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IMPORTANCE: A Disintegrin and Metalloproteinase with Thrombospondin 
Motifs-1 is hypothesized to play a role in the pathogenesis of invasive infection, 
but studies in sepsis are lacking.

OBJECTIVES: To study A Disintegrin and Metalloproteinase with Thrombospondin 
Motifs-1 protein level in pediatric sepsis and to study the association with outcome.

DESIGN: Data from two prospective cohort studies.

SETTING AND PARTICIPANTS: Cohort 1 is from a single-center study involv-
ing children admitted to PICU with meningococcal sepsis (samples obtained at 
three time points). Cohort 2 includes patients from a multicenter study involving 
children admitted to the hospital with invasive bacterial infections of differing eti-
ologies (samples obtained within 48 hr after hospital admission).

MAIN OUTCOMES AND MEASURES: Primary outcome measure was mor-
tality. Secondary outcome measures were PICU-free days at day 28 and hospital 
length of stay.

RESULTS: In cohort 1 (n = 59), nonsurvivors more frequently had A Disintegrin 
and Metalloproteinase with Thrombospondin Motifs-1 levels above the detec-
tion limit than survivors at admission to PICU (8/11 [73%] and 6/23 [26%], 
respectively; p = 0.02) and at t = 24 hours (2/3 [67%] and 3/37 [8%], respec-
tively; p = 0.04). In cohort 2 (n = 240), A Disintegrin and Metalloproteinase with 
Thrombospondin Motifs-1 levels in patients within 48 hours after hospital ad-
mission were more frequently above the detection limit than in healthy controls 
(110/240 [46%] and 14/64 [22%], respectively; p = 0.001). Nonsurvivors more 
often had detectable A Disintegrin and Metalloproteinase with Thrombospondin 
Motifs-1 levels than survivors (16/21 [76%] and 94/219 [43%], respectively;  
p = 0.003), which was mostly attributable to patients with Neisseria meningitidis.

CONCLUSIONS AND RELEVANCE: In children with bacterial infection, de-
tection of A Disintegrin and Metalloproteinase with Thrombospondin Motifs-1 
within 48 hours after hospital admission is associated with death, particularly 
in meningococcal sepsis. Future studies should confirm the prognostic value of 
A Disintegrin and Metalloproteinase with Thrombospondin Motifs-1 and should 
study pathophysiologic mechanisms.

KEY WORDS: A Disintegrin and Metalloproteinase with Thrombospondin 
Motifs-1 protein; bacterial infections; biomarkers; inflammation; mortality; sepsis

Prevalence and outcome of bacterial infections are determined by host 
(e.g., genetic predisposition, immune response to bacteria), pathogen, 
and healthcare system factors (1). The EUropean Childhood Life-

threatening Infectious Diseases Study (EUCLIDS) aims to identify genetic 
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factors and biological pathways associated with sus-
ceptibility and/or severity of life-threatening bacte-
rial infections (2–4). Preliminary EUCLIDS genetic 
studies in meningococcal sepsis patients identified 
a SNP in A Disintegrin and Metalloproteinase with 
Thrombospondin Motifs-1 (ADAMTS-1; rs9975310) to 
be associated with disease severity, although this asso-
ciation did not reach genome-wide significance (un-
published data). Furthermore, animal studies showed 
that ADAMTS-1 is increased in the host inflamma-
tory response, and therefore we hypothesize that 
ADAMTS-1 plays a role in the pathogenesis of inva-
sive infection (5–7). Studies on ADAMTS-1 in sepsis, 
either adult or pediatric, are currently lacking.

The ADAMTS family includes 19 proteases with a va-
riety of functions, for example, in coagulation and inflam-
mation (8–11). ADAMTS-13, the von Willebrand factor 
(vWF)-cleaving protease, cleaves ultra large prothrom-
botic multimeric vWF into an optimal size for normal 
coagulation (12) and is the most extensively studied 
ADAMTS protease in sepsis. Previous studies demon-
strated that decreased ADAMTS-13 levels, presumably 
leading to increased formation of thrombi, are associated 
with more severe disease and poor outcome (13, 14).

Other ADAMTS-proteins have not been studied in 
sepsis yet despite animal studies hinting toward an im-
portant role in inflammation and sepsis. ADAMTS-1 
is an inhibitor of angiogenic activity, is associated with 
acute inflammatory processes, and is involved in the 
process of extracellular matrix damage and repair (7, 15).  
In rats and mice, a dramatic increