=0.20$ | 0.04 | $>=0.20$ | 0.95 | $>=0.20$ |
| A15.382.490.555.567.622 | Lymphocytes Null | Hemic and Immune Systems | Immune System | 0.91 | $>=0.20$ | 0.58 | $>=0.20$ | 0.49 | $>=0.20$ |
| A11.872.378.294 | Lymphoid Progenitor Cells | Cells | Stem Cells | 0.29 | $>=0.20$ | 0.06 | $>=0.20$ | 0.23 | $>=0.20$ |
| A10.549 | Lymphoid Tissue | Tissues | Lymphoid Tissue | 0.76 | $>=0.20$ | 0.04 | $>=0.20$ | 0.74 | $>=0.20$ |
| A15.382.812.522 | Macrophages | Hemic and Immune Systems | Immune System | 1 | $>=0.20$ | 0.88 | $>=0.20$ | 0.66 | $>=0.20$ |
| A11.329.372.600 | Macrophages Alveolar | Cells | Connective Tissue Cells | 1 | $>=0.20$ | 0.79 | $>=0.20$ | 0.13 | $>=0.20$ |
| A11.872.378.590.817 | Megakaryocyte Erythroid Progenitor Cells | Cells | Stem Cells | 0.79 | $>=0.20$ | 0.82 | $>=0.20$ | 0.37 | $>=0.20$ |
| A10.615 | Membranes | Tissues | Membranes | 0.45 | $>=0.20$ | 1 | $>=0.20$ | 0.54 | $>=0.20$ |
| A08.186.211.653 | Mesencephalon | Nervous System | Central Nervous System | 0.49 | $>=0.20$ | 0.32 | $>=0.20$ | 0.26 | $>=0.20$ |
| A11.872.580 | Mesenchymal Stem Cells | Cells | Stem Cells | 0.37 | $>=0.20$ | 0.78 | $>=0.20$ | 0.87 | $>=0.20$ |
| A11.627.624.249 | Monocyte Macrophage Precursor Cells | Cells | Myeloid Cells | 1 | $>=0.20$ | 0.78 | $>=0.20$ | 1 | $>=0.20$ |
| A15.378.316.580 | Monocytes | Hemic and Immune Systems | Hematopoietic System | 1 | $>=0.20$ | 0.55 | $>=0.20$ | 0.97 | $>=0.20$ |
| A15.382.812 | Mononuclear Phagocyte System | Hemic and Immune Systems | Immune System | 1 | $>=0.20$ | 0.62 | $>=0.20$ | 0.84 | $>=0.20$ |
| A14.549 | Mouth | Stomatognathic System | Mouth | 0.8 | $>=0.20$ | 0.99 | $>=0.20$ | 0.81 | $>=0.20$ |
| A10.615.550.599 | Mouth Mucosa | Tissues | Membranes | 0.46 | $>=0.20$ | 0.96 | $>=0.20$ | 0.38 | $>=0.20$ |
| A10.615.550 | Mucous Membrane | Tissues | Membranes | 0.47 | $>=0.20$ | 0.99 | $>=0.20$ | 0.4 | $>=0.20$ |
| A10.690.552.500 | Muscle Skeletal | Tissues | Muscles | 0.84 | $>=0.20$ | 0.27 | $>=0.20$ | 0.92 | $>=0.20$ |


|  |  |  |  | Combined Caffeine intake |  | Caffeine from Coffee |  | Caffeine from Tea |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MeSH term | Name | MeSH first level term | MeSH second level term | $\begin{gathered} \text { Nominal } P \\ \text { value } \end{gathered}$ | $\begin{aligned} & \text { False discovery } \\ & \text { rate } \end{aligned}$ | $\begin{gathered} \text { Nominal P } \\ \text { value } \end{gathered}$ | $\begin{aligned} & \text { False discovery } \\ & \text { rate } \end{aligned}$ | $\begin{gathered} \hline \text { Nominal } \mathbf{P} \\ \text { value } \\ \hline \end{gathered}$ | False discovery rate |
| A10.690.467 | Muscle Smooth | Tissues | Muscles | 0.99 | $>=0.20$ | 0.99 | $>=0.20$ | 0.95 | $>=0.20$ |
| A10.690.552 | Muscle Striated | Tissues | Muscles | 0.84 | $>=0.20$ | 0.27 | $>=0.20$ | 0.92 | $>=0.20$ |
| A11.620 | Muscle Cells | Cells | Muscle Cells | 1 | $>=0.20$ | 1 | $>=0.20$ | 0.99 | $>=0.20$ |
| A10.690 | Muscles | Tissues | Muscles | 0.93 | $>=0.20$ | 0.49 | $>=0.20$ | 0.96 | $>=0.20$ |
| A11.627 | Myeloid Cells | Cells | Myeloid Cells | 1 | $>=0.20$ | 0.61 | $>=0.20$ | 0.87 | $>=0.20$ |
| A11.627.635 | Myeloid Progenitor Cells | Cells | Myeloid Cells | 0.99 | $>=0.20$ | 0.82 | $>=0.20$ | 0.92 | $>=0.20$ |
| A11.620.520 | Myocytes Smooth Muscle | Cells | Muscle Cells | 1 | $>=0.20$ | 1 | $>=0.20$ | 0.99 | $>=0.20$ |
| A05.360.319.679.690 | Myometrium | Urogenital System | Genitalia | 0.04 | $>=0.20$ | 0.26 | $>=0.20$ | 0.16 | $>=0.20$ |
| A04.531.520 | Nasal Mucosa | Respiratory System | Nose | 0.22 | $>=0.20$ | 0.84 | $>=0.20$ | 0.23 | $>=0.20$ |
| A14.724.557 | Nasopharynx | Stomatognathic System | Pharynx | 1 | $>=0.20$ | 0.8 | $>=0.20$ | 0.51 | $>=0.20$ |
| A08.713 | Neurosecretory Systems | Nervous System | Neurosecretory <br> Systems | 0.27 | $>=0.20$ | 0.17 | $>=0.20$ | 0.54 | $>=0.20$ |
| A15.382.490.315.583 | Neutrophils | Hemic and Immune Systems | Immune System | 0.95 | $>=0.20$ | 0.41 | $>=0.20$ | 0.76 | $>=0.20$ |
| A09.531 | Nose | Sense Organs | Nose | 0.22 | $>=0.20$ | 0.84 | $>=0.20$ | 0.23 | $>=0.20$ |
| A11.497.497.600 | Oocytes | Cells | Germ Cells | 0.12 | $>=0.20$ | 0.95 | $>=0.20$ | 0.75 | $>=0.20$ |
| A04.623.603 | Oropharynx | Respiratory System | Pharynx | 0.75 | $>=0.20$ | 0.1 | $>=0.20$ | 0.61 | $>=0.20$ |
| A11.329.629 | Osteoblasts | Cells | Connective Tissue Cells | 0.54 | $>=0.20$ | 0.63 | $>=0.20$ | 0.55 | $>=0.20$ |
| A05.360.319.114.630.535 | Ovarian Follicle | Urogenital System | Genitalia | 0.09 | $>=0.20$ | 0.36 | $>=0.20$ | 0.99 | $>=0.20$ |
| A05.360.319.114.630 | Ovary | Urogenital System | Genitalia | 0.14 | $>=0.20$ | 0.37 | $>=0.20$ | 0.24 | $>=0.20$ |
| A05.360.490.690 | Ovum | Urogenital System | Genitalia | 0.12 | $>=0.20$ | 0.95 | $>=0.20$ | 0.75 | $>=0.20$ |
| A15.382.520.604.800 | Palatine Tonsil | Hemic and Immune Systems | Immune System | 0.75 | $>=0.20$ | 0.1 | $>=0.20$ | 0.61 | $>=0.20$ |
| A03.734 | Pancreas | Digestive System | Pancreas | 0.19 | $>=0.20$ | 0.75 | $>=0.20$ | 0.28 | $>=0.20$ |
| $\qquad$ 0 | Parietal Lobe | Nervous System | Central Nervous System | 0.08 | $>=0.20$ | $9.67 \mathrm{E}-03$ | $>=0.20$ | 0.12 | $>=0.20$ |
| A03.556.500.760.464 | Parotid Gland | Digestive System | Gastrointestinal Tract | 0.52 | $>=0.20$ | 0.73 | $>=0.20$ | 0.97 | $>=0.20$ |
| A05.360.444.492 | Penis | Urogenital System | Genitalia | 0.34 | $>=0.20$ | 1 | $>=0.20$ | 0.75 | $>=0.20$ |
| A14.549.167.646 | Periodontium | Stomatognathic System | Mouth | 0.92 | $>=0.20$ | 0.89 | $>=0.20$ | 0.8 | $>=0.20$ |
| A15.382.680 | Phagocytes | Hemic and Immune Systems | Immune System | 1 | $>=0.20$ | 0.59 | $>=0.20$ | 0.87 | $>=0.20$ |
| A14.724 | Pharynx | Stomatognathic System | Pharynx | 1 | > $=0.20$ | 0.54 | > $=0.20$ | 0.57 | $>=0.20$ |
| A15.145.693 | Plasma | Hemic and Immune Systems | Blood | 0.87 | $>=0.20$ | 0.15 | $>=0.20$ | 0.99 | $>=0.20$ |
| $\begin{aligned} & \text { A15.145.229.637.555.567.562.72 } \\ & 5 \end{aligned}$ | Plasma Cells | Hemic and Immune Systems | Blood | 0.87 | $>=0.20$ | 0.16 | $>=0.20$ | 0.99 | $>=0.20$ |
| A11.872.700 | Pluripotent Stem Cells | Cells | Stem Cells | 0.41 | $>=0.20$ | 0.83 | $>=0.20$ | 0.35 | $>=0.20$ |
| A07.231.908.670 | Portal System | Cardiovascular System | Blood Vessels | 0.89 | $>=0.20$ | 0.95 | $>=0.20$ | 0.53 | $>=0.20$ |
| A11.118.637.555.567.562.440 | Precursor Cells B Lymphoid | Cells | Blood Cells | 0.29 | $>=0.20$ | 0.06 | $>=0.20$ | 0.23 | $>=0.20$ |
| A10.336.707 | Prostate | Tissues | Exocrine Glands | 0.11 | $>=0.20$ | 0.96 | $>=0.20$ | 0.53 | $>=0.20$ |
| A02.633.567.850 | Quadriceps Muscle | Musculoskeletal System | Muscles | 0.85 | $>=0.20$ | 0.26 | $>=0.20$ | 0.93 | $>=0.20$ |
| A03.556.124.526.767 | Rectum | Digestive System | Gastrointestinal Tract | 0.58 | $>=0.20$ | 0.51 | $>=0.20$ | 0.98 | $>=0.20$ |
| A10.615.550.760 | Respiratory Mucosa | Tissues | Membranes | 0.22 | $>=0.20$ | 0.84 | $>=0.20$ | 0.23 | $>=0.20$ |
| A03.556.500.760 | Salivary Glands | Digestive System | Gastrointestinal Tract | 0.6 | $>=0.20$ | 0.73 | $>=0.20$ | 0.98 | $>=0.20$ |
| A10.615.789 | Serous Membrane | Tissues | Membranes | 0.39 | $>=0.20$ | 0.69 | $>=0.20$ | 0.61 | $>=0.20$ |
| A15.145.846 | Serum | Hemic and Immune Systems | Blood | 0.92 | $>=0.20$ | 0.95 | $>=0.20$ | 0.85 | $>=0.20$ |


|  |  |  |  | Combined Caffeine intake |  | Caffeine from Coffee |  | Caffeine from Tea |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MeSH term | Name | MeSH first level term | MeSH second level term | $\begin{gathered} \text { Nominal } P \\ \text { value } \end{gathered}$ | False discovery | $\begin{gathered} \text { Nominal } P \\ \text { value } \end{gathered}$ | False discovery rate | $\begin{gathered} \text { Nominal P } \\ \text { value } \end{gathered}$ | False discovery |
| A02.835 | Skeleton | Musculoskeletal System | Skeleton | 0.98 | $>=0.20$ | 0.21 | $>=0.20$ | 0.96 | $>=0.20$ |
| A17.815 | Skin | Integumentary System | Skin | 0.28 | $>=0.20$ | 0.99 | $>=0.20$ | 0.25 | $>=0.20$ |
| A02.835.232.834 | Spine | Musculoskeletal System | Skeleton | 0.36 | $>=0.20$ | 0.75 | $>=0.20$ | 0.48 | $>=0.20$ |
| A15.382.520.604.700 | Spleen | Hemic and Immune Systems | Immune System | 0.1 | $>=0.20$ | 0.19 | $>=0.20$ | 0.4 | $>=0.20$ |
| A11.872 | Stem Cells | Cells | Stem Cells | 0.81 | $>=0.20$ | 0.79 | $>=0.20$ | 0.66 | $>=0.20$ |
| A03.556.875.875 | Stomach | Digestive System | Gastrointestinal Tract | 0.35 | $>=0.20$ | 0.64 | $>=0.20$ | 0.71 | $>=0.20$ |
| A11.329.830 | Stromal Cells | Cells | Connective Tissue Cells | 0.49 | $>=0.20$ | 0.94 | $>=0.20$ | 0.87 | $>=0.20$ |
| A10.165.114.830.750 | Subcutaneous Fat | Tissues | Connective Tissue | 0.6 | $>=0.20$ | 0.55 | $>=0.20$ | 0.23 | $>=0.20$ |
| A10.165.114.830.500.750 | Subcutaneous Fat Abdominal | Tissues | Connective Tissue | 0.68 | $>=0.20$ | 0.56 | $>=0.20$ | 0.26 | $>=0.20$ |
| A02.835.583.443.800.800 | Synovial Fluid | Musculoskeletal System | Skeleton | 0.72 | $>=0.20$ | 0.2 | $>=0.20$ | 0.84 | $>=0.20$ |
| A02.835.583.443.800 | Synovial Membrane | Musculoskeletal System | Skeleton | 0.38 | $>=0.20$ | 0.65 | $>=0.20$ | 0.98 | $>=0.20$ |
| A11.118.637.555.567.569 | T Lymphocytes | Cells | Blood Cells | 0.6 | $>=0.20$ | 0.08 | $>=0.20$ | 0.68 | $>=0.20$ |
| A11.118.637.555.567.569.200.70 0 | T Lymphocytes Regulatory | Cells | Blood Cells | 0.23 | $>=0.20$ | 0.1 | $>=0.20$ | 0.24 | $>=0.20$ |
| A02.835.232.043.300.710 | Tarsal Bones | Musculoskeletal System | Skeleton | 0.76 | $>=0.20$ | 0.97 | $>=0.20$ | 0.41 | $>=0.20$ |
| A06.407.312.782 | Testis | Endocrine System | Endocrine Glands | 0.31 | $>=0.20$ | 0.93 | $>=0.20$ | 0.57 | $>=0.20$ |
| A06.407.900 | Thyroid Gland | Endocrine System | Endocrine Glands | 0.16 | $>=0.20$ | 0.23 | $>=0.20$ | 0.41 | $>=0.20$ |
| A14.549.885 | Tongue | Stomatognathic System | Mouth | 0.98 | $>=0.20$ | 0.99 | $>=0.20$ | 0.98 | $>=0.20$ |
| A07.231.908.670.874 | Umbilical Veins | Cardiovascular System | Blood Vessels | 0.89 | $>=0.20$ | 0.95 | $>=0.20$ | 0.53 | $>=0.20$ |
| A03.556.875 | Upper Gastrointestinal Tract | Digestive System | Gastrointestinal Tract | 0.39 | $>=0.20$ | 0.75 | $>=0.20$ | 0.77 | $>=0.20$ |
| A05.810.890 | Urinary Bladder | Urogenital System | Urinary Tract | 0.65 | $>=0.20$ | 0.47 | $>=0.20$ | 0.83 | $>=0.20$ |
| A05.810 | Urinary Tract | Urogenital System | Urinary Tract | 0.16 | $>=0.20$ | 0.32 | $>=0.20$ | 0.54 | $>=0.20$ |
| A05.360.319.679 | Uterus | Urogenital System | Genitalia | 0.16 | $>=0.20$ | 0.53 | $>=0.20$ | 0.37 | $>=0.20$ |
| A07.231.908 | Veins | Cardiovascular System | Blood Vessels | 0.92 | $>=0.20$ | 0.95 | $>=0.20$ | 0.65 | $>=0.20$ |
| A05.360.319.887 | Vulva | Urogenital System | Genitalia | 0.83 | $>=0.20$ | 0.99 | $>=0.20$ | 0.56 | $>=0.20$ |

Table S19. Functional eQTL genes associated with caffeine intake

| GWAS SNP | Caffeine Trait | probe ID | Probe Chr | Gene | Probe postion | $\begin{aligned} & \text { eQTL } \\ & \text { SNP } \end{aligned}$ | $\begin{aligned} & \text { eQTL } \\ & \text { SNP Chr } \end{aligned}$ | eQTL SNP position | $\begin{aligned} & \hline \text { EF } \\ & \text { AL } \end{aligned}$ | $\begin{aligned} & \hline \text { NE } \\ & \text { FA } \\ & \text { L } \end{aligned}$ | $\begin{aligned} & \hline \text { EF } \\ & \text { Freq } \end{aligned}$ | Beta <br> GWAS | $\begin{array}{\|l\|} \hline \text { SE } \\ \text { GWA } \\ \text { S } \end{array}$ | $\begin{aligned} & \hline P \\ & \mathbf{G W} \\ & \text { AS } \end{aligned}$ | Beta eQTL | $\begin{aligned} & \hline \mathbf{S E} \\ & \text { eQT } \\ & \mathbf{L} \end{aligned}$ | $\begin{array}{\|l\|} \hline P \\ \text { eQT } \\ \text { L } \\ \hline \end{array}$ | Beta SMR | $\begin{array}{\|l\|} \hline \text { SE } \\ \text { SMR } \end{array}$ | $\begin{array}{\|l\|} \hline \boldsymbol{P} \\ \mathbf{S M} \\ \mathbf{R} \end{array}$ | HEID <br> I | eQTL repository |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & \hline 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \hline \text { HORM } \\ & \text { AD1 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \hline \text { rs1158 } \\ & 7444 \\ & \hline \end{aligned}$ | 1 | 150722844 | G | A | $\begin{aligned} & \hline 0.39 \\ & 6321 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0234 \\ & 978 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0023 \\ 7896 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 5.20 \\ \text { E-23 } \\ \hline \end{array}$ | 1.1957 | $\begin{aligned} & 0.056 \\ & 5677 \end{aligned}$ | $\begin{aligned} & \hline 3.60 \mathrm{E} \\ & -99 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.019 \\ & 6519 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0021 \\ 961 \end{array}$ | $\begin{array}{\|l\|} \hline 3.60 \\ \text { E-19 } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.1070 \\ 597 \end{array}$ | GTEx - Nerve Tibial |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{array}{\|l} \hline \text { HORM } \\ \text { AD1 } \\ \hline \end{array}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { rs1120 } \\ 4717 \end{array}$ | 1 | 150709129 | A | T | $\begin{array}{\|l\|} \hline 0.39 \\ 4263 \end{array}$ | $\begin{aligned} & \hline 0.0231 \\ & 968 \\ & \hline \end{aligned}$ | $\begin{array}{\|l} \hline 0.0023 \\ 7641 \\ \hline \end{array}$ | $\begin{gathered} 1.70 \\ \mathrm{E}-22 \end{gathered}$ | $\begin{aligned} & 1.1079 \\ & 7 \end{aligned}$ | $\begin{aligned} & 0.050 \\ & 8788 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 3.86 \mathrm{E} \\ & -105 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.020 \\ & 9363 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0023 \\ 5045 \\ \hline \end{array}$ | $\begin{aligned} & 5.23 \\ & \text { E-19 } \end{aligned}$ | $\begin{aligned} & \hline 0.2278 \\ & 421 \end{aligned}$ | GTEx - Skin Sun Exposed Lower leg |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \hline \text { HORM } \\ & \text { AD1 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \hline \text { rs1120 } \\ & 4718 \\ & \hline \end{aligned}$ | 1 | 150709785 | G | C | $\begin{aligned} & \hline 0.39 \\ & 4263 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0231 \\ & 956 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 7643 \end{aligned}$ | $\begin{aligned} & \hline 1.70 \\ & \text { E-22 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.1272 \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.052 \\ & 9239 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1.14 \mathrm{E} \\ & -100 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.020 \\ & 577 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 1896 \\ & \hline \end{aligned}$ | $\begin{array}{\|c\|} \hline 7.10 \\ \text { E-19 } \\ \hline \end{array}$ | $\begin{array}{\|l} \hline 0.1377 \\ 202 \\ \hline \end{array}$ | GTEx - Esophagus Mucosa |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143457.6 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \text { GOLP } \\ & \text { H3L } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 150644 \\ 165 \\ \hline \end{array}$ | $\begin{aligned} & \text { rs1158 } \\ & 7444 \\ & \hline \end{aligned}$ | 1 | 150722844 | G | A | $\begin{aligned} & \hline 0.39 \\ & 6321 \\ & \hline \end{aligned}$ | $\begin{array}{\|l} \hline 0.0234 \\ 978 \\ \hline \end{array}$ | $\begin{aligned} & 0.0023 \\ & 7896 \\ & \hline \end{aligned}$ | $\begin{aligned} & 5.20 \\ & \text { E-23 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.8857 \\ & 8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.047 \\ & 0777 \\ & \hline \end{aligned}$ | $\begin{aligned} & 5.66 \mathrm{E} \\ & -79 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.026 \\ & 5278 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0030 \\ 3331 \\ \hline \end{array}$ | $\begin{array}{\|l\|l\|} \hline 2.22 \\ \text { E-18 } \\ \hline \end{array}$ | $\begin{array}{\|l} \hline 0.1119 \\ 635 \\ \hline \end{array}$ | GTEX - Nerve Tibial |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & \hline 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \hline \text { HORM } \\ & \text { AD1 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \text { rs7529 } \\ & 194 \end{aligned}$ | 1 | 150622620 | A | T | $\begin{aligned} & \hline 0.39 \\ & 4 \end{aligned}$ | $\begin{aligned} & 0.0230 \\ & 701 \end{aligned}$ | $\begin{aligned} & \hline 0.0023 \\ & 7586 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 2.70 \\ \text { E-22 } \\ \hline \end{array}$ | $\begin{aligned} & 1.0683 \\ & 6 \end{aligned}$ | $\begin{aligned} & 0.057 \\ & 2195 \end{aligned}$ | $\begin{aligned} & \hline 8.48 \mathrm{E} \\ & -78 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.021 \\ & 5939 \\ & \hline \end{aligned}$ | $\begin{array}{\|l} \hline 0.0025 \\ 066 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 7.00 \\ \text { E-18 } \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.1474 \\ & 06 \end{aligned}$ | GTEx - Skin Not Sun Exposed Suprapubic |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143457.6 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \text { GOLP } \\ & \text { H3L } \\ & \hline \end{aligned}$ | $\begin{aligned} & 150644 \\ & 165 \end{aligned}$ | $\begin{aligned} & \text { rs1134 } \\ & 067 \end{aligned}$ | 1 | 150721175 | T | G | $\begin{aligned} & \hline 0.39 \\ & 639 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0235 \\ 077 \end{array}$ | $\begin{array}{\|l\|} \hline 0.0023 \\ 7826 \\ \hline \end{array}$ | $\begin{aligned} & \hline 4.90 \\ & \mathrm{E}-23 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.7886 \\ & 72 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.045 \\ & 5441 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 3.52 \mathrm{E} \\ & -67 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.029 \\ & 8067 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0034 \\ & 722 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 9.13 \\ \text { E-18 } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.1489 \\ 021 \\ \hline \end{array}$ | GTEx - Skin Sun Exposed Lower leg |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 143452.11 \end{aligned}$ | 1 | $\begin{aligned} & \text { HORM } \\ & \text { AD1 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \hline \text { rs1118 } \\ & 42513 \\ & \hline \end{aligned}$ | 1 | 150712926 | A | G | $\begin{aligned} & \hline 0.39 \\ & 4263 \end{aligned}$ | $\begin{aligned} & 0.0232 \\ & 029 \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 766 \end{aligned}$ | $\begin{aligned} & \hline 1.60 \\ & \text { E-22 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.9211 \\ & 19 \end{aligned}$ | $\begin{aligned} & 0.057 \\ & 4382 \end{aligned}$ | $\begin{aligned} & \hline 7.08 \mathrm{E} \\ & -58 \end{aligned}$ | $\begin{aligned} & 0.025 \\ & 1899 \end{aligned}$ | $\begin{aligned} & 0.0030 \\ & 2065 \end{aligned}$ | $\begin{aligned} & 7.48 \\ & \text { E-17 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.3795 \\ & 036 \end{aligned}$ | GTEx - Adipose Subcutaneous |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \text { HORM } \\ & \text { AD1 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \text { rs7270 } \\ & 4603 \end{aligned}$ | 1 | 150707992 | T | C | $\begin{aligned} & \hline 0.39 \\ & 4263 \end{aligned}$ | $\begin{aligned} & \hline 0.0232 \\ & 622 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 7665 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.30 \\ & \text { E-22 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.9507 \\ & 96 \end{aligned}$ | $\begin{aligned} & 0.062 \\ & 3663 \end{aligned}$ | $\begin{aligned} & 1.77 \mathrm{E} \\ & -52 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.024 \\ & 466 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0029 \\ 7046 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 1.77 \\ \text { E-16 } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.2328 \\ \hline 227 \\ \hline \end{array}$ | GTEx - Cells Transformed fibroblasts |
| $\begin{array}{\|l} \hline 7: 73042302 \\ \text { GCTTT_G } \\ \hline \end{array}$ | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 009950.11 \\ & \hline \end{aligned}$ | 7 | $\begin{array}{\|l} \hline \begin{array}{l} \text { MLXIP } \\ \mathrm{L} \end{array} \\ \hline \end{array}$ | $\begin{aligned} & 730231 \\ & 98 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { rs3406 } \\ & 0476 \\ & \hline \end{aligned}$ | 7 | 73037956 | G | A | $\begin{array}{\|l\|l\|} \hline 0.14 \\ 6685 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.0353 \\ 479 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.0034 \\ 0377 \\ \hline \end{array}$ | $\begin{aligned} & \hline 2.90 \\ & \text { E- } 25 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.7961 \\ & 08 \end{aligned}$ | $\begin{aligned} & \hline 0.065 \\ & 8142 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.10 \mathrm{E} \\ & -33 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.044 \\ & 4009 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0056 \\ 3502 \\ \hline \end{array}$ | $\begin{array}{\|l\|l\|} \hline 3.29 \\ \text { E-15 } \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.0781 \\ & 8656 \\ & \hline \end{aligned}$ | GTEx - Skin Sun Exposed Lower leg |
| $\begin{aligned} & \text { 7:73042302_ } \\ & \text { GCTTT_G } \end{aligned}$ | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 009950.11 \\ & \hline \end{aligned}$ | 7 | $\begin{aligned} & \hline \text { MLXIP } \\ & \mathrm{L} \end{aligned}$ | $\begin{aligned} & 730231 \\ & 98 \end{aligned}$ | $\begin{aligned} & \hline \text { rs3406 } \\ & 0476 \\ & \hline \end{aligned}$ | 7 | 73037956 | G | A | $\begin{aligned} & \hline 0.14 \\ & 6685 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0353 \\ 479 \end{array}$ | $\begin{array}{\|l\|} \hline 0.0034 \\ 0377 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 2.90 \\ \text { E-25 } \\ \hline \end{array}$ | $\begin{aligned} & 0.7530 \\ & 91 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.068 \\ & 0875 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1.95 \mathrm{E} \\ & -28 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.046 \\ & 9371 \\ & \hline \end{aligned}$ | $\begin{array}{\|l} \hline 0.0061 \\ 997 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 3.71 \\ \mathrm{E}-14 \\ \hline \end{array}$ | $\begin{array}{\|l} \hline 0.1286 \\ 897 \\ \hline \end{array}$ | GTEx - Thyroid |
| rs6062679 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 203880.7 \end{aligned}$ | 20 | $\begin{aligned} & \hline \text { PCMT } \\ & \text { D2 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 629069 \\ & 74 \end{aligned}$ | $\begin{aligned} & \text { rs1808 } \\ & 056 \end{aligned}$ | 20 | 62890932 | A | G | $\begin{aligned} & \hline 0.45 \\ & 7023 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0227 \\ 612 \end{array}$ | $\begin{aligned} & 0.0023 \\ & 5819 \end{aligned}$ | $\begin{aligned} & \hline 4.80 \\ & \text { E-22 } \end{aligned}$ | $\begin{aligned} & 0.2781 \\ & 9 \end{aligned}$ | $\begin{aligned} & \hline 0.025 \\ & 8003 \end{aligned}$ | $\begin{aligned} & 4.17 \mathrm{E} \\ & -27 \end{aligned}$ | $\begin{aligned} & \hline- \\ & 0.081 \\ & 8189 \end{aligned}$ | $\begin{aligned} & 0.0113 \\ & 771 \end{aligned}$ | $\begin{array}{\|l\|} \hline 6.41 \\ \mathrm{E}-13 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.6371 \\ 555 \end{array}$ | GTEx - Thyroid |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{array}{\|l} \hline \text { HORM } \\ \text { AD1 } \\ \hline \end{array}$ | $\begin{aligned} & 150681 \\ & 950 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { rs1120 } \\ & 4698 \\ & \hline \end{aligned}$ | 1 | 150659545 | A | G | $\begin{array}{\|l\|} \hline 0.39 \\ 4 \\ \hline \end{array}$ | $\begin{array}{\|l} 0.0230 \\ 793 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.0023 \\ 7565 \\ \hline \end{array}$ | $\begin{aligned} & \hline 2.60 \\ & \text { E-22 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.7564 \\ & 08 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.083 \\ & 5393 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.37 \mathrm{E} \\ & -19 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.030 \\ & 5117 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0046 \\ 0645 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 3.50 \\ \text { E-11 } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.3133 \\ 836 \\ \hline \end{array}$ | GTEx - Breast Mammary Tissue |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 143452.11 \end{aligned}$ | 1 | $\begin{array}{\|l} \hline \text { HORM } \\ \text { AD1 } \\ \hline \end{array}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \text { rs7533 } \\ & 678 \end{aligned}$ | 1 | 150699586 | C | T | $\begin{aligned} & \hline 0.40 \\ & 527 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0227 \\ & 913 \end{aligned}$ | $\begin{aligned} & \hline 0.0023 \\ & 6385 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 5.30 \\ & \text { E-22 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.5503 \\ & 09 \end{aligned}$ | $\begin{aligned} & \hline 0.061 \\ & 2163 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 2.48 \mathrm{E} \\ & -19 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.041 \\ & 4155 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0062 \\ 9891 \\ \hline \end{array}$ | $\begin{gathered} 4.86 \\ \text { E-11 } \end{gathered}$ | $\begin{array}{\|l\|} \hline 0.0518 \\ 9475 \\ \hline \end{array}$ | GTEx - Thyroid |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 143457.6 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \text { GOLP } \\ & \text { H3L } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 150644 \\ 165 \\ \hline \end{array}$ | $\begin{aligned} & \text { rs6685 } \\ & 702 \\ & \hline \end{aligned}$ | 1 | 150656307 | G | A | $\begin{array}{\|l\|} \hline 0.40 \\ 5 \\ \hline \end{array}$ | $\begin{aligned} & 0.0227 \\ & 773 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0023 \\ 6378 \\ \hline \end{array}$ | $\begin{aligned} & 5.60 \\ & \text { E-22 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.2507 \\ & 16 \\ & \hline \end{aligned}$ | $\begin{array}{r} 0.027 \\ 9988 \\ \hline \end{array}$ | $\begin{aligned} & 3.41 \mathrm{E} \\ & -19 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.090 \\ & 849 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0138 \\ & 5 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline 5.40 \\ \text { E-11 } \\ \hline \end{array}$ | $\begin{aligned} & 0.0750 \\ & 5418 \\ & \hline \end{aligned}$ | GTEx - Esophagus Mucosa |
| $\begin{aligned} & \hline 7: 73042302 \text { _ } \\ & \text { GCTTT_G } \end{aligned}$ | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 009950.11 \\ & \hline \end{aligned}$ | 7 | $\begin{array}{\|l} \hline \text { MLXIP } \\ \mathrm{L} \\ \hline \end{array}$ | $\begin{aligned} & 730231 \\ & 98 \end{aligned}$ | $\begin{aligned} & \text { rs3476 } \\ & 3247 \\ & \hline \end{aligned}$ | 7 | 72866616 | T | A | $\begin{array}{\|l\|} \hline 0.13 \\ 9333 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.0340 \\ 615 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.0035 \\ & 132 \end{aligned}$ | $\begin{aligned} & \hline 3.20 \\ & \text { E-22 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.6662 \\ & 16 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.077 \\ & 7223 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1.02 \mathrm{E} \\ & -17 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.051 \\ & 1268 \\ & \hline \end{aligned}$ | $\begin{array}{\|l} \hline 0.0079 \\ 6144 \\ \hline \end{array}$ | $\begin{array}{\|c\|c\|} \hline 1.35 \\ \mathrm{E}-10 \\ \hline \end{array}$ | $\begin{array}{\|l} \hline 0.2345 \\ 691 \\ \hline \end{array}$ | GTEx - Pancreas |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 163131.6 \\ & \hline \end{aligned}$ | 1 | CTSS | $\begin{aligned} & 150720 \\ & 552 \end{aligned}$ | $\begin{aligned} & \text { rs8687 } \\ & 51 \end{aligned}$ | 1 | 150669414 | G | T | $\begin{aligned} & 0.39 \\ & 4 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0230 \\ 91 \\ \hline \end{array}$ | $\begin{aligned} & 0.0023 \\ & 7564 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 2.50 \\ & \text { E- } 22 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.4163 \\ & 26 \end{aligned}$ | $\begin{aligned} & \hline 0.048 \\ & 7067 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.26 \mathrm{E} \\ & -17 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.055 \\ & 4637 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0086 \\ 4091 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 1.37 \\ \mathrm{E}-10 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.1221 \\ 481 \\ \hline \end{array}$ | GTEx - Liver |
| rs34060476 | Caffeine from Coffee | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 009950.11 \\ & \hline \end{aligned}$ | 7 | $\begin{array}{\|l} \hline \text { MLXIP } \\ \mathrm{L} \\ \hline \end{array}$ | $\begin{aligned} & 730231 \\ & 98 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { rs3406 } \\ & 0476 \\ & \hline \end{aligned}$ | 7 | 73037956 | G | A | $\begin{array}{\|l\|} \hline 0.14 \\ 6685 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.0251 \\ & 884 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0033 \\ 6487 \\ \hline \end{array}$ | $\begin{array}{\|l\|l\|} \hline 7.10 \\ \text { E-14 } \\ \hline \end{array}$ | $\begin{aligned} & 0.7961 \\ & 08 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.065 \\ & 8142 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.10 \mathrm{E} \\ & -33 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.031 \\ & 6394 \end{aligned}$ | $\begin{aligned} & 0.0049 \\ & 7052 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 1.95 \\ \mathrm{E}-10 \\ \hline \end{array}$ | $\begin{aligned} & 0.1203 \\ & 55 \end{aligned}$ | GTEx - Skin Sun Exposed Lower leg |
| $\begin{aligned} & \text { 7:73042302_- } \\ & \text { GCTTT_G } \end{aligned}$ | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 009950.11 \end{aligned}$ | 7 | $\begin{array}{\|l} \hline \text { MLXIP } \\ \text { L } \\ \hline \end{array}$ | $\begin{aligned} & \hline 730231 \\ & 98 \end{aligned}$ | $\begin{aligned} & \text { rs1323 } \\ & 5543 \end{aligned}$ | 7 | 73013901 | T | C | $\begin{aligned} & \hline 0.14 \\ & 1667 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0343 \\ & 207 \end{aligned}$ | $\begin{aligned} & \hline 0.0034 \\ & 4971 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 2.60 \\ & \text { E-23 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.5410 \\ & 17 \end{aligned}$ | $\begin{aligned} & 0.066 \\ & 2661 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 3.23 \mathrm{E} \\ & -16 \end{aligned}$ | $\begin{aligned} & 0.063 \\ & 4374 \end{aligned}$ | $\begin{aligned} & \hline 0.0100 \\ & 515 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 2.77 \\ & \text { E-10 } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0996 \\ 3132 \\ \hline \end{array}$ | GTEx - Esophagus Muscularis |
| rs6062679 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 203880.7 \end{aligned}$ | 20 | $\begin{aligned} & \hline \text { PCMT } \\ & \text { D2 } \end{aligned}$ | $\begin{aligned} & 629069 \\ & 74 \end{aligned}$ | $\begin{aligned} & \text { rs1808 } \\ & 056 \end{aligned}$ | 20 | 62890932 | A | G | $\begin{aligned} & \hline 0.45 \\ & 7023 \end{aligned}$ | $\begin{aligned} & 0.0227 \\ & 612 \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 5819 \end{aligned}$ | $\begin{aligned} & 4.80 \\ & \text { E- } 22 \end{aligned}$ | $\begin{aligned} & - \\ & 0.2639 \\ & 18 \end{aligned}$ | $\begin{aligned} & 0.032 \\ & 0418 \end{aligned}$ | $\begin{aligned} & 1.77 \mathrm{E} \\ & -16 \end{aligned}$ | $\begin{aligned} & - \\ & 0.086 \\ & 2435 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0137 \\ & 65 \end{aligned}$ | $\begin{array}{\|l\|} \hline 3.72 \\ \mathrm{E}-10 \\ \hline \end{array}$ | $\begin{aligned} & 0.3796 \\ & 367 \end{aligned}$ | GTEx - Esophagus Muscularis |
| rs9624470 | Caffeine from Tea | $\begin{aligned} & \text { ENSG00000 } \\ & 100024 \end{aligned}$ | 22 | UPB1 | $\begin{aligned} & \hline 248937 \\ & 82 \end{aligned}$ | $\begin{aligned} & \text { rs1041 } \\ & 750 \end{aligned}$ | 22 | 24847606 | A | T | $\begin{aligned} & \hline 0.61 \\ & 1333 \end{aligned}$ | $\begin{aligned} & 0.0235 \\ & 842 \end{aligned}$ | $\begin{aligned} & \hline 0.0022 \\ & 8676 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 6.10 \\ & \text { E-25 } \end{aligned}$ | $\begin{aligned} & 0.5509 \\ & 49 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.069 \\ & 8889 \end{aligned}$ | $\begin{aligned} & \hline 3.19 \mathrm{E} \\ & -15 \end{aligned}$ | $\begin{aligned} & 0.042 \\ & 8065 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0068 \\ & 347 \end{aligned}$ | $\begin{array}{\|l\|} \hline 3.77 \\ \mathrm{E}-10 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.1232 \\ & 167 \end{aligned}$ | Brain-eMeta |
| rs9624470 | Caffeine from Tea | $\begin{aligned} & \text { ENSG00000 } \\ & 100024.10 \end{aligned}$ | 22 | UPB1 | $\begin{aligned} & 248937 \\ & 82 \end{aligned}$ | $\begin{aligned} & \text { rs1041 } \\ & 750 \end{aligned}$ | 22 | 24847606 | A | T | $\begin{aligned} & \hline 0.61 \\ & 1333 \end{aligned}$ | $\begin{aligned} & 0.0235 \\ & 842 \end{aligned}$ | $\begin{aligned} & 0.0022 \\ & 8676 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 6.10 \\ \text { E-25 } \end{array}$ | $\begin{aligned} & - \\ & 0.5509 \\ & 49 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.069 \\ & 8889 \end{aligned}$ | $\begin{aligned} & \hline 3.19 \mathrm{E} \\ & -15 \end{aligned}$ | $\begin{aligned} & 0.042 \\ & 8065 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0068 \\ 347 \end{array}$ | $\begin{array}{\|l\|} \hline 3.77 \\ \mathrm{E}-10 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.1232 \\ & 167 \\ & \hline \end{aligned}$ | GTEx Brain |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{array}{\|l} \hline \text { HORM } \\ \text { AD1 } \\ \hline \end{array}$ | $\begin{aligned} & 150681 \\ & 950 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { rs7524 } \\ & 620 \\ & \hline \end{aligned}$ | 1 | 150616699 | G | A | $\begin{array}{\|l\|} \hline 0.40 \\ 6774 \\ \hline \end{array}$ | $\begin{array}{\|l} \hline 0.0229 \\ 777 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.0023 \\ 6672 \\ \hline \end{array}$ | $\begin{aligned} & \hline 2.80 \\ & \text { E-22 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.0007 \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.123 \\ & 587 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 5.62 \mathrm{E} \\ & -16 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.022 \\ & 9612 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0036 \\ 9246 \\ \hline \end{array}$ | $\begin{array}{\|l\|l\|} \hline 5.02 \\ \mathrm{E}-10 \\ \hline \end{array}$ | $\begin{array}{\|l} \hline 0.0695 \\ 423 \\ \hline \end{array}$ | GTEx - Vagina |
| rs34060476 | Caffeine from Coffee | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 009950.11 \\ & \hline \end{aligned}$ | 7 | $\begin{aligned} & \hline \text { MLXIP } \\ & \text { L } \\ & \hline \end{aligned}$ | $\begin{aligned} & 730231 \\ & 98 \end{aligned}$ | $\begin{aligned} & \text { rs3406 } \\ & 0476 \\ & \hline \end{aligned}$ | 7 | 73037956 | G | A | $\begin{aligned} & \hline 0.14 \\ & 6685 \end{aligned}$ | $\begin{array}{\|l} \hline 0.0251 \\ 884 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.0033 \\ 6487 \\ \hline \end{array}$ | $\begin{aligned} & \hline 7.10 \\ & \text { E-14 } \end{aligned}$ | $\begin{aligned} & 0.7530 \\ & 91 \end{aligned}$ | $\begin{aligned} & \hline 0.068 \\ & 0875 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.95 \mathrm{E} \\ & -28 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.033 \\ & 4467 \end{aligned}$ | $\begin{aligned} & \hline 0.0053 \\ & 9518 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 5.67 \\ \mathrm{E}-10 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.1378 \\ 098 \\ \hline \end{array}$ | GTEx - Thyroid |
| rs6062679 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 203880.7 \end{aligned}$ | 20 | $\begin{array}{\|l} \hline \text { PCMT } \\ \text { D2 } \end{array}$ | $\begin{aligned} & 629069 \\ & 74 \end{aligned}$ | $\begin{aligned} & \text { rs1808 } \\ & 056 \end{aligned}$ | 20 | 62890932 | A | G | $\begin{aligned} & \hline 0.45 \\ & 7023 \end{aligned}$ | $\begin{aligned} & \hline 0.0227 \\ & 612 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0023 \\ 5819 \end{array}$ | $\begin{aligned} & 4.80 \\ & \text { E- } 22 \end{aligned}$ | $\begin{aligned} & - \\ & 0.2291 \\ & 43 \end{aligned}$ | $\begin{aligned} & 0.028 \\ & 6915 \end{aligned}$ | $\begin{aligned} & 1.39 \mathrm{E} \\ & -15 \end{aligned}$ | $\begin{aligned} & 0.099 \\ & 3319 \end{aligned}$ | $\begin{array}{\|l} \hline 0.0161 \\ 433 \end{array}$ | $\begin{aligned} & 7.60 \\ & \text { E-10 } \end{aligned}$ | $\begin{aligned} & \hline 0.3140 \\ & 653 \end{aligned}$ | GTEx - Adipose Subcutaneous |


| GWAS SNP | Caffeine Trait | probe ID | Probe <br> Chr | Gene | Probe postion | $\begin{aligned} & \text { eQTL } \\ & \text { SNP } \end{aligned}$ | $\begin{aligned} & \hline \text { eQTL } \\ & \text { SNP Chr } \end{aligned}$ | $\begin{aligned} & \hline \text { eQTL SNP } \\ & \text { position } \end{aligned}$ | $\begin{aligned} & \hline \text { EF } \\ & \text { AL } \end{aligned}$ | $\begin{aligned} & \hline \text { NE } \\ & \text { FA } \\ & \text { L } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { EF } \\ & \text { Freq } \end{aligned}$ | Beta GWAS | $\begin{aligned} & \hline \text { SE } \\ & \text { GWA } \\ & \text { S } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \boldsymbol{P} \\ \mathbf{G W} \\ \mathbf{A S} \\ \hline \end{array}$ | Beta eQTL | $\begin{array}{\|l\|} \hline \text { SE } \\ \text { eQT } \\ \text { L } \end{array}$ | $\begin{array}{\|l\|} \hline P \\ \text { eQT } \\ \text { L } \\ \hline \end{array}$ | Beta SMR | $\begin{aligned} & \hline \text { SE } \\ & \text { SMR } \end{aligned}$ | $\begin{aligned} & \hline \boldsymbol{P} \\ & \mathbf{S M} \end{aligned}$ | $\begin{aligned} & \hline \boldsymbol{P} \\ & \text { HEID } \end{aligned}$ I | eQTL repository |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 143418.15 \end{aligned}$ | 1 | CERS2 | $\begin{aligned} & 150941 \\ & 903 \end{aligned}$ | $\begin{aligned} & \text { rs2867 } \\ & 300 \end{aligned}$ | 1 | 150666990 | C | G | $\begin{aligned} & 0.40 \\ & 5 \end{aligned}$ | $\begin{aligned} & \hline 0.0227 \\ & 913 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 639 \end{aligned}$ | $\begin{aligned} & 5.30 \\ & \text { E-22 } \end{aligned}$ | $\begin{aligned} & 0.4656 \\ & 2 \end{aligned}$ | $\begin{aligned} & \hline 0.058 \\ & 5626 \end{aligned}$ | $\begin{aligned} & 1.85 \mathrm{E} \\ & -15 \end{aligned}$ | $\begin{aligned} & 0.048 \\ & 9483 \end{aligned}$ | $\begin{aligned} & 0.0079 \\ & 7972 \end{aligned}$ | $\begin{aligned} & \hline 8.57 \\ & \text { E-10 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.1157 \\ 918 \\ \hline \end{array}$ | GTEx - Brain Cerebellum |
| rs6062679 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 203880.7 \end{aligned}$ | 20 | $\begin{aligned} & \hline \text { PCMT } \\ & \text { D2 } \end{aligned}$ | $\begin{aligned} & 629069 \\ & 74 \end{aligned}$ | $\begin{aligned} & \text { rs1808 } \\ & 056 \end{aligned}$ | 20 | 62890932 | A | G | $\begin{aligned} & \hline 0.45 \\ & 7023 \end{aligned}$ | $\begin{aligned} & 0.0227 \\ & 612 \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 5819 \end{aligned}$ | $\begin{array}{\|c\|} \hline 4.80 \\ \mathrm{E}-22 \\ \hline \end{array}$ | $\begin{aligned} & 0.3266 \\ & 26 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.043 \\ & 5156 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 6.10 \mathrm{E} \\ \hline-14 \end{array}$ | $\begin{aligned} & \hline- \\ & 0.069 \\ & 6858 \end{aligned}$ | $\begin{aligned} & 0.0117 \\ & 61 \end{aligned}$ | $\begin{aligned} & \hline 3.12 \\ & \text { E-09 } \end{aligned}$ | $\begin{aligned} & \hline 0.3331 \\ & 977 \end{aligned}$ | GTEx - Esophagus Gastroesophageal Junction |
| rs2521501 | Caffeine from Coffee | $\begin{aligned} & \text { ILMN_1693 } \\ & 650 \end{aligned}$ | 15 | FES | $\begin{aligned} & 914388 \\ & 55 \end{aligned}$ | $\begin{aligned} & \text { rs2521 } \\ & 501 \end{aligned}$ | 15 | 91437388 | T | A | $\begin{aligned} & \hline 0.33 \\ & 9029 \end{aligned}$ | $\begin{aligned} & 0.0149 \\ & 164 \end{aligned}$ | $\begin{aligned} & 0.0024 \\ & 72 \end{aligned}$ | $\begin{array}{\|l\|} \hline 1.60 \\ \text { E-09 } \\ \hline \end{array}$ | $\begin{aligned} & 0.4574 \\ & 56 \end{aligned}$ | $\begin{aligned} & \hline 0.019 \\ & 6169 \end{aligned}$ | $\begin{array}{\|l\|} \hline 2.81 \mathrm{E} \\ -120 \end{array}$ | $\begin{aligned} & \hline 0.032 \\ & 6073 \end{aligned}$ | $\begin{aligned} & \hline 0.0055 \\ & 8178 \end{aligned}$ | $\begin{aligned} & \hline 5.17 \\ & \text { E-09 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.8210 \\ 296 \end{array}$ | Westra |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143418.15 \\ & \hline \end{aligned}$ | 1 | CERS2 | $\begin{aligned} & 150941 \\ & 903 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { rs1765 } \\ & 8705 \\ & \hline \end{aligned}$ | 1 | 150678071 | T | G | $\begin{aligned} & \hline 0.40 \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0227 \\ & 92 \end{aligned}$ | $\begin{aligned} & \hline 0.0023 \\ & 6378 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 5.30 \\ \text { E-22 } \\ \hline \end{array}$ | $\begin{aligned} & 0.1696 \\ & 54 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.023 \\ & 2326 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 2.83 \mathrm{E} \\ -13 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.134 \\ & 344 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0230 \\ & 778 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 5.84 \\ & \text { E-09 } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0773 \\ 745 \\ \hline \end{array}$ | GTEx - Adipose Subcutaneous |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \text { HORM } \\ & \text { AD1 } \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \text { rs1120 } \\ & 4705 \\ & \hline \end{aligned}$ | 1 | 150672223 | T | G | $\begin{aligned} & 0.40 \\ & 5 \end{aligned}$ | $\begin{aligned} & 0.0227 \\ & 919 \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 6378 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 5.30 \\ \text { E-22 } \\ \hline \end{array}$ | $\begin{aligned} & 0.3936 \\ & 16 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.054 \\ 7792 \\ \hline \end{array}$ | $\begin{aligned} & \hline 6.70 \mathrm{E} \\ & -13 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline 0.057 \\ 9039 \\ \hline \end{array}$ | $\begin{aligned} & 0.0100 \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 8.33 \\ & \text { E-09 } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0656 \\ 8804 \\ \hline \end{array}$ | GTEx - Muscle Skeletal |
| rs9624470 | Caffeine from Tea | $\begin{aligned} & \text { ENSG00000 } \\ & 100024.10 \end{aligned}$ | 22 | UPB1 | $\begin{aligned} & 248937 \\ & 82 \end{aligned}$ | $\begin{aligned} & \text { rs1008 } \\ & 932 \end{aligned}$ | 22 | 24855182 | T | C | $\begin{aligned} & 0.61 \\ & 3 \end{aligned}$ | $\begin{aligned} & 0.0234 \\ & 215 \end{aligned}$ | $\begin{aligned} & 0.0022 \\ & 8758 \end{aligned}$ | $\begin{array}{\|l\|} \hline 1.30 \\ \text { E-24 } \\ \hline \end{array}$ | $\begin{aligned} & 0.2822 \\ & 94 \end{aligned}$ | $\begin{aligned} & \hline 0.041 \\ & 1528 \end{aligned}$ | $\begin{array}{\|l\|} \hline 6.90 \mathrm{E} \\ -12 \end{array}$ | $\begin{aligned} & - \\ & 0.082 \\ & 9685 \end{aligned}$ | $\begin{aligned} & \hline 0.0145 \\ & 588 \end{aligned}$ | $\begin{aligned} & 1.21 \\ & \mathrm{E}-08 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.1022 \\ 363 \\ \hline \end{array}$ | GTEx - Lung |
| rs11204711 | Caffeine from Tea | $\begin{aligned} & \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \text { HORM } \\ & \text { AD1 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \text { rs7529 } \\ & 194 \end{aligned}$ | 1 | 150622620 | A | T | $\begin{aligned} & 0.39 \\ & 4 \end{aligned}$ | $\begin{aligned} & 0.0136 \\ & 362 \end{aligned}$ | $\begin{aligned} & 0.0022 \\ & 8609 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 2.40 \\ \text { E-09 } \\ \hline \end{array}$ | $\begin{aligned} & 1.0683 \\ & 6 \end{aligned}$ | $\begin{aligned} & \hline 0.057 \\ & 2195 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 8.48 \mathrm{E} \\ -78 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.012 \\ & 7637 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0022 \\ & 4635 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1.33 \\ & \text { E-08 } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0657 \\ 5839 \\ \hline \end{array}$ | GTEx - Skin Not Sun Exposed Suprapubic |
| rs11204711 | Caffeine from Tea | $\begin{aligned} & \text { ENSG00000 } \\ & 143452.11 \end{aligned}$ | 1 | $\begin{array}{\|l} \hline \text { HORM } \\ \text { AD1 } \\ \hline \end{array}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \text { rs1120 } \\ & 4717 \\ & \hline \end{aligned}$ | 1 | 150709129 | A | T | $\begin{aligned} & 0.39 \\ & 4263 \end{aligned}$ | $\begin{aligned} & 0.0134 \\ & 274 \end{aligned}$ | $\begin{aligned} & 0.0022 \\ & 8667 \\ & \hline \end{aligned}$ | $\begin{array}{\|c\|} \hline 4.30 \\ \text { E-09 } \\ \hline \end{array}$ | $\begin{aligned} & 1.1079 \\ & 7 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.050 \\ 8788 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 3.86 \mathrm{E} \\ -105 \\ \hline \end{array}$ | $\begin{aligned} & 0.012 \\ & 1189 \end{aligned}$ | $\begin{aligned} & 0.0021 \\ & 3755 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.43 \\ & \text { E-08 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.1723 \\ 868 \end{array}$ | GTEx - Skin Sun Exposed Lower leg |
| rs11204711 | Caffeine from Tea | $\begin{aligned} & \text { ENSG00000 } \\ & 143452.11 \end{aligned}$ | 1 | HORM AD1 | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \text { rs1120 } \\ & 4718 \end{aligned}$ | 1 | 150709785 | G | C | $\begin{aligned} & 0.39 \\ & 4263 \end{aligned}$ | $\begin{aligned} & 0.0134 \\ & 292 \end{aligned}$ | $\begin{aligned} & 0.0022 \\ & 8668 \end{aligned}$ | $\begin{array}{\|l\|} \hline 4.30 \\ \text { E-09 } \end{array}$ | $\begin{aligned} & 1.1272 \\ & 6 \end{aligned}$ | $\begin{aligned} & \hline 0.052 \\ & 9239 \end{aligned}$ | $\begin{array}{\|l\|} \hline 1.14 \mathrm{E} \\ -100 \end{array}$ | $\begin{aligned} & \hline 0.011 \\ & 9131 \end{aligned}$ | $\begin{aligned} & 0.0021 \\ & 0422 \end{aligned}$ | $\begin{aligned} & 1.50 \\ & \text { E-08 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0779 \\ 8458 \\ \hline \end{array}$ | GTEx - Esophagus Mucosa |
| rs11204711 | Caffeine from Tea | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143457.6 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \hline \text { GOLP } \\ & \text { H3L } \\ & \hline \end{aligned}$ | $\begin{aligned} & 150644 \\ & 165 \end{aligned}$ | $\begin{aligned} & \text { rs1134 } \\ & 067 \\ & \hline \end{aligned}$ | 1 | 150721175 | T | G | $\begin{aligned} & \hline 0.39 \\ & 639 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0136 \\ & 748 \end{aligned}$ | $\begin{aligned} & 0.0022 \\ & 8844 \end{aligned}$ | $\begin{array}{\|l\|} \hline 2.30 \\ \text { E-09 } \\ \hline \end{array}$ | $\begin{aligned} & 0.7886 \\ & 72 \end{aligned}$ | $\begin{aligned} & \hline 0.045 \\ & 5441 \end{aligned}$ | $\begin{array}{\|l\|} \hline 3.52 \mathrm{E} \\ -67 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.017 \\ & 339 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0030 \\ & 6954 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1.62 \\ & \text { E-08 } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0930 \\ 4391 \\ \hline \end{array}$ | GTEx - Skin Sun Exposed Lower leg |
| rs9624470 | Caffeine from Tea | $\begin{aligned} & \text { ENSG00000 } \\ & 100024.10 \end{aligned}$ | 22 | UPB1 | $\begin{aligned} & 248937 \\ & 82 \end{aligned}$ | $\begin{aligned} & \text { rs9624 } \\ & 470 \end{aligned}$ | 22 | 24820268 | A | G | $\begin{aligned} & 0.57 \\ & 9127 \end{aligned}$ | $\begin{aligned} & 0.0253 \\ & 437 \end{aligned}$ | $\begin{aligned} & 0.0022 \\ & 7204 \end{aligned}$ | $\begin{array}{\|l\|} \hline 6.80 \\ \text { E-29 } \\ \hline \end{array}$ | $\begin{aligned} & 0.3008 \\ & 33 \end{aligned}$ | $\begin{aligned} & 0.045 \\ & 9905 \end{aligned}$ | $\begin{array}{\|l\|} \hline 6.10 \mathrm{E} \\ -11 \end{array}$ | $\begin{aligned} & \mathbf{0 . 0 8 4} \\ & 2451 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0149 \\ & 303 \end{aligned}$ | $\begin{aligned} & 1.68 \\ & \text { E-08 } \end{aligned}$ | $\begin{array}{\|l} \hline 0.2396 \\ 185 \end{array}$ | GTEx - Muscle Skeletal |
| rs9611527 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 100401.15 \end{aligned}$ | 22 | $\begin{aligned} & \text { RANG } \\ & \text { AP1 } \end{aligned}$ | $\begin{aligned} & 416619 \\ & 35 \end{aligned}$ | $\begin{aligned} & \text { rs6002 } \\ & 310 \end{aligned}$ | 22 | 41675126 | G | A | $\begin{aligned} & 0.34 \\ & 4043 \end{aligned}$ | $\begin{aligned} & \hline- \\ & 0.0193 \\ & 024 \end{aligned}$ | $\begin{aligned} & 0.0024 \\ & 6584 \end{aligned}$ | $\begin{aligned} & \hline 5.00 \\ & \text { E-15 } \end{aligned}$ | $\begin{aligned} & 0.2194 \\ & 37 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.026 \\ & 9815 \end{aligned}$ | $\begin{array}{\|l\|} \hline 4.19 \mathrm{E} \\ -16 \end{array}$ | $\begin{aligned} & 0.087 \\ & 9633 \end{aligned}$ | $\begin{aligned} & 0.0155 \\ & 966 \end{aligned}$ | $\begin{aligned} & \hline 1.70 \\ & \text { E-08 } \end{aligned}$ | $\begin{array}{\|l} \hline 0.2792 \\ 009 \end{array}$ | GTEx - Esophagus Mucosa |
| rs9624470 | Caffeine from Tea | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 100024.10 \end{aligned}$ | 22 | UPB1 | $\begin{aligned} & \hline 248937 \\ & 82 \end{aligned}$ | $\begin{aligned} & \hline \text { rs1170 } \\ & 3648 \end{aligned}$ | 22 | 24843886 | G | C | $\begin{aligned} & 0.58 \\ & 4 \end{aligned}$ | $\begin{aligned} & 0.0249 \\ & 661 \end{aligned}$ | $\begin{aligned} & \hline 0.0022 \\ & 6437 \end{aligned}$ | $\begin{array}{l\|} \hline 2.90 \\ \text { E-28 } \\ \hline \end{array}$ | $\begin{aligned} & 0.6039 \\ & 32 \end{aligned}$ | $\begin{aligned} & \hline 0.093 \\ & 6659 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 1.14 \mathrm{E} \\ \hline-10 \end{array}$ | $\begin{array}{r} 0.041 \\ 3393 \\ \hline \end{array}$ | $\begin{aligned} & 0.0074 \\ & 2728 \end{aligned}$ | $\begin{aligned} & \hline 2.61 \\ & \text { E-08 } \end{aligned}$ | $\begin{aligned} & \hline 0.2119 \\ & 155 \end{aligned}$ | GTEx - Brain Putamen basal ganglia |
| rs11204711 | Caffeine from Tea | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \text { HORM } \\ & \text { AD1 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \hline \text { rs1118 } \\ & 42513 \\ & \hline \end{aligned}$ | 1 | 150712926 | A | G | $\begin{aligned} & \hline 0.39 \\ & 4263 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0134 \\ & 291 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0022 \\ & 8685 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 4.30 \\ & \mathrm{E}-09 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.9211 \\ & 19 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.057 \\ 4382 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 7.08 \mathrm{E} \\ \hline-58 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.014 \\ & 5791 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0026 \\ & 439 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 3.50 \\ & \text { E-08 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.1929 \\ & 549 \\ & \hline \end{aligned}$ | GTEx - Adipose Subcutaneous |
| $\begin{aligned} & \text { 16:18776851 } \\ & \text { _G_GA } \end{aligned}$ | Combined Caffeine | $\begin{aligned} & \text { ILMN_1708 } \\ & 416 \end{aligned}$ | 16 | $\begin{aligned} & \text { ARL6I } \\ & \text { P1 } \end{aligned}$ | $\begin{aligned} & 188034 \\ & 95 \end{aligned}$ | $\begin{aligned} & \text { rs1164 } \\ & 0850 \end{aligned}$ | 16 | 18823607 | A | G | $\begin{aligned} & \hline 0.37 \\ & 8333 \end{aligned}$ | $\begin{aligned} & - \\ & 0.0135 \\ & 92 \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 763 \end{aligned}$ | $\begin{aligned} & \hline 1.10 \\ & \text { E-08 } \end{aligned}$ | $\begin{aligned} & - \\ & 0.5689 \\ & 52 \end{aligned}$ | $\begin{aligned} & \hline 0.028 \\ & 2008 \end{aligned}$ | $\begin{array}{\|l\|} \hline 1.62 \mathrm{E} \\ \hline-90 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.023 \\ & 8895 \end{aligned}$ | $\begin{aligned} & 0.0043 \\ & 4124 \end{aligned}$ | $\begin{aligned} & \hline 3.74 \\ & \text { E-08 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.7615 \\ 016 \end{array}$ | CAGE |
| rs11204711 | Caffeine from Tea | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \hline \text { HORM } \\ & \text { AD1 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \hline \text { rs7270 } \\ & 4603 \\ & \hline \end{aligned}$ | 1 | 150707992 | T | C | $\begin{aligned} & \hline 0.39 \\ & 4263 \end{aligned}$ | $\begin{aligned} & \hline 0.0134 \\ & 578 \end{aligned}$ | $\begin{aligned} & \hline 0.0022 \\ & 8692 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 4.00 \\ & \text { E-09 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.9507 \\ & 96 \end{aligned}$ | $\begin{aligned} & \hline 0.062 \\ & 3663 \end{aligned}$ | $\begin{aligned} & 1.77 \mathrm{E} \\ & -52 \end{aligned}$ | $\begin{aligned} & \hline 0.014 \\ & 1542 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0025 \\ & 7824 \end{aligned}$ | $\begin{aligned} & \hline 4.02 \\ & \text { E-08 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.1913 \\ 184 \\ \hline \end{array}$ | GTEx - Cells Transformed fibroblasts |
| rs768283768 | Caffeine from Coffee | $\begin{aligned} & \text { ILMN_1743 } \\ & 032 \\ & \hline \end{aligned}$ | 1 | CTSS | $\begin{aligned} & 150702 \\ & 935 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { rs2867 } \\ & 301 \\ & \hline \end{aligned}$ | 1 | 150653795 | T | C | $\begin{aligned} & 0.40 \\ & 5 \end{aligned}$ | $\begin{aligned} & 0.0129 \\ & 773 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 3671 \end{aligned}$ | $\begin{array}{\|l\|l} \hline 2.80 \\ \text { E-08 } \\ \hline \end{array}$ | $\begin{aligned} & 0.4966 \\ & 67 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.018 \\ 5951 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 3.64 \mathrm{E} \\ -157 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.026 \\ & 1288 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0048 \\ & 0541 \\ & \hline \end{aligned}$ | $\begin{aligned} & 5.41 \\ & \text { E-08 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.3674 \\ & 49 \end{aligned}$ | Westra |
| rs6062679 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 203880.7 \end{aligned}$ | 20 | $\begin{aligned} & \hline \text { PCMT } \\ & \text { D2 } \end{aligned}$ | $\begin{aligned} & 629069 \\ & 74 \end{aligned}$ | $\begin{aligned} & \text { rs6062 } \\ & 679 \end{aligned}$ | 20 | 62889991 | C | T | $\begin{aligned} & \hline 0.45 \\ & 6993 \end{aligned}$ | $\begin{aligned} & 0.0227 \\ & 779 \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 5823 \end{aligned}$ | $\begin{array}{\|l\|} \hline 4.50 \\ \text { E-22 } \\ \hline \end{array}$ | $\begin{aligned} & - \\ & 0.3445 \\ & 57 \end{aligned}$ | $\begin{aligned} & 0.052 \\ & 49 \end{aligned}$ | $\begin{array}{\|l\|} \hline 5.23 \mathrm{E} \\ -11 \end{array}$ | $\begin{aligned} & \hline- \\ & 0.066 \\ & 1078 \end{aligned}$ | $\begin{aligned} & 0.0121 \\ & 765 \end{aligned}$ | $\begin{aligned} & \hline 5.66 \\ & \text { E-08 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.6792 \\ 679 \end{array}$ | GTEx - Pancreas |
| rs768283768 | Caffeine from Coffee | $\begin{aligned} & \text { ILMN_1743 } \\ & 032 \\ & \hline \end{aligned}$ | 1 | CTSS | $\begin{aligned} & 150702 \\ & 936 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { rs } 1977 \\ & 715 \\ & \hline \end{aligned}$ | 1 | 150675147 | G | A | $\begin{aligned} & \hline 0.40 \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0129 \\ & 724 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 3671 \\ & \hline \end{aligned}$ | $\begin{array}{l\|l\|} \hline 2.80 \\ \text { E-08 } \\ \hline \end{array}$ | $\begin{aligned} & 0.6308 \\ & 79 \end{aligned}$ | $\begin{array}{\|c\|} \hline 0.028 \\ 3742 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 1.60 \mathrm{E} \\ -109 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.020 \\ & 5624 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0038 \\ & 1761 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 7.20 \\ & \text { E-08 } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0665 \\ 6519 \\ \hline \end{array}$ | CAGE |
| rs34060476 | Caffeine from Coffee | $\begin{aligned} & \text { ENSG00000 } \\ & 009950.11 \end{aligned}$ | 7 | $\begin{aligned} & \text { MLXIP } \\ & \mathrm{L} \\ & \hline \end{aligned}$ | $\begin{aligned} & 730231 \\ & 98 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { rs3476 } \\ & 3247 \end{aligned}$ | 7 | 72866616 | T | A | $\begin{aligned} & \hline 0.13 \\ & 9333 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0240 \\ & 415 \end{aligned}$ | $\begin{aligned} & 0.0034 \\ & 7404 \end{aligned}$ | $\begin{array}{\|l\|} \hline 4.50 \\ \mathrm{E}-12 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.6662 \\ & 16 \end{aligned}$ | $\begin{aligned} & \hline 0.077 \\ & 7223 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1.02 \mathrm{E} \\ & -17 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.036 \\ & 0866 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0067 \\ & 0191 \end{aligned}$ | $\begin{aligned} & \hline 7.26 \\ & \text { E-08 } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.2448 \\ \hline 739 \\ \hline \end{array}$ | GTEx - Pancreas |
| rs73053413 | Caffeine from Tea | $\begin{aligned} & \text { ENSG00000 } \\ & 111215.7 \end{aligned}$ | 12 | PRR4 | $\begin{aligned} & 111508 \\ & 85 \end{aligned}$ | $\begin{aligned} & \hline \text { rs1077 } \\ & 2395 \end{aligned}$ | 12 | 11128666 | T | C | $\begin{aligned} & \hline 0.83 \\ & 1333 \end{aligned}$ | $\begin{aligned} & 0.0206 \\ & 226 \end{aligned}$ | $\begin{aligned} & 0.0029 \\ & 9459 \end{aligned}$ | $\begin{aligned} & \hline 5.70 \\ & \text { E-12 } \end{aligned}$ | $\begin{aligned} & - \\ & 0.7106 \\ & 79 \end{aligned}$ | $\begin{aligned} & \hline 0.082 \\ & 9164 \end{aligned}$ | $\begin{aligned} & \hline 1.03 \mathrm{E} \\ & -17 \end{aligned}$ | $\begin{array}{\|l\|} \hline- \\ 0.029 \\ 0182 \end{array}$ | $\begin{aligned} & 0.0054 \\ & 0533 \end{aligned}$ | $\begin{aligned} & \hline 7.94 \\ & \text { E-08 } \end{aligned}$ | $\begin{array}{\|l} \hline 0.1335 \\ 246 \end{array}$ | GTEx - Cells Transformed fibroblasts |
| rs73053413 | Caffeine from Tea | $\begin{aligned} & \text { ENSG00000 } \\ & 212125.2 \end{aligned}$ | 12 | $\begin{aligned} & \text { TAS2R } \\ & 15 \end{aligned}$ | $\begin{aligned} & 111174 \\ & 87 \end{aligned}$ | $\begin{aligned} & \text { rs1669 } \\ & 411 \end{aligned}$ | 12 | 11338614 | G | A | $\begin{aligned} & \hline 0.83 \\ & 3667 \end{aligned}$ | $\begin{aligned} & 0.0215 \\ & 404 \end{aligned}$ | $\begin{aligned} & 0.0030 \\ & 102 \end{aligned}$ | $\begin{aligned} & \hline 8.30 \\ & \text { E-13 } \end{aligned}$ | $\begin{aligned} & - \\ & 0.5838 \\ & 53 \end{aligned}$ | $\begin{aligned} & \hline 0.072 \\ & 0713 \end{aligned}$ | $\begin{aligned} & 5.45 \mathrm{E} \\ & -16 \end{aligned}$ | $\begin{array}{\|l\|} \hline- \\ 0.036 \\ 8935 \\ \hline \end{array}$ | $\begin{aligned} & 0.0068 \\ & 7911 \end{aligned}$ | $\begin{aligned} & \hline 8.18 \\ & \text { E-08 } \end{aligned}$ | $\begin{array}{\|l} \hline 0.2270 \\ 893 \end{array}$ | GTEx - Nerve Tibial |


| GWAS SNP | Caffeine Trait | probe ID | Probe Chr | Gene | Probe postion | $\begin{aligned} & \text { eQTL } \\ & \text { SNP } \end{aligned}$ | $\begin{aligned} & \hline \text { eQTL } \\ & \text { SNP Chr } \end{aligned}$ | $\begin{aligned} & \hline \text { eQTL SNP } \\ & \text { position } \end{aligned}$ | $\begin{aligned} & \hline \mathbf{E F} \\ & \text { AL } \end{aligned}$ | $\begin{aligned} & \hline \mathbf{N E} \\ & \text { FA } \\ & \mathbf{L} \end{aligned}$ | $\begin{aligned} & \hline \text { EF } \\ & \text { Freq } \end{aligned}$ | $\begin{aligned} & \text { Beta } \\ & \text { GWAS } \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { SE } \\ \text { GWA } \\ \text { S } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \boldsymbol{P} \\ \text { GW } \\ \text { GS } \end{array}$ | $\begin{aligned} & \text { Beta } \\ & \text { eQTL } \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { SE } \\ \text { eQT } \\ \hline \mathbf{L} \\ \hline \end{array}$ | $\begin{aligned} & \hline P \\ & \text { eQT } \\ & \text { L } \end{aligned}$ | Beta <br> SMR | $\begin{aligned} & \hline \text { SE } \\ & \text { SMR } \end{aligned}$ | $\begin{aligned} & P \\ & \mathbf{S M} \\ & \mathbf{R} \end{aligned}$ | $\begin{array}{\|l\|} \hline P \\ \text { HEID } \\ \hline \mathbf{I} \\ \hline \end{array}$ | eQTL repository |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs73053413 | Caffeine from Tea | $\begin{aligned} & \text { ENSG00000 } \\ & 212125.2 \end{aligned}$ | 12 | $\begin{aligned} & \text { TAS2R } \\ & 15 \end{aligned}$ | $\begin{aligned} & 111174 \\ & 87 \end{aligned}$ | $\begin{aligned} & \text { rs1873 } \\ & 28 \end{aligned}$ | 12 | 11331479 | C | T | $\begin{aligned} & \hline 0.83 \\ & 3889 \end{aligned}$ | $\begin{aligned} & 0.0215 \\ & 481 \end{aligned}$ | $\begin{aligned} & 0.0030 \\ & 1052 \end{aligned}$ | $\begin{array}{\|l\|} \hline 8.20 \\ \text { E-13 } \end{array}$ | $\begin{aligned} & - \\ & 0.5704 \\ & 06 \end{aligned}$ | $\begin{aligned} & \hline 0.071 \\ & 3309 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.28 \mathrm{E} \\ & -15 \end{aligned}$ | $\begin{aligned} & 0.037 \\ & 7768 \end{aligned}$ | $\begin{aligned} & 0.0070 \\ & 8328 \end{aligned}$ | $\begin{aligned} & \hline 9.65 \\ & \text { E-08 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.1048 \\ \hline 308 \end{array}$ | GTEx - Lung |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143452.11 \end{aligned}$ | 1 | $\begin{aligned} & \hline \text { HORM } \\ & \text { AD1 } \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \hline \text { rs1120 } \\ & 4694 \end{aligned}$ | 1 | 150653391 | A | G | $\begin{aligned} & \hline 0.39 \\ & 4 \end{aligned}$ | $\begin{aligned} & \hline 0.0231 \\ & 206 \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 7574 \end{aligned}$ | $\begin{array}{\|l\|} \hline 2.20 \\ \mathrm{E}-22 \\ \hline \end{array}$ | $\begin{aligned} & 0.5935 \\ & 78 \end{aligned}$ | $\begin{aligned} & \hline 0.093 \\ & 5545 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 2.23 \mathrm{E} \\ & -10 \end{aligned}$ | $\begin{aligned} & \hline 0.038 \\ & 9512 \end{aligned}$ | $\begin{aligned} & 0.0073 \\ & 286 \end{aligned}$ | $\begin{aligned} & \hline 1.07 \\ & \mathrm{E}-07 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0787 \\ & 4566 \\ & \hline \end{aligned}$ | GTEx - Colon Sigmoid |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 143452.11 \end{aligned}$ | 1 | $\begin{aligned} & \text { HORM } \\ & \text { AD1 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \text { rs6685 } \\ & 702 \end{aligned}$ | 1 | 150656307 | G | A | $\begin{array}{\|l} \hline 0.40 \\ 5 \end{array}$ | $\begin{aligned} & 0.0227 \\ & 773 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 6378 \end{aligned}$ | $\begin{array}{\|l\|} \hline 5.60 \\ \text { E-22 } \\ \hline \end{array}$ | $\begin{aligned} & 0.4621 \\ & 13 \end{aligned}$ | $\begin{aligned} & \hline 0.072 \\ & 5196 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.86 \mathrm{E} \\ & -10 \\ & \hline \end{aligned}$ | $\begin{array}{\|l} \hline 0.049 \\ 2895 \\ \hline \end{array}$ | $\begin{aligned} & 0.0092 \\ & 7337 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1.07 \\ & \text { E-07 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.2066 \\ 777 \\ \hline \end{array}$ | GTEx - Esophagus Muscularis |
| rs34060476 | Caffeine from Coffee | $\begin{aligned} & \text { ENSG00000 } \\ & 009950.11 \end{aligned}$ | 7 | $\begin{aligned} & \text { MLXIP } \\ & \mathrm{L} \end{aligned}$ | $\begin{aligned} & 730231 \\ & 98 \end{aligned}$ | $\begin{aligned} & \hline \text { rs1323 } \\ & 5543 \\ & \hline \end{aligned}$ | 7 | 73013901 | T | C | $\begin{aligned} & \hline 0.14 \\ & 1667 \end{aligned}$ | $\begin{aligned} & 0.0238 \\ & 165 \end{aligned}$ | $\begin{aligned} & \hline 0.0034 \\ & 1046 \end{aligned}$ | $\begin{aligned} & \hline 2.90 \\ & \mathrm{E}-12 \end{aligned}$ | $\begin{aligned} & 0.5410 \\ & 17 \end{aligned}$ | $\begin{aligned} & \hline 0.066 \\ & 2661 \end{aligned}$ | $\begin{aligned} & \hline 3.23 \mathrm{E} \\ & -16 \end{aligned}$ | $\begin{aligned} & \hline 0.044 \\ & 0217 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0082 \\ & 9525 \end{aligned}$ | $\begin{aligned} & \hline 1.12 \\ & \text { E-07 } \end{aligned}$ | $\begin{aligned} & \hline 0.0923 \\ & 8904 \end{aligned}$ | GTEx - Esophagus Muscularis |
| rs768283768 | Caffeine from Coffee | $\begin{aligned} & \text { ENSG00000 } \\ & 143457.6 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \text { GOLP } \\ & \text { H3L } \end{aligned}$ | $\begin{aligned} & 150644 \\ & 165 \end{aligned}$ | $\begin{aligned} & \hline \text { rs1134 } \\ & 067 \\ & \hline \end{aligned}$ | 1 | 150721175 | T | G | $\begin{aligned} & \hline 0.39 \\ & 639 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0131 \\ & 067 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 5125 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 2.50 \\ \text { E-08 } \\ \hline \end{array}$ | $\begin{aligned} & 0.7886 \\ & 72 \end{aligned}$ | $\begin{aligned} & \hline 0.045 \\ & 5441 \end{aligned}$ | $\begin{aligned} & \hline 3.52 \mathrm{E} \\ & -67 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.016 \\ 6187 \\ \hline \end{array}$ | $\begin{aligned} & 0.0031 \\ & 3194 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1.12 \\ & \mathrm{E}-07 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.6084 \\ \hline 519 \\ \hline \end{array}$ | GTEx - Skin Sun Exposed Lower leg |
| $\begin{aligned} & 7: 73042302 \\ & \text { GCTTT_G } \\ & \hline \end{aligned}$ | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 009950.11 \end{aligned}$ | 7 | $\begin{aligned} & \text { MLXIP } \\ & \text { L } \end{aligned}$ | $\begin{aligned} & 730231 \\ & 98 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { rs1324 } \\ 6993 \end{array}$ | 7 | 73022746 | A | G | $\begin{aligned} & \hline 0.14 \\ & 2667 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0347 \\ & 445 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0034 \\ & 5425 \end{aligned}$ | $\begin{aligned} & \hline 8.40 \\ & \text { E-24 } \end{aligned}$ | $\begin{aligned} & 0.5067 \\ & 04 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.081 \\ 5321 \\ \hline \end{array}$ | $\begin{aligned} & \hline 5.14 \mathrm{E} \\ & -10 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.068 \\ & 5696 \end{aligned}$ | $\begin{aligned} & 0.0129 \\ & \hline 995 \end{aligned}$ | $\begin{aligned} & \hline 1.24 \\ & \mathrm{E}-07 \end{aligned}$ | $\begin{aligned} & 0.2659 \\ & 09 \end{aligned}$ | GTEx - Esophagus Gastroesophageal Junction |
| rs768283768 | Caffeine from Coffee | $\begin{aligned} & \text { ENSG00000 } \\ & 143452.11 \end{aligned}$ | 1 | HORM AD1 | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \hline \text { rs1120 } \\ & 4717 \end{aligned}$ | 1 | 150709129 | A | T | $\begin{aligned} & \hline 0.39 \\ & 4263 \end{aligned}$ | $\begin{aligned} & 0.0127 \\ & 784 \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 4937 \end{aligned}$ | $\begin{array}{\|l\|} \hline 5.40 \\ \text { E-08 } \\ \hline \end{array}$ | $\begin{aligned} & 1.1079 \\ & 7 \end{aligned}$ | $\begin{aligned} & \hline 0.050 \\ & 8788 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.86 \mathrm{E} \\ & -105 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.011 \\ & 5332 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0021 \\ & 8557 \end{aligned}$ | $\begin{aligned} & \hline 1.31 \\ & \mathrm{E}-07 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.5859 \\ 677 \end{array}$ | GTEx - Skin Sun Exposed Lower leg |
| rs768283768 | Caffeine from Coffee | $\begin{aligned} & \text { ENSG00000 } \\ & 143452.11 \end{aligned}$ | 1 | $\begin{aligned} & \text { HORM } \\ & \text { AD1 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \text { rs1120 } \\ & 4718 \\ & \hline \end{aligned}$ | 1 | 150709785 | G | C | $\begin{aligned} & \hline 0.39 \\ & 4263 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0127 \\ & 732 \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 4939 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 5.40 \\ \text { E-08 } \\ \hline \end{array}$ | $\begin{aligned} & 1.1272 \\ & 6 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.052 \\ 9239 \\ \hline \end{array}$ | $\begin{aligned} & 1.14 \mathrm{E} \\ & -100 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.011 \\ & 3312 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0021 \\ & 5098 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.38 \\ & \text { E-07 } \end{aligned}$ | $\begin{aligned} & 0.6964 \\ & 135 \end{aligned}$ | GTEx - Esophagus Mucosa |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \text { HORM } \\ & \text { AD1 } \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { rs1158 } \\ & 3636 \\ & \hline \end{aligned}$ | 1 | 150694777 | G | A | $\begin{aligned} & \hline 0.40 \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0227 \\ & 894 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0023 \\ & 638 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline 5.40 \\ \mathrm{E}-22 \\ \hline \end{array}$ | $\begin{aligned} & 0.7326 \\ & 26 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.117 \\ 162 \\ \hline \end{array}$ | $\begin{aligned} & 4.02 \mathrm{E} \\ & -10 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.031 \\ 1065 \\ \hline \end{array}$ | $\begin{aligned} & 0.0059 \\ & 2929 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1.55 \\ & \text { E-07 } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0746 \\ 2922 \\ \hline \end{array}$ | GTEx - Cells EBVtransformed lymphocytes |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 143379.8 \end{aligned}$ | 1 | $\begin{aligned} & \text { SETDB } \\ & 1 \end{aligned}$ | $\begin{aligned} & 150917 \\ & 976 \end{aligned}$ | $\begin{aligned} & \text { rs1765 } \\ & 8705 \end{aligned}$ | 1 | 150678071 | T | G | $\begin{aligned} & \hline 0.40 \\ & 5 \end{aligned}$ | $\begin{aligned} & 0.0227 \\ & 92 \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 6378 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 5.30 \\ & \text { E-22 } \end{aligned}$ | $\begin{aligned} & 0.2435 \\ & 04 \end{aligned}$ | $\begin{aligned} & \hline 0.038 \\ & 968 \end{aligned}$ | $\begin{aligned} & 4.14 \mathrm{E} \\ & -10 \end{aligned}$ | $\begin{aligned} & \hline- \\ & 0.093 \\ & 6001 \end{aligned}$ | $\begin{aligned} & 0.0178 \\ & 493 \end{aligned}$ | $\begin{aligned} & \hline 1.57 \\ & \text { E-07 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.2054 \\ 016 \end{array}$ | GTEx - Skin Not Sun Exposed Suprapubic |
| rs2521501 | Caffeine from Coffee | $\begin{aligned} & \text { ENSG00000 } \\ & 182511.7 \end{aligned}$ | 15 | FES | $\begin{aligned} & 914329 \\ & 65 \end{aligned}$ | $\begin{aligned} & \text { rs7497 } \\ & 304 \end{aligned}$ | 15 | 91429176 | T | G | $\begin{aligned} & 0.34 \\ & 3 \end{aligned}$ | $\begin{array}{\|l} 0.0142 \\ 403 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.0024 \\ & 4464 \end{aligned}$ | $\begin{aligned} & \hline 5.70 \\ & \text { E-09 } \end{aligned}$ | $0.5141$ | $\begin{aligned} & \hline 0.043 \\ & 6416 \\ & \hline \end{aligned}$ | $\begin{aligned} & 4.95 \mathrm{E} \\ & -32 \end{aligned}$ | $\begin{aligned} & 0.027 \\ & 6995 \end{aligned}$ | $\begin{aligned} & 0.0053 \\ & 0479 \end{aligned}$ | $\begin{aligned} & \hline 1.77 \\ & \text { E-07 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.5628 \\ 922 \end{array}$ | GTEx - Thyroid |
| rs768283768 | Combined Caffeine | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \hline \text { HORM } \\ & \text { AD1 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \text { rs1765 } \\ & 8705 \end{aligned}$ | 1 | 150678071 | T | G | $\begin{aligned} & \hline 0.40 \\ & 5 \end{aligned}$ | $\begin{aligned} & \hline 0.0227 \\ & 92 \end{aligned}$ | $\begin{aligned} & \hline 0.0023 \\ & 6378 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 5.30 \\ \text { E-22 } \\ \hline \end{array}$ | $\begin{aligned} & 0.5803 \\ & 48 \end{aligned}$ | $\begin{aligned} & \hline 0.093 \\ & 5432 \end{aligned}$ | $\begin{aligned} & \hline 5.50 \mathrm{E} \\ & -10 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.039 \\ & 273 \end{aligned}$ | $\begin{aligned} & 0.0075 \\ & 2736 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1.81 \\ & \mathrm{E}-07 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.2153 \\ & 355 \end{aligned}$ | GTEx - Esophagus Gastroesophageal Junction |
| rs17685 | Combined Caffeine | $\begin{aligned} & \text { ENSG00000 } \\ & 227038.2 \end{aligned}$ | 7 | $\begin{aligned} & \hline \text { AC005 } \\ & 077.12 \\ & \hline \end{aligned}$ | $\begin{aligned} & 757289 \\ & 23 \end{aligned}$ | $\begin{aligned} & \text { rs } 1057 \\ & 868 \end{aligned}$ | 7 | 75615006 | T | C | $\begin{aligned} & \hline 0.30 \\ & 5333 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0403 \\ & 552 \end{aligned}$ | $\begin{aligned} & \hline 0.0025 \\ & 6502 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 9.00 \\ \text { E-56 } \\ \hline \end{array}$ | $\begin{aligned} & 0.2909 \\ & 64 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.053 \\ 0468 \\ \hline \end{array}$ | $\begin{aligned} & \hline 4.13 \mathrm{E} \\ & -08 \end{aligned}$ | $\begin{aligned} & \hline 0.138 \\ & 695 \end{aligned}$ | $\begin{aligned} & 0.0267 \\ & 787 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 2.23 \\ & \text { E-07 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.8782 \\ 062 \\ \hline \end{array}$ | GTEx - Testis |
| rs768283768 | Caffeine from Coffee | $\begin{aligned} & \text { ENSG00000 } \\ & 143457.6 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \hline \text { GOLP } \\ & \text { H3L } \end{aligned}$ | $\begin{aligned} & 150644 \\ & 165 \end{aligned}$ | $\begin{aligned} & \text { rs1134 } \\ & 067 \end{aligned}$ | 1 | 150721175 | T | G | $\begin{aligned} & \hline 0.39 \\ & 639 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0131 \\ & 067 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 5125 \end{aligned}$ | $\begin{array}{\|l\|} \hline 2.50 \\ \mathrm{E}-08 \\ \hline \end{array}$ | $\begin{aligned} & 0.6218 \\ & 31 \end{aligned}$ | $\begin{aligned} & \hline 0.045 \\ & 8045 \end{aligned}$ | $\begin{aligned} & \hline 5.58 \mathrm{E} \\ & -42 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.021 \\ & 0776 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.0040 \\ & 8752 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 2.52 \\ & \text { E- } 07 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.6080 \\ 412 \\ \hline \end{array}$ | GTEx - Skin Not Sun Exposed Suprapubic |
| rs768283768 | Caffeine from Coffee | $\begin{aligned} & \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \text { HORM } \\ & \text { AD1 } \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { rs7529 } \\ & 194 \\ & \hline \end{aligned}$ | 1 | 150622620 | A | T | $\begin{array}{\|l\|} \hline 0.39 \\ 4 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.0125 \\ 987 \\ \hline \end{array}$ | $\begin{aligned} & 0.0023 \\ & 4883 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline 8.10 \\ \text { E-08 } \\ \hline \end{array}$ | $\begin{aligned} & 1.0683 \\ & 6 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.057 \\ 2195 \\ \hline \end{array}$ | $\begin{aligned} & 8.48 \mathrm{E} \\ & -78 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.011 \\ 7926 \\ \hline \end{array}$ | $\begin{aligned} & 0.0022 \\ & 8746 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.53 \\ & \text { E-07 } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.5178 \\ 539 \\ \hline \end{array}$ | GTEx - Skin Not Sun Exposed Suprapubic |
| rs768283768 | Caffeine from Coffee | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \hline \text { HORM } \\ & \text { AD1 } \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \hline \text { rs1118 } \\ & 42513 \\ & \hline \end{aligned}$ | 1 | 150712926 | A | G | $\begin{array}{\|l\|} \hline 0.39 \\ 4263 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.0127 \\ & 876 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 4956 \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline 5.30 \\ \text { E-08 } \\ \hline \end{array}$ | $\begin{aligned} & 0.9211 \\ & 19 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.057 \\ 4382 \\ \hline \end{array}$ | $\begin{aligned} & \hline 7.08 \mathrm{E} \\ & \hline-58 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.013 \\ 8827 \\ \hline \end{array}$ | $\begin{aligned} & 0.0026 \\ & 9366 \end{aligned}$ | $\begin{aligned} & \hline 2.55 \\ & \mathrm{E}-07 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.6394 \\ 203 \\ \hline \end{array}$ | GTEx - Adipose Subcutaneous |
| rs768283768 | Caffeine from Coffee | $\begin{aligned} & \hline \text { ENSG00000 } \\ & 143452.11 \\ & \hline \end{aligned}$ | 1 | $\begin{aligned} & \hline \text { HORM } \\ & \text { AD1 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 150681 \\ & 950 \end{aligned}$ | $\begin{aligned} & \hline \text { rs7270 } \\ & 4603 \\ & \hline \end{aligned}$ | 1 | 150707992 | T | C | $\begin{array}{\|l\|} \hline 0.39 \\ 4263 \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.0128 \\ & 283 \end{aligned}$ | $\begin{aligned} & 0.0023 \\ & 4961 \end{aligned}$ | $\begin{array}{\|l\|} \hline 4.80 \\ \mathrm{E}-08 \\ \hline \end{array}$ | $\begin{aligned} & 0.9507 \\ & 96 \end{aligned}$ | $\begin{aligned} & \hline 0.062 \\ & 3663 \end{aligned}$ | $\begin{aligned} & 1.77 \mathrm{E} \\ & -52 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.013 \\ & 4922 \end{aligned}$ | $\begin{aligned} & 0.0026 \\ & 2489 \end{aligned}$ | $\begin{aligned} & 2.75 \\ & \text { E-07 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.5119 \\ 789 \\ \hline \end{array}$ | GTEx - Cells Transformed fibroblasts |




Table S20. SNPs and proxies for Mendelian Randomization analyses for combined caffeine intake on coronary artery disease

| SNP | CHR | BP | ALLELE1 | ALLELE0 | A1FREQ | BETA | SE | $P$ value | Proxy for | $\mathbf{R}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs7412396 | 1 | 150666797 | G | A | 0.597491 | -0.02279 | 0.002364 | $5.50 \mathrm{E}-22$ | rs768283768 | 0.930744 |
| rs2987869 | 1 | 174789407 | G | T | 0.458638 | -0.01562 | 0.002332 | $2.10 \mathrm{E}-11$ | 1:174856749_TG_T | 0.998626 |
| rs1260326 | 2 | 27730940 | T | C | 0.391852 | -0.02297 | 0.002377 | 4.20E-22 |  |  |
| rs78456557 | 3 | 123300686 | C | G | 0.900201 | -0.02364 | 0.00389 | $1.20 \mathrm{E}-09$ |  |  |
| rs114066728 | 3 | 142022265 | T | C | 0.870043 | -0.02127 | 0.003456 | $7.50 \mathrm{E}-10$ | rs115454798 | 0.991139 |
| rs2231142 | 4 | 89052323 | G | T | 0.886707 | 0.03913 | 0.00366 | 1.10E-26 |  |  |
| rs62332762 | 4 | 106143492 | C | T | 0.597585 | 0.01828 | 0.002368 | $1.20 \mathrm{E}-14$ |  |  |
| rs12514566 | 5 | 7391462 | G | A | 0.664698 | 0.017242 | 0.002456 | $2.20 \mathrm{E}-12$ |  |  |
| rs1872841 | 6 | 98576688 | C | A | 0.483724 | -0.01316 | 0.002328 | $1.60 \mathrm{E}-08$ | rs754177720 | 0.902704 |
| rs9486902 | 6 | 108878052 | C | T | 0.837869 | 0.018849 | 0.00315 | $2.20 \mathrm{E}-09$ | 6:108876096_CAAT_C | 0.997488 |
| rs1490384 | 6 | 126851160 | C | T | 0.501467 | -0.01587 | 0.002323 | $8.30 \mathrm{E}-12$ |  |  |
| rs139797380 | 6 | 137244957 | C | G | 0.991601 | 0.106741 | 0.013575 | $3.70 \mathrm{E}-15$ |  |  |
| rs4410790 | 7 | 17284577 | T | C | 0.364122 | -0.08137 | 0.002412 | $1.50 \mathrm{E}-249$ |  |  |
| rs215601 | 7 | 32333921 | A | C | 0.372618 | 0.01488 | 0.002404 | 6.00E-10 |  |  |
| rs34060476 | 7 | 73037956 | A | G | 0.865587 | -0.03535 | 0.003404 | $2.90 \mathrm{E}-25$ | 7:73042302_GCTTT_G | 0.99198 |
| rs17685 | 7 | 75616105 | G | A | 0.721471 | -0.0408 | 0.002584 | 3.80E-56 |  |  |
| rs4240624 | 8 | 9184231 | G | A | 0.092461 | 0.02693 | 0.004012 | $1.90 \mathrm{E}-11$ |  |  |
| rs 12785227 | 10 | 65262685 | A | G | 0.685798 | 0.014549 | 0.002507 | 6.50E-09 |  |  |
| rs4418728 | 10 | 94839724 | G | T | 0.550788 | 0.014384 | 0.002333 | $7.00 \mathrm{E}-10$ |  |  |
| rs117810762 | 10 | 135315795 | G | A | 0.982023 | -0.06827 | 0.008863 | $1.30 \mathrm{E}-14$ |  |  |
| rs6265 | 11 | 27679916 | C | T | 0.810755 | 0.021572 | 0.002964 | $3.40 \mathrm{E}-13$ |  |  |
| rs1228024 | 11 | 47951353 | C | A | 0.340021 | 0.013965 | 0.002453 | $1.30 \mathrm{E}-08$ |  |  |
| rs7105462 | 11 | 112912048 | G | A | 0.40559 | 0.014163 | 0.002366 | 2.10E-09 |  |  |
| rs595529 | 12 | 112000648 | A | T | 0.796265 | -0.01662 | 0.002882 | 8.10E-09 | rs376877108 | 0.993627 |
| rs12591786 | 15 | 60902512 | C | T | 0.842038 | 0.020213 | 0.00323 | 3.90E-10 |  |  |
| rs2472297 | 15 | 75027880 | C | T | 0.731645 | -0.10487 | 0.002616 | 2.4E-351 |  |  |
| rs2667773 | 15 | 77872191 | A | G | 0.686772 | 0.014947 | 0.002506 | $2.50 \mathrm{E}-09$ |  |  |
| rs59681738 | 16 | 18788186 | A | G | 0.618174 | 0.013733 | 0.002417 | $1.30 \mathrm{E}-08$ | 16:18776851_G_GA | 0.934833 |
| rs489693 | 18 | 57882787 | C | A | 0.67465 | -0.01759 | 0.002478 | $1.30 \mathrm{E}-12$ |  |  |
| rs56113850 | 19 | 41353107 | T | C | 0.421755 | -0.02649 | 0.002351 | 1.90E-29 |  |  |
| rs138761767 | 19 | 47559089 | T | C | 0.25755 | -0.01627 | 0.002695 | $1.60 \mathrm{E}-09$ | rs61141867 | 0.90578 |
| rs1291145 | 20 | 35528475 | T | C | 0.313259 | -0.01456 | 0.002506 | 6.30E-09 | 20:35568001_AAAAG_A | 0.998402 |
| rs6062679 | 20 | 62889991 | T | C | 0.534615 | -0.02278 | 0.002358 | $4.50 \mathrm{E}-22$ |  |  |
| rs190800998 | 22 | 24666292 | T | C | 0.985779 | 0.090577 | 0.009889 | $5.20 \mathrm{E}-20$ | rs199612805 | 1 |
| rs9611527 | 22 | 41644428 | G | A | 0.664286 | 0.019792 | 0.002466 | $1.00 \mathrm{E}-15$ |  |  |

Sentinel single nucleotide polymorphisms (SNPs) and proxies used are provided for the Mendelian randomization analyses. In case a proxy was used, the original sentinel SNP is provided in the "Proxy for" column and the $R^{2}$ between them in the " $R^{24}$ column. No proxy with $R^{2}>0.8$ was available for
3:50895869_ATAATAATAAT_A and rs531431865, which were therefore excluded from analyses.

Table S21. SNPs and proxies for Mendelian Randomization analyses for caffeine from coffee on coronary artery disease

| SNP | CHR | BP | ALLELE1 | ALLELE0 | A1FREQ | BETA | SE | $\mathbf{P}$ value | Proxy for | $\mathbf{R}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs4615895 | 1 | 96274668 | G | A | 0.259574 | -0.01705 | 0.002627 | 8.60E-11 |  |  |
| rs7412396 | 1 | 150666797 | G | A | 0.597371 | -0.01297 | 0.002337 | $2.90 \mathrm{E}-08$ | rs768283768 | 0.930744 |
| rs7571957 | 2 | 646803 | T | C | 0.170688 | -0.02056 | 0.003047 | $1.50 \mathrm{E}-11$ | rs7571970 | 0.99315 |
| rs11127048 | 2 | 27752463 | G | A | 0.381191 | -0.01997 | 0.002398 | $8.10 \mathrm{E}-17$ |  |  |
| rs35198275 | 3 | 50536092 | A | G | 0.865693 | 0.020797 | 0.003387 | $8.20 \mathrm{E}-10$ |  |  |
| rs2726513 | 4 | 106217358 | G | T | 0.587077 | 0.015301 | 0.002347 | $7.00 \mathrm{E}-11$ |  |  |
| rs12514566 | 5 | 7391462 | G | A | 0.664625 | 0.014831 | 0.002428 | $1.00 \mathrm{E}-09$ |  |  |
| rs6893807 | 5 | 87965021 | A | G | 0.843563 | -0.01916 | 0.003159 | $1.30 \mathrm{E}-09$ |  |  |
| rs1327259 | 6 | 51177811 | A | G | 0.614152 | 0.015707 | 0.002365 | $3.10 \mathrm{E}-11$ |  |  |
| rs4410790 | 7 | 17284577 | T | C | 0.364412 | -0.05171 | 0.002384 | $2.80 \mathrm{E}-104$ |  |  |
| rs34060476 | 7 | 73037956 | A | G | 0.865581 | -0.02519 | 0.003365 | $7.10 \mathrm{E}-14$ |  |  |
| rs1057868 | 7 | 75615006 | C | T | 0.714413 | -0.02445 | 0.002536 | $5.50 \mathrm{E}-22$ |  |  |
| rs76881016 | 10 | 134196286 | A | G | 0.928496 | -0.02584 | 0.004453 | $6.60 \mathrm{E}-09$ |  |  |
| rs117810762 | 10 | 135315795 | G | A | 0.982047 | -0.05011 | 0.008765 | $1.10 \mathrm{E}-08$ |  |  |
| rs2298527 | 11 | 112851961 | G | C | 0.405568 | 0.014947 | 0.002336 | $1.60 \mathrm{E}-10$ |  |  |
| rs2472297 | 15 | 75027880 | C | T | 0.731859 | -0.06521 | 0.002587 | $3.10 \mathrm{E}-140$ |  |  |
| rs2521501 | 15 | 91437388 | A | T | 0.677316 | 0.014916 | 0.002472 | $1.60 \mathrm{E}-09$ |  |  |
| rs28567725 | 16 | 53826028 | T | C | 0.5877 | -0.02172 | 0.002331 | $1.20 \mathrm{E}-20$ | rs201399553 | 0.945928 |
| rs2350633 | 17 | 17587395 | A | G | 0.486877 | -0.01469 | 0.002296 | $1.60 \mathrm{E}-10$ | rs139937261 | 0.997277 |
| rs66723169 | 18 | 57808978 | C | A | 0.769043 | -0.02249 | 0.002732 | $1.80 \mathrm{E}-16$ |  |  |
| rs56113850 | 19 | 41353107 | T | C | 0.421821 | -0.02071 | 0.002323 | $4.90 \mathrm{E}-19$ |  |  |
| rs6063085 | 20 | 45840459 | A | C | 0.625251 | -0.01571 | 0.00237 | $3.40 \mathrm{E}-11$ |  |  |
| rs181251778 | 22 | 24901968 | A | G | 0.986146 | 0.072648 | 0.009834 | 1.50E-13 |  |  |

 therefore excluded from analyses.

Table S22. SNPs and proxies for Mendelian Randomization analyses for caffeine from tea on coronary artery disease

| SNP | CHR | BP | ALLELE1 | ALLELE0 | A1FREQ | BETA | SE | $\mathbf{P}$ value | Proxy for | $\mathbf{R}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs9438624 | 1 | 26758044 | C | T | 0.19273 | -0.01535 | 0.002844 | 6.70E-08 | rs77476394 | 0.887444 |
| rs11204708 | 1 | 150682095 | C | G | 0.619872 | -0.01428 | 0.002349 | $1.20 \mathrm{E}-09$ | rs11204711 | 0.998421 |
| rs56188862 | 1 | 174189269 | T | C | 0.614947 | 0.016829 | 0.002297 | $2.40 \mathrm{E}-13$ |  |  |
| rs78020607 | 3 | 50254624 | A | G | 0.887096 | -0.01866 | 0.003527 | $1.20 \mathrm{E}-07$ | rs145755097 | 0.869438 |
| rs2117137 | 3 | 89525505 | A | G | 0.594554 | -0.01349 | 0.002273 | $2.90 \mathrm{E}-09$ |  |  |
| rs1481012 | 4 | 89039082 | A | G | 0.887297 | 0.026005 | 0.003536 | $1.90 \mathrm{E}-13$ |  |  |
| rs192084998 | 5 | 152077481 | G | A | 0.703764 | 0.015836 | 0.002458 | $1.20 \mathrm{E}-10$ |  |  |
| rs2465018 | 6 | 51241140 | G | A | 0.769413 | -0.02211 | 0.002666 | $1.10 \mathrm{E}-16$ |  |  |
| rs139797380 | 6 | 137244957 | C | G | 0.991607 | 0.075145 | 0.013059 | $8.70 \mathrm{E}-09$ |  |  |
| rs4410790 | 7 | 17284577 | T | C | 0.36537 | -0.04033 | 0.00232 | $1.10 \mathrm{E}-67$ |  |  |
| rs6462899 | 7 | 39296489 | T | A | 0.375354 | -0.01259 | 0.002312 | $5.10 \mathrm{E}-08$ | rs141180025 | 0.943469 |
| rs17685 | 7 | 75616105 | G | A | 0.721688 | -0.02391 | 0.002488 | $7.20 \mathrm{E}-22$ |  |  |
| rs62534435 | 9 | 7042938 | C | G | 0.796528 | -0.01629 | 0.002776 | 4.40E-09 |  |  |
| rs11022752 | 11 | 13307622 | A | G | 0.730907 | -0.01535 | 0.002525 | $1.20 \mathrm{E}-09$ |  |  |
| rs10741694 | 11 | 16286183 | T | C | 0.372823 | -0.01474 | 0.002312 | $1.80 \mathrm{E}-10$ |  |  |
| rs73053413 | 12 | 11329548 | C | T | 0.836535 | 0.021681 | 0.003021 | $7.10 \mathrm{E}-13$ |  |  |
| rs12591786 | 15 | 60902512 | C | T | 0.842256 | 0.019576 | 0.003109 | $3.00 \mathrm{E}-10$ |  |  |
| rs2472297 | 15 | 75027880 | C | T | 0.732806 | -0.05411 | 0.002521 | $3.30 \mathrm{E}-102$ |  |  |
| rs28429148 | 16 | 53798319 | G | A | 0.565413 | 0.013189 | 0.002288 | 8.20E-09 |  |  |
| rs 153328 | 16 | 63025865 | C | G | 0.782673 | -0.01445 | 0.002718 | 1.10E-07 | rs 199602679 | 0.976937 |
| rs140775622 | 20 | 62962869 | C | T | 0.830545 | -0.02262 | 0.003207 | $1.80 \mathrm{E}-12$ |  |  |
| rs4817505 | 21 | 34343828 | T | C | 0.607874 | -0.01512 | 0.002292 | $4.20 \mathrm{E}-11$ |  |  |
| rs9624470 | 22 | 24820268 | G | A | 0.419254 | -0.02534 | 0.002272 | $6.80 \mathrm{E}-29$ |  |  |
| rs132919 | 22 | 41809903 | G | C | 0.22639 | -0.01708 | 0.002697 | $2.40 \mathrm{E}-10$ |  |  |

Table S23. F-statistics of all instruments for the Mendelian Randomization analyses between caffeine intake and CAD or T2D

| GWAS trait | SNP | CHR | hg19 | EFAL | NEFAL | EF Freq | BETA | SE | $\mathbf{R}^{2}$ | N | F Statistic | P STATA | P GWAS | MR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Combined caffeine intake | rs7412396 | 1 | 150666797 | G | A | 0.597491 | -0.02279 | 0.002364 | 0.014067 | 362316 | 5169.384 | $1.73 \mathrm{E}-21$ | 5.50E-22 | CAD |
| Combined caffeine intake | rs2987869 | 1 | 174789407 | G | T | 0.458638 | -0.01562 | 0.002332 | 0.013936 | 362316 | 5120.384 | $3.91 \mathrm{E}-11$ | $2.10 \mathrm{E}-11$ | CAD |
| Combined caffeine intake | rs1260326 | 2 | 27730940 | T | C | 0.391852 | -0.02297 | 0.002377 | 0.014068 | 362316 | 5169.591 | $8.45 \mathrm{E}-22$ | $4.20 \mathrm{E}-22$ | CAD |
| Combined caffeine intake | rs78456557 | 3 | 123300686 | C | G | 0.900201 | -0.02364 | 0.00389 | 0.013912 | 362316 | 5111.729 | $3.18 \mathrm{E}-09$ | $1.20 \mathrm{E}-09$ | CAD |
| Combined caffeine intake | rs114066728 | 3 | 142022265 | T | C | 0.870043 | -0.02127 | 0.003456 | 0.013924 | 362316 | 5115.983 | $4.60 \mathrm{E}-10$ | $7.50 \mathrm{E}-10$ | CAD |
| Combined caffeine intake | rs2231142 | 4 | 89052323 | G | T | 0.886707 | 0.03913 | 0.00366 | 0.014118 | 362316 | 5188.382 | $4.78 \mathrm{E}-26$ | $1.10 \mathrm{E}-26$ | CAD |
| Combined caffeine intake | rs62332762 | 4 | 106143492 | C | T | 0.597585 | 0.01828 | 0.002368 | 0.013985 | 362316 | 5138.959 | $6.20 \mathrm{E}-15$ | $1.20 \mathrm{E}-14$ | CAD |
| Combined caffeine intake | rs12514566 | 5 | 7391462 | G | A | 0.664698 | 0.017242 | 0.002456 | 0.013963 | 362316 | 5130.563 | $2.59 \mathrm{E}-13$ | $2.20 \mathrm{E}-12$ | CAD |
| Combined caffeine intake | rs1872841 | 6 | 98576688 | C | A | 0.483724 | -0.01316 | 0.002328 | 0.013899 | 362316 | 5106.653 | $4.52 \mathrm{E}-08$ | $1.60 \mathrm{E}-08$ | CAD |
| Combined caffeine intake | rs9486902 | 6 | 108878052 | C | T | 0.837869 | 0.018849 | 0.00315 | 0.013912 | 362316 | 5111.45 | $4.20 \mathrm{E}-09$ | 2.20E-09 | CAD |
| Combined caffeine intake | rs1490384 | 6 | 126851160 | C | T | 0.501467 | -0.01587 | 0.002323 | 0.013936 | 362316 | 5120.626 | $3.76 \mathrm{E}-11$ | $8.30 \mathrm{E}-12$ | CAD |
| Combined caffeine intake | rs139797380 | 6 | 137244957 | C | G | 0.991601 | 0.106741 | 0.013575 | 0.013989 | 362316 | 5140.392 | $5.51 \mathrm{E}-16$ | $3.70 \mathrm{E}-15$ | CAD |
| Combined caffeine intake | rs4410790 | 7 | 17284577 | T | C | 0.364122 | -0.08137 | 0.002412 | 0.016873 | 362316 | 6218.187 | $4.90 \mathrm{E}-248$ | $1.50 \mathrm{E}-249$ | CAD |
| Combined caffeine intake | rs215601 | 7 | 32333921 | A | C | 0.372618 | 0.01488 | 0.002404 | 0.013919 | 362316 | 5114.316 | $9.96 \mathrm{E}-10$ | $6.00 \mathrm{E}-10$ | CAD |
| Combined caffeine intake | rs34060476 | 7 | 73037956 | A | G | 0.865587 | -0.03535 | 0.003404 | 0.014101 | 362316 | 5182.065 | $7.21 \mathrm{E}-24$ | $2.90 \mathrm{E}-25$ | CAD |
| Combined caffeine intake | rs17685 | 7 | 75616105 | G | A | 0.721471 | -0.0408 | 0.002584 | 0.014481 | 362316 | 5323.936 | $2.32 \mathrm{E}-54$ | $3.80 \mathrm{E}-56$ | CAD |
| Combined caffeine intake | rs4240624 | 8 | 9184231 | G | A | 0.092461 | 0.02693 | 0.004012 | 0.01394 | 362316 | 5122.161 | $2.03 \mathrm{E}-11$ | $1.90 \mathrm{E}-11$ | CAD |
| Combined caffeine intake | rs12785227 | 10 | 65262685 | A | G | 0.685798 | 0.014549 | 0.002507 | 0.0139 | 362316 | 5107.326 | $3.26 \mathrm{E}-08$ | $6.50 \mathrm{E}-09$ | CAD |
| Combined caffeine intake | rs4418728 | 10 | 94839724 | G | T | 0.550788 | 0.014384 | 0.002333 | 0.013924 | 362316 | 5116.012 | $3.88 \mathrm{E}-10$ | $7.00 \mathrm{E}-10$ | CAD |
| Combined caffeine intake | rs117810762 | 10 | 135315795 | G | A | 0.982023 | -0.06827 | 0.008863 | 0.013972 | 362316 | 5134.15 | $4.37 \mathrm{E}-14$ | $1.30 \mathrm{E}-14$ | CAD |
| Combined caffeine intake | rs6265 | 11 | 27679916 | C | T | 0.810755 | 0.021572 | 0.002964 | 0.013957 | 362316 | 5128.536 | $7.83 \mathrm{E}-13$ | $3.40 \mathrm{E}-13$ | CAD |
| Combined caffeine intake | rs1228024 | 11 | 47951353 | C | A | 0.340021 | 0.013965 | 0.002453 | 0.013901 | 362316 | 5107.388 | $3.28 \mathrm{E}-08$ | $1.30 \mathrm{E}-08$ | CAD |
| Combined caffeine intake | rs7105462 | 11 | 112912048 | G | A | 0.40559 | 0.014163 | 0.002366 | 0.013919 | 362316 | 5114.38 | $9.50 \mathrm{E}-10$ | $2.10 \mathrm{E}-09$ | CAD |
| Combined caffeine intake | rs595529 | 12 | 112000648 | A | T | 0.796265 | -0.01662 | 0.002882 | 0.013909 | 362316 | 5110.631 | $5.94 \mathrm{E}-09$ | 8.10E-09 | CAD |
| Combined caffeine intake | rs12591786 | 15 | 60902512 | C | T | 0.842038 | 0.020213 | 0.00323 | 0.013914 | 362316 | 5112.39 | $2.27 \mathrm{E}-09$ | $3.90 \mathrm{E}-10$ | CAD |
| Combined caffeine intake | rs2472297 | 15 | 75027880 | C | T | 0.731645 | -0.10487 | 0.002616 | 0.01816 | 362316 | 6701.501 | 0 | 2.4E-351 | CAD |
| Combined caffeine intake | rs2667773 | 15 | 77872191 | A | G | 0.686772 | 0.014947 | 0.002506 | 0.013912 | 362316 | 5111.556 | $3.88 \mathrm{E}-09$ | 2.50E-09 | CAD |
| Combined caffeine intake | rs59681738 | 16 | 18788186 | A | G | 0.618174 | 0.013733 | 0.002417 | 0.013904 | 362316 | 5108.777 | $1.57 \mathrm{E}-08$ | $1.30 \mathrm{E}-08$ | CAD |
| Combined caffeine intake | rs489693 | 18 | 57882787 | C | A | 0.67465 | -0.01759 | 0.002478 | 0.013947 | 362316 | 5124.483 | $6.86 \mathrm{E}-12$ | $1.30 \mathrm{E}-12$ | CAD |
| Combined caffeine intake | rs56113850 | 19 | 41353107 | T | C | 0.421755 | -0.02649 | 0.002351 | 0.01416 | 362316 | 5203.96 | $3.48 \mathrm{E}-29$ | $1.90 \mathrm{E}-29$ | CAD |
| Combined caffeine intake | rs138761767 | 19 | 47559089 | T | C | 0.25755 | -0.01627 | 0.002695 | 0.013915 | 362316 | 5112.586 | $2.17 \mathrm{E}-09$ | $1.60 \mathrm{E}-09$ | CAD |
| Combined caffeine intake | rs1291145 | 20 | 35528475 | T | C | 0.313259 | -0.01456 | 0.002506 | 0.013905 | 362316 | 5108.846 | $1.53 \mathrm{E}-08$ | $6.30 \mathrm{E}-09$ | CAD |
| Combined caffeine intake | rs6062679 | 20 | 62889991 | T | C | 0.534615 | -0.02278 | 0.002358 | 0.014074 | 362316 | 5172.107 | $3.00 \mathrm{E}-22$ | $4.50 \mathrm{E}-22$ | CAD |
| Combined caffeine intake | rs190800998 | 22 | 24666292 | T | C | 0.985779 | 0.090577 | 0.009889 | 0.014057 | 362316 | 5165.523 | $3.22 \mathrm{E}-20$ | $5.20 \mathrm{E}-20$ | CAD |
| Combined caffeine intake | rs9611527 | 22 | 41644428 | G | A | 0.664286 | 0.019792 | 0.002466 | 0.013997 | 362316 | 5143.193 | $6.20 \mathrm{E}-16$ | $1.00 \mathrm{E}-15$ | CAD |
| Combined caffeine intake | rs7412396 | 1 | 150666797 | G | A | 0.597491 | -0.02279 | 0.002364 | 0.014067 | 362316 | 5169.384 | $1.73 \mathrm{E}-21$ | $5.50 \mathrm{E}-22$ | T2D |
| Combined caffeine intake | rs2987869 | 1 | 174789407 | G | T | 0.458638 | -0.01562 | 0.002332 | 0.013936 | 362316 | 5120.384 | $3.91 \mathrm{E}-11$ | $2.10 \mathrm{E}-11$ | T2D |
| Combined caffeine intake | rs1260326 | 2 | 27730940 | T | C | 0.391852 | -0.02297 | 0.002377 | 0.014068 | 362316 | 5169.591 | $8.45 \mathrm{E}-22$ | $4.20 \mathrm{E}-22$ | T2D |
| Combined caffeine intake | rs78456557 | 3 | 123300686 | C | G | 0.900201 | -0.02364 | 0.00389 | 0.013912 | 362316 | 5111.729 | $3.18 \mathrm{E}-09$ | $1.20 \mathrm{E}-09$ | T2D |
| Combined caffeine intake | rs114066728 | 3 | 142022265 | T | C | 0.870043 | -0.02127 | 0.003456 | 0.013924 | 362316 | 5115.983 | $4.60 \mathrm{E}-10$ | $7.50 \mathrm{E}-10$ | T2D |
| Combined caffeine intake | rs2231142 | 4 | 89052323 | G | T | 0.886707 | 0.03913 | 0.00366 | 0.014118 | 362316 | 5188.382 | $4.78 \mathrm{E}-26$ | $1.10 \mathrm{E}-26$ | T2D |
| Combined caffeine intake | rs62332762 | 4 | 106143492 | C | T | 0.597585 | 0.01828 | 0.002368 | 0.013985 | 362316 | 5138.959 | $6.20 \mathrm{E}-15$ | $1.20 \mathrm{E}-14$ | T2D |
| Combined caffeine intake | rs12514566 | 5 | 7391462 | G | A | 0.664698 | 0.017242 | 0.002456 | 0.013963 | 362316 | 5130.563 | $2.59 \mathrm{E}-13$ | $2.20 \mathrm{E}-12$ | T2D |
| Combined caffeine intake | rs1872841 | 6 | 98576688 | C | A | 0.483724 | -0.01316 | 0.002328 | 0.013899 | 362316 | 5106.653 | $4.52 \mathrm{E}-08$ | $1.60 \mathrm{E}-08$ | T2D |


| GWAS trait | SNP | CHR | hg19 | EFAL | NEFAL | EF Freq | BETA | SE | $\mathbf{R}^{2}$ | N | F Statistic | P STATA | P GWAS | MR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Combined caffeine intake | rs9486902 | 6 | 108878052 | C | T | 0.837869 | 0.018849 | 0.00315 | 0.013912 | 362316 | 5111.45 | $4.20 \mathrm{E}-09$ | 2.20E-09 | T2D |
| Combined caffeine intake | rs1490384 | 6 | 126851160 | C | T | 0.501467 | -0.01587 | 0.002323 | 0.013936 | 362316 | 5120.626 | $3.76 \mathrm{E}-11$ | $8.30 \mathrm{E}-12$ | T2D |
| Combined caffeine intake | rs139797380 | 6 | 137244957 | C | G | 0.991601 | 0.106741 | 0.013575 | 0.013989 | 362316 | 5140.392 | $5.51 \mathrm{E}-16$ | $3.70 \mathrm{E}-15$ | T2D |
| Combined caffeine intake | rs4410790 | 7 | 17284577 | T | C | 0.364122 | -0.08137 | 0.002412 | 0.016873 | 362316 | 6218.187 | $4.90 \mathrm{E}-248$ | $1.50 \mathrm{E}-249$ | T2D |
| Combined caffeine intake | rs215601 | 7 | 32333921 | A | C | 0.372618 | 0.01488 | 0.002404 | 0.013919 | 362316 | 5114.316 | $9.96 \mathrm{E}-10$ | $6.00 \mathrm{E}-10$ | T2D |
| Combined caffeine intake | rs34060476 | 7 | 73037956 | A | G | 0.865587 | -0.03535 | 0.003404 | 0.014101 | 362316 | 5182.065 | $7.21 \mathrm{E}-24$ | $2.90 \mathrm{E}-25$ | T2D |
| Combined caffeine intake | rs17685 | 7 | 75616105 | G | A | 0.721471 | -0.0408 | 0.002584 | 0.014481 | 362316 | 5323.936 | $2.32 \mathrm{E}-54$ | 3.80E-56 | T2D |
| Combined caffeine intake | rs4240624 | 8 | 9184231 | G | A | 0.092461 | 0.02693 | 0.004012 | 0.01394 | 362316 | 5122.161 | $2.03 \mathrm{E}-11$ | $1.90 \mathrm{E}-11$ | T2D |
| Combined caffeine intake | rs 12785227 | 10 | 65262685 | A | G | 0.685798 | 0.014549 | 0.002507 | 0.0139 | 362316 | 5107.326 | $3.26 \mathrm{E}-08$ | $6.50 \mathrm{E}-09$ | T2D |
| Combined caffeine intake | rs4418728 | 10 | 94839724 | G | T | 0.550788 | 0.014384 | 0.002333 | 0.013924 | 362316 | 5116.012 | $3.88 \mathrm{E}-10$ | $7.00 \mathrm{E}-10$ | T2D |
| Combined caffeine intake | rs117810762 | 10 | 135315795 | G | A | 0.982023 | -0.06827 | 0.008863 | 0.013972 | 362316 | 5134.15 | $4.37 \mathrm{E}-14$ | $1.30 \mathrm{E}-14$ | T2D |
| Combined caffeine intake | rs6265 | 11 | 27679916 | C | T | 0.810755 | 0.021572 | 0.002964 | 0.013957 | 362316 | 5128.536 | $7.83 \mathrm{E}-13$ | $3.40 \mathrm{E}-13$ | T2D |
| Combined caffeine intake | rs1228024 | 11 | 47951353 | C | A | 0.340021 | 0.013965 | 0.002453 | 0.013901 | 362316 | 5107.388 | $3.28 \mathrm{E}-08$ | 1.30E-08 | T2D |
| Combined caffeine intake | rs7105462 | 11 | 112912048 | G | A | 0.40559 | 0.014163 | 0.002366 | 0.013919 | 362316 | 5114.38 | $9.50 \mathrm{E}-10$ | $2.10 \mathrm{E}-09$ | T2D |
| Combined caffeine intake | rs607316 | 12 | 111969448 | C | T | 0.795666 | -0.01678 | 0.002878 | 0.013911 | 362316 | 5111.429 | 3.96E-09 | $5.50 \mathrm{E}-09$ | T2D |
| Combined caffeine intake | rs12591786 | 15 | 60902512 | C | T | 0.842038 | 0.020213 | 0.00323 | 0.013914 | 362316 | 5112.39 | 2.27E-09 | $3.90 \mathrm{E}-10$ | T2D |
| Combined caffeine intake | rs2472297 | 15 | 75027880 | C | T | 0.731645 | -0.10487 | 0.002616 | 0.01816 | 362316 | 6701.501 | 0 | $2.4 \mathrm{E}-351$ | T2D |
| Combined caffeine intake | rs2667773 | 15 | 77872191 | A | G | 0.686772 | 0.014947 | 0.002506 | 0.013912 | 362316 | 5111.556 | $3.88 \mathrm{E}-09$ | $2.50 \mathrm{E}-09$ | T2D |
| Combined caffeine intake | rs3965574 | 16 | 18789966 | A | G | 0.61805 | 0.013716 | 0.002416 | 0.013904 | 362316 | 5108.739 | $1.60 \mathrm{E}-08$ | $1.40 \mathrm{E}-08$ | T2D |
| Combined caffeine intake | rs489693 | 18 | 57882787 | C | A | 0.67465 | -0.01759 | 0.002478 | 0.013947 | 362316 | 5124.483 | $6.86 \mathrm{E}-12$ | $1.30 \mathrm{E}-12$ | T2D |
| Combined caffeine intake | rs56113850 | 19 | 41353107 | T | C | 0.421755 | -0.02649 | 0.002351 | 0.01416 | 362316 | 5203.96 | $3.48 \mathrm{E}-29$ | 1.90E-29 | T2D |
| Combined caffeine intake | rs61599759 | 19 | 47557472 | A | G | 0.245811 | -0.01741 | 0.002732 | 0.013926 | 362316 | 5116.85 | $2.45 \mathrm{E}-10$ | $1.80 \mathrm{E}-10$ | T2D |
| Combined caffeine intake | rs1291145 | 20 | 35528475 | T | C | 0.313259 | -0.01456 | 0.002506 | 0.013905 | 362316 | 5108.846 | $1.53 \mathrm{E}-08$ | $6.30 \mathrm{E}-09$ | T2D |
| Combined caffeine intake | rs6062679 | 20 | 62889991 | T | C | 0.534615 | -0.02278 | 0.002358 | 0.014074 | 362316 | 5172.107 | $3.00 \mathrm{E}-22$ | $4.50 \mathrm{E}-22$ | T2D |
| Combined caffeine intake | rs138019862 | 22 | 24821154 | G | T | 0.986106 | 0.093407 | 0.009925 | 0.014071 | 362316 | 5171.046 | $2.18 \mathrm{E}-21$ | 4.90E-21 | T2D |
| Combined caffeine intake | rs9611527 | 22 | 41644428 | G | A | 0.664286 | 0.019792 | 0.002466 | 0.013997 | 362316 | 5143.193 | $6.20 \mathrm{E}-16$ | $1.00 \mathrm{E}-15$ | T2D |
| Caffeine from coffee | rs4615895 | 1 | 96274668 | G | A | 0.259574 | -0.01705 | 0.002627 | 0.011992 | 373522 | 4533.705 | $1.92 \mathrm{E}-10$ | 8.60E-11 | CAD |
| Caffeine from coffee | rs7412396 | 1 | 150666797 | G | A | 0.597371 | -0.01297 | 0.002337 | 0.01197 | 373522 | 4525.166 | $1.35 \mathrm{E}-08$ | $2.90 \mathrm{E}-08$ | CAD |
| Caffeine from coffee | rs7571957 | 2 | 646803 | T | C | 0.170688 | -0.02056 | 0.003047 | 0.01201 | 373522 | 4540.678 | $4.81 \mathrm{E}-12$ | 1.50E-11 | CAD |
| Caffeine from coffee | rs11127048 | 2 | 27752463 | G | A | 0.381191 | -0.01997 | 0.002398 | 0.012081 | 373522 | 4567.802 | $6.74 \mathrm{E}-18$ | $8.10 \mathrm{E}-17$ | CAD |
| Caffeine from coffee | rs35198275 | 3 | 50536092 | A | G | 0.865693 | 0.020797 | 0.003387 | 0.011987 | 373522 | 4531.599 | $4.48 \mathrm{E}-10$ | 8.20E-10 | CAD |
| Caffeine from coffee | rs2726513 | 4 | 106217358 | G | T | 0.587077 | 0.015301 | 0.002347 | 0.011987 | 373522 | 4531.666 | $5.18 \mathrm{E}-10$ | $7.00 \mathrm{E}-11$ | CAD |
| Caffeine from coffee | rs 12514566 | 5 | 7391462 | G | A | 0.664625 | 0.014831 | 0.002428 | 0.011991 | 373522 | 4533.052 | $2.31 \mathrm{E}-10$ | $1.00 \mathrm{E}-09$ | CAD |
| Caffeine from coffee | rs6893807 | 5 | 87965021 | A | G | 0.843563 | -0.01916 | 0.003159 | 0.011983 | 373522 | 4530.283 | $9.38 \mathrm{E}-10$ | 1.30E-09 | CAD |
| Caffeine from coffee | rs1327259 | 6 | 51177811 | A | G | 0.614152 | 0.015707 | 0.002365 | 0.011995 | 373522 | 4534.635 | $1.14 \mathrm{E}-10$ | $3.10 \mathrm{E}-11$ | CAD |
| Caffeine from coffee | rs4410790 | 7 | 17284577 | T | C | 0.364412 | -0.05171 | 0.002384 | 0.013193 | 373522 | 4993.793 | $6.01 \mathrm{E}-110$ | $2.80 \mathrm{E}-104$ | CAD |
| Caffeine from coffee | rs34060476 | 7 | 73037956 | A | G | 0.865581 | -0.02519 | 0.003365 | 0.012032 | 373522 | 4549.021 | $1.47 \mathrm{E}-13$ | $7.10 \mathrm{E}-14$ | CAD |
| Caffeine from coffee | rs1057868 | 7 | 75615006 | C | T | 0.714413 | -0.02445 | 0.002536 | 0.012128 | 373522 | 4585.517 | $9.77 \mathrm{E}-22$ | $5.50 \mathrm{E}-22$ | CAD |
| Caffeine from coffee | rs76881016 | 10 | 134196286 | A | G | 0.928496 | -0.02584 | 0.004453 | 0.011957 | 373522 | 4520.214 | $1.39 \mathrm{E}-07$ | $6.60 \mathrm{E}-09$ | CAD |
| Caffeine from coffee | rs117810762 | 10 | 135315795 | G | A | 0.982047 | -0.05011 | 0.008765 | 0.011989 | 373522 | 4532.505 | $3.50 \mathrm{E}-10$ | $1.10 \mathrm{E}-08$ | CAD |
| Caffeine from coffee | rs2298527 | 11 | 112851961 | G | C | 0.405568 | 0.014947 | 0.002336 | 0.011978 | 373522 | 4528.319 | $2.77 \mathrm{E}-09$ | $1.60 \mathrm{E}-10$ | CAD |
| Caffeine from coffee | rs2472297 | 15 | 75027880 | C | T | 0.731859 | -0.06521 | 0.002587 | 0.013586 | 373522 | 5144.517 | $1.83 \mathrm{E}-138$ | $3.10 \mathrm{E}-140$ | CAD |
| Caffeine from coffee | rs2521501 | 15 | 91437388 | A | T | 0.677316 | 0.014916 | 0.002472 | 0.011971 | 373522 | 4525.774 | $1.02 \mathrm{E}-08$ | $1.60 \mathrm{E}-09$ | CAD |
| Caffeine from coffee | rs28567725 | 16 | 53826028 | T | C | 0.5877 | -0.02172 | 0.002331 | 0.012113 | 373522 | 4579.932 | $1.89 \mathrm{E}-20$ | $1.20 \mathrm{E}-20$ | CAD |
| Caffeine from coffee | rs2350633 | 17 | 17587395 | A | G | 0.486877 | -0.01469 | 0.002296 | 0.012003 | 373522 | 4537.946 | $1.77 \mathrm{E}-11$ | $1.60 \mathrm{E}-10$ | CAD |


| GWAS trait | SNP | CHR | hg19 | EFAL | NEFAL | EF Freq | BETA | SE | $\mathbf{R}^{2}$ | N | F Statistic | P STATA | P GWAS | MR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Caffeine from coffee | rs66723169 | 18 | 57808978 | C | A | 0.769043 | -0.02249 | 0.002732 | 0.012045 | 373522 | 4553.886 | 1.26E-14 | $1.80 \mathrm{E}-16$ | CAD |
| Caffeine from coffee | rs56113850 | 19 | 41353107 | T | C | 0.421821 | -0.02071 | 0.002323 | 0.012076 | 373522 | 4565.758 | $1.95 \mathrm{E}-17$ | $4.90 \mathrm{E}-19$ | CAD |
| Caffeine from coffee | rs6063085 | 20 | 45840459 | A | C | 0.625251 | -0.01571 | 0.00237 | 0.011992 | 373522 | 4533.476 | $1.88 \mathrm{E}-10$ | $3.40 \mathrm{E}-11$ | CAD |
| Caffeine from coffee | rs181251778 | 22 | 24901968 | A | G | 0.986146 | 0.072648 | 0.009834 | 0.012039 | 373522 | 4551.664 | $1.53 \mathrm{E}-14$ | 1.50E-13 | CAD |
| Caffeine from coffee | rs4615895 | 1 | 96274668 | G | A | 0.259574 | -0.01705 | 0.002627 | 0.011992 | 373522 | 4533.705 | 1.92E-10 | $8.60 \mathrm{E}-11$ | T2D |
| Caffeine from coffee | rs7412396 | 1 | 150666797 | G | A | 0.597371 | -0.01297 | 0.002337 | 0.01197 | 373522 | 4525.166 | $1.35 \mathrm{E}-08$ | $2.90 \mathrm{E}-08$ | T2D |
| Caffeine from coffee | rs7561317 | 2 | 644953 | A | G | 0.171158 | -0.02037 | 0.003043 | 0.01201 | 373522 | 4540.321 | $5.84 \mathrm{E}-12$ | $2.20 \mathrm{E}-11$ | T2D |
| Caffeine from coffee | rs11127048 | 2 | 27752463 | G | A | 0.381191 | -0.01997 | 0.002398 | 0.012081 | 373522 | 4567.802 | $6.74 \mathrm{E}-18$ | $8.10 \mathrm{E}-17$ | T2D |
| Caffeine from coffee | rs35198275 | 3 | 50536092 | A | G | 0.865693 | 0.020797 | 0.003387 | 0.011987 | 373522 | 4531.599 | $4.48 \mathrm{E}-10$ | $8.20 \mathrm{E}-10$ | T2D |
| Caffeine from coffee | rs2726513 | 4 | 106217358 | G | T | 0.587077 | 0.015301 | 0.002347 | 0.011987 | 373522 | 4531.666 | $5.18 \mathrm{E}-10$ | $7.00 \mathrm{E}-11$ | T2D |
| Caffeine from coffee | rs12514566 | 5 | 7391462 | G | A | 0.664625 | 0.014831 | 0.002428 | 0.011991 | 373522 | 4533.052 | $2.31 \mathrm{E}-10$ | $1.00 \mathrm{E}-09$ | T2D |
| Caffeine from coffee | rs6893807 | 5 | 87965021 | A | G | 0.843563 | -0.01916 | 0.003159 | 0.011983 | 373522 | 4530.283 | $9.38 \mathrm{E}-10$ | $1.30 \mathrm{E}-09$ | T2D |
| Caffeine from coffee | rs1327259 | 6 | 51177811 | A | G | 0.614152 | 0.015707 | 0.002365 | 0.011995 | 373522 | 4534.635 | $1.14 \mathrm{E}-10$ | $3.10 \mathrm{E}-11$ | T2D |
| Caffeine from coffee | rs4410790 | 7 | 17284577 | T | C | 0.364412 | -0.05171 | 0.002384 | 0.013193 | 373522 | 4993.793 | $6.01 \mathrm{E}-110$ | $2.80 \mathrm{E}-104$ | T2D |
| Caffeine from coffee | rs34060476 | 7 | 73037956 | A | G | 0.865581 | -0.02519 | 0.003365 | 0.012032 | 373522 | 4549.021 | $1.47 \mathrm{E}-13$ | $7.10 \mathrm{E}-14$ | T2D |
| Caffeine from coffee | rs1057868 | 7 | 75615006 | C | T | 0.714413 | -0.02445 | 0.002536 | 0.012128 | 373522 | 4585.517 | $9.77 \mathrm{E}-22$ | $5.50 \mathrm{E}-22$ | T2D |
| Caffeine from coffee | rs76881016 | 10 | 134196286 | A | G | 0.928496 | -0.02584 | 0.004453 | 0.011957 | 373522 | 4520.214 | $1.39 \mathrm{E}-07$ | $6.60 \mathrm{E}-09$ | T2D |
| Caffeine from coffee | rs117810762 | 10 | 135315795 | G | A | 0.982047 | -0.05011 | 0.008765 | 0.011989 | 373522 | 4532.505 | $3.50 \mathrm{E}-10$ | $1.10 \mathrm{E}-08$ | T2D |
| Caffeine from coffee | rs2298527 | 11 | 112851961 | G | C | 0.405568 | 0.014947 | 0.002336 | 0.011978 | 373522 | 4528.319 | $2.77 \mathrm{E}-09$ | $1.60 \mathrm{E}-10$ | T2D |
| Caffeine from coffee | rs2472297 | 15 | 75027880 | C | T | 0.731859 | -0.06521 | 0.002587 | 0.013586 | 373522 | 5144.517 | $1.83 \mathrm{E}-138$ | $3.10 \mathrm{E}-140$ | T2D |
| Caffeine from coffee | rs2521501 | 15 | 91437388 | A | T | 0.677316 | 0.014916 | 0.002472 | 0.011971 | 373522 | 4525.774 | $1.02 \mathrm{E}-08$ | $1.60 \mathrm{E}-09$ | T2D |
| Caffeine from coffee | rs28567725 | 16 | 53826028 | T | C | 0.5877 | -0.02172 | 0.002331 | 0.012113 | 373522 | 4579.932 | $1.89 \mathrm{E}-20$ | $1.20 \mathrm{E}-20$ | T2D |
| Caffeine from coffee | rs2350633 | 17 | 17587395 | A | G | 0.486877 | -0.01469 | 0.002296 | 0.012003 | 373522 | 4537.946 | $1.77 \mathrm{E}-11$ | $1.60 \mathrm{E}-10$ | T2D |
| Caffeine from coffee | rs66723169 | 18 | 57808978 | C | A | 0.769043 | -0.02249 | 0.002732 | 0.012045 | 373522 | 4553.886 | $1.26 \mathrm{E}-14$ | $1.80 \mathrm{E}-16$ | T2D |
| Caffeine from coffee | rs56113850 | 19 | 41353107 | T | C | 0.421821 | -0.02071 | 0.002323 | 0.012076 | 373522 | 4565.758 | $1.95 \mathrm{E}-17$ | $4.90 \mathrm{E}-19$ | T2D |
| Caffeine from coffee | rs6063085 | 20 | 45840459 | A | C | 0.625251 | -0.01571 | 0.00237 | 0.011992 | 373522 | 4533.476 | $1.88 \mathrm{E}-10$ | $3.40 \mathrm{E}-11$ | T2D |
| Caffeine from coffee | rs181251778 | 22 | 24901968 | A | G | 0.986146 | 0.072648 | 0.009834 | 0.012039 | 373522 | 4551.664 | $1.53 \mathrm{E}-14$ | $1.50 \mathrm{E}-13$ | T2D |
| Caffeine from tea | rs9438624 | 1 | 26758044 | C | T | 0.19273 | -0.01535 | 0.002844 | 0.011885 | 373522 | 4492.773 | $4.63 \mathrm{E}-01$ | $6.70 \mathrm{E}-08$ | CAD |
| Caffeine from tea | rs11204708 | 1 | 150682095 | C | G | 0.619872 | -0.01428 | 0.002349 | 0.011959 | 373522 | 4521.126 | $1.04 \mathrm{E}-07$ | $1.20 \mathrm{E}-09$ | CAD |
| Caffeine from tea | rs56188862 | 1 | 174189269 | T | C | 0.614947 | 0.016829 | 0.002297 | 0.011884 | 373522 | 4492.339 | $7.38 \mathrm{E}-01$ | $2.40 \mathrm{E}-13$ | CAD |
| Caffeine from tea | rs78020607 | 3 | 50254624 | A | G | 0.887096 | -0.01866 | 0.003527 | 0.011906 | 373522 | 4500.895 | $3.64 \mathrm{E}-03$ | $1.20 \mathrm{E}-07$ | CAD |
| Caffeine from tea | rs2117137 | 3 | 89525505 | A | G | 0.594554 | -0.01349 | 0.002273 | 0.011896 | 373522 | 4497.011 | $2.98 \mathrm{E}-02$ | $2.90 \mathrm{E}-09$ | CAD |
| Caffeine from tea | rs1481012 | 4 | 89039082 | A | G | 0.887297 | 0.026005 | 0.003536 | 0.011945 | 373522 | 4515.799 | $1.13 \mathrm{E}-06$ | $1.90 \mathrm{E}-13$ | CAD |
| Caffeine from tea | rs192084998 | 5 | 152077481 | G | A | 0.703764 | 0.015836 | 0.002458 | 0.011885 | 373522 | 4492.581 | $5.55 \mathrm{E}-01$ | $1.20 \mathrm{E}-10$ | CAD |
| Caffeine from tea | rs2465018 | 6 | 51241140 | G | A | 0.769413 | -0.02211 | 0.002666 | 0.011975 | 373522 | 4527.092 | $4.55 \mathrm{E}-09$ | $1.10 \mathrm{E}-16$ | CAD |
| Caffeine from tea | rs139797380 | 6 | 137244957 | C | G | 0.991607 | 0.075145 | 0.013059 | 0.011926 | 373522 | 4508.398 | $4.72 \mathrm{E}-05$ | 8.70E-09 | CAD |
| Caffeine from tea | rs4410790 | 7 | 17284577 | T | C | 0.36537 | -0.04033 | 0.00232 | 0.013193 | 373522 | 4993.793 | $6.01 \mathrm{E}-110$ | $1.10 \mathrm{E}-67$ | CAD |
| Caffeine from tea | rs6462899 | 7 | 39296489 | T | A | 0.375354 | -0.01259 | 0.002312 | 0.011893 | 373522 | 4495.738 | $6.31 \mathrm{E}-02$ | $5.10 \mathrm{E}-08$ | CAD |
| Caffeine from tea | rs17685 | 7 | 75616105 | G | A | 0.721688 | -0.02391 | 0.002488 | 0.012123 | 373522 | 4583.926 | $2.17 \mathrm{E}-21$ | $7.20 \mathrm{E}-22$ | CAD |
| Caffeine from tea | rs62534435 | 9 | 7042938 | C | G | 0.796528 | -0.01629 | 0.002776 | 0.011885 | 373522 | 4492.788 | $4.57 \mathrm{E}-01$ | $4.40 \mathrm{E}-09$ | CAD |
| Caffeine from tea | rs11022752 | 11 | 13307622 | A | G | 0.730907 | -0.01535 | 0.002525 | 0.011888 | 373522 | 4493.73 | $2.24 \mathrm{E}-01$ | $1.20 \mathrm{E}-09$ | CAD |
| Caffeine from tea | rs10741694 | 11 | 16286183 | T | C | 0.372823 | -0.01474 | 0.002312 | 0.011885 | 373522 | 4492.73 | $4.82 \mathrm{E}-01$ | $1.80 \mathrm{E}-10$ | CAD |
| Caffeine from tea | rs73053413 | 12 | 11329548 | C | T | 0.836535 | 0.021681 | 0.003021 | 0.011946 | 373522 | 4516.148 | $1.15 \mathrm{E}-06$ | $7.10 \mathrm{E}-13$ | CAD |
| Caffeine from tea | rs12591786 | 15 | 60902512 | C | T | 0.842256 | 0.019576 | 0.003109 | 0.011894 | 373522 | 4495.968 | 5.41E-02 | $3.00 \mathrm{E}-10$ | CAD |
| Caffeine from tea | rs2472297 | 15 | 75027880 | C | T | 0.732806 | -0.05411 | 0.002521 | 0.013586 | 373522 | 5144.517 | $1.83 \mathrm{E}-138$ | $3.30 \mathrm{E}-102$ | CAD |


| GWAS trait | SNP | CHR | hg19 | EFAL | NEFAL | EF Freq | BETA | SE | $\mathbf{R}^{2}$ | N | F Statistic | P STATA | P GWAS | MR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Caffeine from tea | rs28429148 | 16 | 53798319 | G | A | 0.565413 | 0.013189 | 0.002288 | 0.012094 | 373522 | 4572.593 | 6.52E-19 | 8.20E-09 | CAD |
| Caffeine from tea | rs153328 | 16 | 63025865 | C | G | 0.782673 | -0.01445 | 0.002718 | 0.011884 | 373522 | 4492.32 | $7.60 \mathrm{E}-01$ | $1.10 \mathrm{E}-07$ | CAD |
| Caffeine from tea | rs 140775622 | 20 | 62962869 | C | T | 0.830545 | -0.02262 | 0.003207 | 0.011916 | 373522 | 4504.501 | $5.30 \mathrm{E}-04$ | $1.80 \mathrm{E}-12$ | CAD |
| Caffeine from tea | rs4817505 | 21 | 34343828 | T | C | 0.607874 | -0.01512 | 0.002292 | 0.01192 | 373522 | 4506.003 | $2.31 \mathrm{E}-04$ | $4.20 \mathrm{E}-11$ | CAD |
| Caffeine from tea | rs9624470 | 22 | 24820268 | G | A | 0.419254 | -0.02534 | 0.002272 | 0.011889 | 373522 | 4494.15 | $1.69 \mathrm{E}-01$ | 6.80E-29 | CAD |
| Caffeine from tea | rs132919 | 22 | 41809903 | G | C | 0.22639 | -0.01708 | 0.002697 | 0.011893 | 373522 | 4495.762 | $6.25 \mathrm{E}-02$ | $2.40 \mathrm{E}-10$ | CAD |
| Caffeine from tea | rs9438624 | 1 | 26758044 | C | T | 0.19273 | -0.01535 | 0.002844 | 0.011885 | 373522 | 4492.773 | $4.63 \mathrm{E}-01$ | $6.70 \mathrm{E}-08$ | T2D |
| Caffeine from tea | rs11204710 | 1 | 150682110 | A | G | 0.619798 | -0.01427 | 0.002348 | 0.01196 | 373522 | 4521.319 | $9.45 \mathrm{E}-08$ | $1.20 \mathrm{E}-09$ | T2D |
| Caffeine from tea | rs56188862 | 1 | 174189269 | T | C | 0.614947 | 0.016829 | 0.002297 | 0.011884 | 373522 | 4492.339 | $7.38 \mathrm{E}-01$ | $2.40 \mathrm{E}-13$ | T2D |
| Caffeine from tea | rs78020607 | 3 | 50254624 | A | G | 0.887096 | -0.01866 | 0.003527 | 0.011906 | 373522 | 4500.895 | $3.64 \mathrm{E}-03$ | $1.20 \mathrm{E}-07$ | T2D |
| Caffeine from tea | rs2117137 | 3 | 89525505 | A | G | 0.594554 | -0.01349 | 0.002273 | 0.011896 | 373522 | 4497.011 | $2.98 \mathrm{E}-02$ | $2.90 \mathrm{E}-09$ | T2D |
| Caffeine from tea | rs1481012 | 4 | 89039082 | A | G | 0.887297 | 0.026005 | 0.003536 | 0.011945 | 373522 | 4515.799 | $1.13 \mathrm{E}-06$ | $1.90 \mathrm{E}-13$ | T2D |
| Caffeine from tea | rs 192084998 | 5 | 152077481 | G | A | 0.703764 | 0.015836 | 0.002458 | 0.011885 | 373522 | 4492.581 | $5.55 \mathrm{E}-01$ | $1.20 \mathrm{E}-10$ | T2D |
| Caffeine from tea | rs2465018 | 6 | 51241140 | G | A | 0.769413 | -0.02211 | 0.002666 | 0.011975 | 373522 | 4527.092 | $4.55 \mathrm{E}-09$ | $1.10 \mathrm{E}-16$ | T2D |
| Caffeine from tea | rs139797380 | 6 | 137244957 | C | G | 0.991607 | 0.075145 | 0.013059 | 0.011926 | 373522 | 4508.398 | 4.72E-05 | 8.70E-09 | T2D |
| Caffeine from tea | rs4410790 | 7 | 17284577 | T | C | 0.36537 | -0.04033 | 0.00232 | 0.013193 | 373522 | 4993.793 | $6.01 \mathrm{E}-110$ | $1.10 \mathrm{E}-67$ | T2D |
| Caffeine from tea | rs6462899 | 7 | 39296489 | T | A | 0.375354 | -0.01259 | 0.002312 | 0.011893 | 373522 | 4495.738 | $6.31 \mathrm{E}-02$ | $5.10 \mathrm{E}-08$ | T2D |
| Caffeine from tea | rs17685 | 7 | 75616105 | G | A | 0.721688 | -0.02391 | 0.002488 | 0.012123 | 373522 | 4583.926 | $2.17 \mathrm{E}-21$ | $7.20 \mathrm{E}-22$ | T2D |
| Caffeine from tea | rs62534435 | 9 | 7042938 | C | G | 0.796528 | -0.01629 | 0.002776 | 0.011885 | 373522 | 4492.788 | $4.57 \mathrm{E}-01$ | $4.40 \mathrm{E}-09$ | T2D |
| Caffeine from tea | rs11022752 | 11 | 13307622 | A | G | 0.730907 | -0.01535 | 0.002525 | 0.011888 | 373522 | 4493.73 | $2.24 \mathrm{E}-01$ | $1.20 \mathrm{E}-09$ | T2D |
| Caffeine from tea | rs10741694 | 11 | 16286183 | T | C | 0.372823 | -0.01474 | 0.002312 | 0.011885 | 373522 | 4492.73 | 4.82E-01 | $1.80 \mathrm{E}-10$ | T2D |
| Caffeine from tea | rs73053413 | 12 | 11329548 | C | T | 0.836535 | 0.021681 | 0.003021 | 0.011946 | 373522 | 4516.148 | $1.15 \mathrm{E}-06$ | $7.10 \mathrm{E}-13$ | T2D |
| Caffeine from tea | rs12591786 | 15 | 60902512 | C | T | 0.842256 | 0.019576 | 0.003109 | 0.011894 | 373522 | 4495.968 | 5.41E-02 | $3.00 \mathrm{E}-10$ | T2D |
| Caffeine from tea | rs2472297 | 15 | 75027880 | C | T | 0.732806 | -0.05411 | 0.002521 | 0.013586 | 373522 | 5144.517 | $1.83 \mathrm{E}-138$ | $3.30 \mathrm{E}-102$ | T2D |
| Caffeine from tea | rs28429148 | 16 | 53798319 | G | A | 0.565413 | 0.013189 | 0.002288 | 0.012094 | 373522 | 4572.593 | 6.52E-19 | $8.20 \mathrm{E}-09$ | T2D |
| Caffeine from tea | rs153328 | 16 | 63025865 | C | G | 0.782673 | -0.01445 | 0.002718 | 0.011884 | 373522 | 4492.32 | $7.60 \mathrm{E}-01$ | $1.10 \mathrm{E}-07$ | T2D |
| Caffeine from tea | rs 140775622 | 20 | 62962869 | C | T | 0.830545 | -0.02262 | 0.003207 | 0.011916 | 373522 | 4504.501 | $5.30 \mathrm{E}-04$ | $1.80 \mathrm{E}-12$ | T2D |
| Caffeine from tea | rs4817505 | 21 | 34343828 | T | C | 0.607874 | -0.01512 | 0.002292 | 0.01192 | 373522 | 4506.003 | $2.31 \mathrm{E}-04$ | $4.20 \mathrm{E}-11$ | T2D |
| Caffeine from tea | rs9624470 | 22 | 24820268 | G | A | 0.419254 | -0.02534 | 0.002272 | 0.011889 | 373522 | 4494.15 | 1.69E-01 | 6.80E-29 | T2D |
| Caffeine from tea | rs132919 | 22 | 41809903 | G | C | 0.22639 | -0.01708 | 0.002697 | 0.011893 | 373522 | 4495.762 | $6.25 \mathrm{E}-02$ | $2.40 \mathrm{E}-10$ | T2D |

 coronary artery disease; T2D, type 2 diabetes; MR, Mendelian randomization.
 CAD or T2D

| Exposure | Outco me | $\begin{gathered} \mathbf{I}^{2} \\ \text { index } \end{gathered}$ | $\begin{gathered} \mathbf{I}^{2} \\ 95 \% \mathbf{C I} \\ \min \end{gathered}$ | $\begin{gathered} \mathbf{I}^{2} \\ \mathbf{9 5 \%} \mathbf{C I} \\ \max \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Cochran' } \\ \text { s Q } \end{gathered}$ | $\begin{gathered} \hline \mathbf{d f} \\ \text { Cochran's } \\ \mathbf{Q} \\ \hline \end{gathered}$ | $\mathbf{P}$ value Cochran' s Q | $\begin{gathered} \text { Rücker's } \\ \mathbf{Q}^{\prime} \end{gathered}$ | $\begin{gathered} \text { df Rücker's } \\ \mathbf{Q}^{\prime} \end{gathered}$ | P value Rücker's $\mathbf{Q}^{\prime}$ | Q-Q' | df Q-Q' | $\begin{gathered} \hline \text { P value } \\ \text { Q-Q }^{\prime} \end{gathered}$ | $\begin{aligned} & \text { MR-Egger } \\ & \text { intercept } \end{aligned}$ | $\underset{\text { intercept }}{\text { SE MR-Egger }}$ | $P$ value MREgger intercept | $\mathrm{I}^{\mathbf{2} \mathrm{GX}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Combined caffeine intake | CAD | $\begin{gathered} 0.6872 \\ 2 \end{gathered}$ | 0.55735 | 0.77899 | 110 | 34 | 9.70E-10 | 110 | 33 | $5.40 \mathrm{E}-10$ | 8.70E-02 | 1 | 0.77 | -0.00091 | 0.00559 | 0.87 | 0.99 |
| Caffeine from coffee | CAD | $\begin{gathered} 0.8085 \\ 6 \end{gathered}$ | 0.71856 | 0.86978 | 110 | 21 | $5.40 \mathrm{E}-14$ | 110 | 20 | $8.90 \mathrm{E}-14$ | 3.3 | 1 | 0.069 | -0.00900 | 0.01140 | 0.44 | 0.99 |
| Caffeine from tea | CAD | $\begin{gathered} 0.6063 \\ 8 \\ \hline \end{gathered}$ | 0.38546 | 0.74788 | 58 | 23 | 6.40E-05 | 53 | 22 | $2.30 \mathrm{E}-04$ | 5.5 | 1 | 0.019 | -0.01290 | 0.00854 | 0.15 | 0.98 |
| Combined caffeine intake | T2D | $\begin{gathered} 0.7103 \\ 8 \end{gathered}$ | 0.59298 | 0.79391 | 120 | 34 | 4.20E-11 | 110 | 33 | $1.50 \mathrm{E}-10$ | 5.3 | 1 | 0.021 | 0.00911 | 0.00726 | 0.22 | 0.99 |
| Caffeine from coffee | T2D | $\begin{gathered} 0.8459 \\ 9 \end{gathered}$ | 0.78048 | 0.89195 | 140 | 22 | 1.10E-19 | 130 | 21 | $1.30 \mathrm{E}-18$ | 8.1 | 1 | 0.004 | 0.01744 | 0.01550 | 0.27 | 0.99 |
| Caffeine from tea | T2D | $\begin{gathered} 0.7976 \\ 0 \end{gathered}$ | 0.70575 | 0.86078 | 110 | 23 | 5.70E-14 | 100 | 22 | $8.70 \mathrm{E}-13$ | 8.7 | 1 | 0.003 | -0.02059 | 0.01527 | 0.19 | 0.98 |

Table S25. Excluded variants in MR-PRESSO analyses on CAD and T2D

| Combined caffeine intake SNPs |  |  |  | Caffeine from coffee SNPs |  |  |  | Caffeine from tea SNPs |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outlier SNP | RSS ${ }_{\text {obs }}$ | $\mathbf{P}$ value | Outcome | Outlier SNP | RSSobs | $\begin{array}{\|l\|} \hline \mathbf{P} \\ \text { value } \end{array}$ | Outcome | Outlier SNP | RSS ${ }_{\text {obs }}$ | $\begin{aligned} & \hline \mathbf{P} \\ & \text { value } \end{aligned}$ | Outcome |
| rs1490384 | 0.001195111 | 0.05 | CAD | rs2350633 | 0.001956 | <0.05 | CAD | rs11022752 | 0.002 | <0.05 | CAD |
| rs4418728 | 0.001363837 | <0.05 | CAD | rs2521501 | 0.00415 | <0.05 | CAD | rs4410790 | 0.0014 | <0.05 | CAD |
| rs489693 | 0.002065843 | <0.05 | CAD | rs66723169 | 0.003039 | <0.05 | CAD | rs28429148 | 0.0151 | <0.05 | T2D |
| rs595529 | 0.002935062 | <0.05 | CAD | rs7412396 | 0.000736 | 0.05 | CAD |  |  |  |  |
| rs1490384 | 0.003607685 | <0.05 | T2D | rs2350633 | 0.00191 | <0.05 | T2D |  |  |  |  |
| rs2667773 | 0.001851194 | <0.05 | T2D | rs28567725 | 0.012255 | <0.05 | T2D |  |  |  |  |
| rs489693 | 0.002973746 | <0.05 | T2D | rs66723169 | 0.002487 | <0.05 | T2D |  |  |  |  |

Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) outlier information for the excluded variants per outcome. Abbreviations: CAD, coronary artery disease; T2D, type 2 diabetes; SNP, single nucleotide polymorphism, RSS $_{\text {obs, }}$, observed residual sum of squares

Table S26. Mendelian randomization analyses results after MR-Steiger filtering

| MR Method | n SNPs | Beta | SE | $P$ value | Outcome | Filtered SNPs | Exposure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inverse variance weighted (fixed effects) | 32 | 0.09 | 0.06 | 0.166 | CAD | $\begin{gathered} \text { rs4418728 } \\ \text { rs489693 } \\ \text { rs595529 } \end{gathered}$ | Combined caffeine |
| MR Egger | 32 | 0.18 | 0.13 | 0.182 |  |  |  |
| Weighted median | 32 | 0.05 | 0.11 | 0.653 |  |  |  |
| Inverse variance weighted (multiplicative random effects) | 32 | 0.09 | 0.08 | 0.274 |  |  |  |
| Weighted mode | 32 | 0.14 | 0.09 | 0.121 |  |  |  |
| Inverse variance weighted (fixed effects) | 19 | 0.27 | 0.10 | 0.01 | CAD | $\begin{aligned} & \text { rs2350633 } \\ & \text { rs2521501 } \\ & \text { rs66723169 } \end{aligned}$ | Caffeine from coffee |
| MR Egger | 19 | 0.27 | 0.28 | 0.35 |  |  |  |
| Weighted median | 19 | 0.29 | 0.15 | 0.05 |  |  |  |
| Inverse variance weighted (multiplicative random effects) | 19 | 0.27 | 0.14 | 0.05 |  |  |  |
| Weighted mode | 19 | 0.06 | 0.18 | 0.76 |  |  |  |
| Inverse variance weighted (fixed effects) | 23 | 0.01 | 0.11 | 0.91 | CAD | rs11022752 | Caffeine from tea |
| MR Egger | 23 | 0.37 | 0.34 | 0.30 |  |  |  |
| Weighted median | 23 | -0.05 | 0.19 | 0.78 |  |  |  |
| Inverse variance weighted (multiplicative random effects) | 23 | 0.01 | 0.15 | 0.93 |  |  |  |
| Weighted mode | 23 | 0.03 | 0.25 | 0.92 |  |  |  |
| Inverse variance weighted (fixed effects) | 34 | 0.25 | 0.08 | $2.01 \mathrm{E}-03$ | T2D | rs1490384 | Combined caffeine |
| MR Egger | 34 | 0.12 | 0.21 | 0.59 |  |  |  |
| Weighted median | 34 | 0.14 | 0.11 | 0.21 |  |  |  |
| Inverse variance weighted (multiplicative random effects) | 34 | 0.25 | 0.13 | 0.07 |  |  |  |
| Weighted mode | 34 | 0.16 | 0.11 | 0.13 |  |  |  |
| Inverse variance weighted (fixed effects) | 22 | 0.43 | 0.12 | 4.51E-04 | T2D | rs28567725 | Caffeine from coffee |
| MR Egger | 22 | 0.09 | 0.41 | 0.83 |  |  |  |


| MR Method | n SNPs | Beta | SE | $P$ value | Outcome | Filtered SNPs | Exposure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weighted median | 22 | 0.24 | 0.17 | 0.17 |  |  |  |
| Inverse variance weighted (multiplicative random effects) | 22 | 0.43 | 0.21 | 0.04 |  |  |  |
| Weighted mode | 22 | 0.24 | 0.16 | 0.15 |  |  |  |
| Inverse variance weighted (fixed effects) | 23 | 0.22 | 0.14 | 0.12 | T2D | rs28429148 | Caffeine from tea |
| MR Egger | 23 | 0.37 | 0.35 | 0.30 |  |  |  |
| Weighted median | 23 | 0.27 | 0.20 | 0.18 |  |  |  |
| Inverse variance weighted (multiplicative random effects) | 23 | 0.22 | 0.15 | 0.15 |  |  |  |
| Weighted mode | 23 | 0.23 | 0.21 | 0.29 |  |  |  |

Mendelian randomization (MR) analysis method results for the association between genetically determined higher caffeine intake on coronary artery disease or type 2 diabetes after filtering of SNPs more strongly associated (R2) with the outcome than the exposure. Beta's are per standard deviation increase in genetically determined caffeine intake.

Table S27. SNPs and proxies for Mendelian Randomization analyses for combined caffeine intake on type $\mathbf{2}$ diabetes

| SNP | CHR | BP | ALLELE1 | ALLELE0 | A1FREQ | BETA | SE | $\mathbf{P}$ value | Proxy for | $\mathbf{R}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs7412396 | 1 | 150666797 | G | A | 0.597491 | -0.02279 | 0.002364 | $5.50 \mathrm{E}-22$ | rs768283768 | 0.930744 |
| rs2987869 | 1 | 174789407 | G | T | 0.458638 | -0.01562 | 0.002332 | $2.10 \mathrm{E}-11$ | 1:174856749_TG_T | 0.998626 |
| rs1260326 | 2 | 27730940 | T | C | 0.391852 | -0.02297 | 0.002377 | $4.20 \mathrm{E}-22$ |  |  |
| rs78456557 | 3 | 123300686 | C | G | 0.900201 | -0.02364 | 0.00389 | $1.20 \mathrm{E}-09$ |  |  |
| rs114066728 | 3 | 142022265 | T | C | 0.870043 | -0.02127 | 0.003456 | $7.50 \mathrm{E}-10$ | rs115454798 | 0.991139 |
| rs2231142 | 4 | 89052323 | G | T | 0.886707 | 0.03913 | 0.00366 | $1.10 \mathrm{E}-26$ |  |  |
| rs62332762 | 4 | 106143492 | C | T | 0.597585 | 0.01828 | 0.002368 | $1.20 \mathrm{E}-14$ |  |  |
| rs12514566 | 5 | 7391462 | G | A | 0.664698 | 0.017242 | 0.002456 | $2.20 \mathrm{E}-12$ |  |  |
| rs1872841 | 6 | 98576688 | C | A | 0.483724 | -0.01316 | 0.002328 | $1.60 \mathrm{E}-08$ | rs754177720 | 0.902704 |
| rs9486902 | 6 | 108878052 | C | T | 0.837869 | 0.018849 | 0.00315 | $2.20 \mathrm{E}-09$ | 6:108876096_CAAT_C | 0.997488 |
| rs1490384 | 6 | 126851160 | C | T | 0.501467 | -0.01587 | 0.002323 | $8.30 \mathrm{E}-12$ |  |  |
| rs139797380 | 6 | 137244957 | C | G | 0.991601 | 0.106741 | 0.013575 | $3.70 \mathrm{E}-15$ |  |  |
| rs4410790 | 7 | 17284577 | T | C | 0.364122 | -0.08137 | 0.002412 | $1.50 \mathrm{E}-249$ |  |  |
| rs215601 | 7 | 32333921 | A | C | 0.372618 | 0.01488 | 0.002404 | $6.00 \mathrm{E}-10$ |  |  |
| rs34060476 | 7 | 73037956 | A | G | 0.865587 | -0.03535 | 0.003404 | $2.90 \mathrm{E}-25$ | 7:73042302_GCTTT_G | 0.99198 |
| rs17685 | 7 | 75616105 | G | A | 0.721471 | -0.0408 | 0.002584 | 3.80E-56 |  |  |
| rs4240624 | 8 | 9184231 | G | A | 0.092461 | 0.02693 | 0.004012 | $1.90 \mathrm{E}-11$ |  |  |
| rs12785227 | 10 | 65262685 | A | G | 0.685798 | 0.014549 | 0.002507 | $6.50 \mathrm{E}-09$ |  |  |
| rs4418728 | 10 | 94839724 | G | T | 0.550788 | 0.014384 | 0.002333 | $7.00 \mathrm{E}-10$ |  |  |
| rs117810762 | 10 | 135315795 | G | A | 0.982023 | -0.06827 | 0.008863 | $1.30 \mathrm{E}-14$ |  |  |
| rs6265 | 11 | 27679916 | C | T | 0.810755 | 0.021572 | 0.002964 | $3.40 \mathrm{E}-13$ |  |  |
| rs1228024 | 11 | 47951353 | C | A | 0.340021 | 0.013965 | 0.002453 | $1.30 \mathrm{E}-08$ |  |  |
| rs7105462 | 11 | 112912048 | G | A | 0.40559 | 0.014163 | 0.002366 | $2.10 \mathrm{E}-09$ |  |  |
| rs607316 | 12 | 111969448 | C | T | 0.795666 | -0.01678 | 0.002878 | $5.50 \mathrm{E}-09$ | rs376877108 | 0.993627 |
| rs12591786 | 15 | 60902512 | C | T | 0.842038 | 0.020213 | 0.00323 | $3.90 \mathrm{E}-10$ |  |  |
| rs2472297 | 15 | 75027880 | C | T | 0.731645 | -0.10487 | 0.002616 | $2.4 \mathrm{E}-351$ |  |  |
| rs2667773 | 15 | 77872191 | A | G | 0.686772 | 0.014947 | 0.002506 | $2.50 \mathrm{E}-09$ |  |  |


| SNP | CHR | BP | ALLELE1 | ALLELE0 | A1FREQ | BETA | SE | $P$ value | Proxy for | $\mathbf{R}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs3965574 | 16 | 18789966 | A | G | 0.61805 | 0.013716 | 0.002416 | $1.40 \mathrm{E}-08$ | 16:18776851_G_GA | 0.934833 |
| rs489693 | 18 | 57882787 | C | A | 0.67465 | -0.01759 | 0.002478 | $1.30 \mathrm{E}-12$ |  |  |
| rs56113850 | 19 | 41353107 | T | C | 0.421755 | -0.02649 | 0.002351 | $1.90 \mathrm{E}-29$ |  |  |
| rs61599759 | 19 | 47557472 | A | G | 0.245811 | -0.01741 | 0.002732 | $1.80 \mathrm{E}-10$ | rs61141867 | 0.984394 |
| rs1291145 | 20 | 35528475 | T | C | 0.313259 | -0.01456 | 0.002506 | $6.30 \mathrm{E}-09$ | 20:35568001_AAAAG_A | 0.998402 |
| rs6062679 | 20 | 62889991 | T | C | 0.534615 | -0.02278 | 0.002358 | $4.50 \mathrm{E}-22$ |  |  |
| rs138019862 | 22 | 24821154 | G | T | 0.986106 | 0.093407 | 0.009925 | $4.90 \mathrm{E}-21$ | rs199612805 | 1 |
| rs9611527 | 22 | 41644428 | G | A | 0.664286 | 0.019792 | 0.002466 | $1.00 \mathrm{E}-15$ |  |  |

Sentinel single nucleotide polymorphisms (SNPs) and proxies used are provided for the Mendelian randomization analyses. In case a proxy was used, the original sentinel SNP is provided in the "Proxy for" column and the $\mathrm{R}^{2}$ between them in the " $\mathrm{R}^{2}$ " column. No proxy with $\mathrm{R}^{2}>0.8$ was available for $3: 50895869$ _ATAATAATAAT_A and rs 531431865 , which were therefore excluded from analyses

Table S28. SNPs and proxies for Mendelian Randomization analyses for caffeine from coffee on type $\mathbf{2}$ diabetes

| SNP | CHR | BP | ALLELE1 | ALLELE0 | A1FREQ | BETA | SE | $P$ value | Proxy for | $\mathbf{R}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs4615895 | 1 | 96274668 | G | A | 0.259574 | -0.01705 | 0.002627 | 8.60E-11 |  |  |
| rs7412396 | 1 | 150666797 | G | A | 0.597371 | -0.01297 | 0.002337 | $2.90 \mathrm{E}-08$ | rs768283768 | 0.930744 |
| rs7561317 | 2 | 644953 | A | G | 0.171158 | -0.02037 | 0.003043 | $2.20 \mathrm{E}-11$ | rs7571970 | 0.99315 |
| rs11127048 | 2 | 27752463 | G | A | 0.381191 | -0.01997 | 0.002398 | $8.10 \mathrm{E}-17$ |  |  |
| rs35198275 | 3 | 50536092 | A | G | 0.865693 | 0.020797 | 0.003387 | $8.20 \mathrm{E}-10$ |  |  |
| rs2726513 | 4 | 106217358 | G | T | 0.587077 | 0.015301 | 0.002347 | $7.00 \mathrm{E}-11$ |  |  |
| rs12514566 | 5 | 7391462 | G | A | 0.664625 | 0.014831 | 0.002428 | $1.00 \mathrm{E}-09$ |  |  |
| rs6893807 | 5 | 87965021 | A | G | 0.843563 | -0.01916 | 0.003159 | $1.30 \mathrm{E}-09$ |  |  |
| rs1327259 | 6 | 51177811 | A | G | 0.614152 | 0.015707 | 0.002365 | $3.10 \mathrm{E}-11$ |  |  |
| rs4410790 | 7 | 17284577 | T | C | 0.364412 | -0.05171 | 0.002384 | $2.80 \mathrm{E}-104$ |  |  |
| rs34060476 | 7 | 73037956 | A | G | 0.865581 | -0.02519 | 0.003365 | $7.10 \mathrm{E}-14$ |  |  |
| rs1057868 | 7 | 75615006 | C | T | 0.714413 | -0.02445 | 0.002536 | $5.50 \mathrm{E}-22$ |  |  |
| rs76881016 | 10 | 134196286 | A | G | 0.928496 | -0.02584 | 0.004453 | $6.60 \mathrm{E}-09$ |  |  |
| rs117810762 | 10 | 135315795 | G | A | 0.982047 | -0.05011 | 0.008765 | $1.10 \mathrm{E}-08$ |  |  |
| rs2298527 | 11 | 112851961 | G | C | 0.405568 | 0.014947 | 0.002336 | $1.60 \mathrm{E}-10$ |  |  |
| rs2472297 | 15 | 75027880 | C | T | 0.731859 | -0.06521 | 0.002587 | $3.10 \mathrm{E}-140$ |  |  |
| rs2521501 | 15 | 91437388 | A | T | 0.677316 | 0.014916 | 0.002472 | $1.60 \mathrm{E}-09$ |  |  |
| rs28567725 | 16 | 53826028 | T | C | 0.5877 | -0.02172 | 0.002331 | $1.20 \mathrm{E}-20$ | rs201399553 | 0.945928 |
| rs2350633 | 17 | 17587395 | A | G | 0.486877 | -0.01469 | 0.002296 | $1.60 \mathrm{E}-10$ | rs139937261 | 0.997277 |
| rs66723169 | 18 | 57808978 | C | A | 0.769043 | -0.02249 | 0.002732 | $1.80 \mathrm{E}-16$ |  |  |
| rs56113850 | 19 | 41353107 | T | C | 0.421821 | -0.02071 | 0.002323 | $4.90 \mathrm{E}-19$ |  |  |
| rs6063085 | 20 | 45840459 | A | C | 0.625251 | -0.01571 | 0.00237 | $3.40 \mathrm{E}-11$ |  |  |
| rs181251778 | 22 | 24901968 | A | G | 0.986146 | 0.072648 | 0.009834 | $1.50 \mathrm{E}-13$ |  |  |

Sentinel single nucleotide polymorphisms (SNPs) and proxies used are provided for the Mendelian randomization analyses. In case a proxy was used, the original sentinel SNP is provided in the "Proxy for" column and the $R^{2}$ between them in the " $\mathrm{R}^{2 "}$ column. No proxy with $\mathrm{R}^{2}>0.8$ was available for rs531431865, which was therefore excluded from analyses.

Table S29. SNPs and proxies for Mendelian Randomization analyses for caffeine from tea on type 2 diabetes

| SNP | CHR | BP | ALLELE1 | ALLELE0 | A1FREQ | BETA | SE | P value | Proxy for | $\mathbf{R}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs9438624 | 1 | 26758044 | C | T | 0.19273 | -0.01535 | 0.002844 | $6.70 \mathrm{E}-08$ | rs77476394 | 0.887444 |
| rs11204710 | 1 | 150682110 | A | G | 0.619798 | -0.01427 | 0.002348 | $1.20 \mathrm{E}-09$ | rs11204711 | 0.998421 |
| rs56188862 | 1 | 174189269 | T | C | 0.614947 | 0.016829 | 0.002297 | $2.40 \mathrm{E}-13$ |  |  |
| rs78020607 | 3 | 50254624 | A | G | 0.887096 | -0.01866 | 0.003527 | $1.20 \mathrm{E}-07$ | rs145755097 | 0.869438 |
| rs2117137 | 3 | 89525505 | A | G | 0.594554 | -0.01349 | 0.002273 | $2.90 \mathrm{E}-09$ |  |  |
| rs1481012 | 4 | 89039082 | A | G | 0.887297 | 0.026005 | 0.003536 | $1.90 \mathrm{E}-13$ |  |  |
| rs192084998 | 5 | 152077481 | G | A | 0.703764 | 0.015836 | 0.002458 | $1.20 \mathrm{E}-10$ |  |  |
| rs2465018 | 6 | 51241140 | G | A | 0.769413 | -0.02211 | 0.002666 | $1.10 \mathrm{E}-16$ |  |  |
| rs139797380 | 6 | 137244957 | C | G | 0.991607 | 0.075145 | 0.013059 | $8.70 \mathrm{E}-09$ |  |  |
| rs4410790 | 7 | 17284577 | T | C | 0.36537 | -0.04033 | 0.00232 | $1.10 \mathrm{E}-67$ |  |  |
| rs6462899 | 7 | 39296489 | T | A | 0.375354 | -0.01259 | 0.002312 | $5.10 \mathrm{E}-08$ | rs141180025 | 0.943469 |
| rs17685 | 7 | 75616105 | G | A | 0.721688 | -0.02391 | 0.002488 | $7.20 \mathrm{E}-22$ |  |  |
| rs62534435 | 9 | 7042938 | C | G | 0.796528 | -0.01629 | 0.002776 | $4.40 \mathrm{E}-09$ |  |  |
| rs11022752 | 11 | 13307622 | A | G | 0.730907 | -0.01535 | 0.002525 | $1.20 \mathrm{E}-09$ |  |  |
| rs10741694 | 11 | 16286183 | T | C | 0.372823 | -0.01474 | 0.002312 | $1.80 \mathrm{E}-10$ |  |  |
| rs73053413 | 12 | 11329548 | C | T | 0.836535 | 0.021681 | 0.003021 | $7.10 \mathrm{E}-13$ |  |  |
| rs12591786 | 15 | 60902512 | C | T | 0.842256 | 0.019576 | 0.003109 | $3.00 \mathrm{E}-10$ |  |  |
| rs2472297 | 15 | 75027880 | C | T | 0.732806 | -0.05411 | 0.002521 | $3.30 \mathrm{E}-102$ |  |  |
| rs28429148 | 16 | 53798319 | G | A | 0.565413 | 0.013189 | 0.002288 | 8.20E-09 |  |  |
| rs153328 | 16 | 63025865 | C | G | 0.782673 | -0.01445 | 0.002718 | $1.10 \mathrm{E}-07$ | rs199602679 | 0.976937 |
| rs140775622 | 20 | 62962869 | C | T | 0.830545 | -0.02262 | 0.003207 | $1.80 \mathrm{E}-12$ |  |  |
| rs4817505 | 21 | 34343828 | T | C | 0.607874 | -0.01512 | 0.002292 | $4.20 \mathrm{E}-11$ |  |  |
| rs9624470 | 22 | 24820268 | G | A | 0.419254 | -0.02534 | 0.002272 | $6.80 \mathrm{E}-29$ |  |  |
| rs132919 | 22 | 41809903 | G | C | 0.22639 | -0.01708 | 0.002697 | $2.40 \mathrm{E}-10$ |  |  |

Sentinel single nucleotide polymorphisms (SNPs) and proxies used are provided for the Mendelian randomization analyses. In case a proxy was used, the original sentinel SNP is provided in the "Proxy for" column and the $R^{2}$ between them in the " $\mathrm{R}^{2 "}$ column

Figure S1. UK Biobank study population selection


Study sample selection flowchart. Section A depicts the selection procedure leading up to the total number of participants included in one or more genome wide association study (B) and the number of new-onset cases and controls within each genetic cohort that were included in observational analyses. Abbreviations: CAD, coronary artery disease; GWAS, genome wide association study; T2D, type 2 diabetes; QC, quality control

Figure S2. Manhattan plot for caffeine from coffee


Manhattan plot showing the results for the genome-wide associations with caffeine from coffee in the UK Biobank with the $-\log 10 P$ value on the vertical axis. The sentinel single nucleotide polymorphisms that reached genome-wide significance ( $\mathrm{P}<1.67 \times 10^{-8}$ ) are colored red.

Figure S3. Manhattan plot for caffeine from tea


Manhattan plot showing the results for the genome-wide associations with caffeine from tea in the UK Biobank with the $-\log 10 P$ value on the vertical axis. The sentinel single nucleotide polymorphisms that reached genome-wide significance ( $\mathrm{P}<1.67 \times 10^{-8}$ ) are colored red.

Figure S4. Overlay Manhattan plot based on lowest $P$ value for all caffeine intake traits


Overlay Manhattan plot showing the results for the genome-wide associations with caffeine intake over all traits based on the lowest P value within the UK Biobank with the $-\log 10 P$ value on the vertical axis. The sentinel single nucleotide polymorphisms that reached genome-wide significance $\left(\mathrm{P}<1.67 \times 10^{-8}\right)$ are colored red.

Figure S5. Locus plots for combined caffeine intake


－rs2667773








Figure S6. Locus plots for caffeine from coffee



Figure S7. Locus plots for caffeine from tea



Figure S8. QQ plot for combined caffeine intake


Figure S9. QQ plot for caffeine from coffee


Figure S10. QQ plot for caffeine from tea


Figure S11. Forest plot showing individual SNP estimates with CAD for combined caffeine intake


Figure S12. Forest plot showing individual SNP estimates with CAD for caffeine from coffee


Figure S13. Forest plot showing individual SNP estimates with CAD for caffeine from tea


Figure S14. Forest plot showing individual SNP estimates with T2D for combined caffeine intake


Figure S15. Forest plot showing individual SNP estimates with T2D for caffeine from coffee


Figure S16. Forest plot showing individual SNP estimates with T2D for caffeine from tea



[^0]:    Correspondence to: Pim van der Harst, MD, PhD, Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands. E-mail: p.vanderharst@umcutrecht.nl
    Supplementary Materials for this article are available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.120.016808
    For Sources of Funding and Disclosures, see page 9.
    © 2020 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
    JAHA is available at: www.ahajournals.org/journal/jaha

[^1]:    Caffeine intake in $\mathrm{mg} /$ day

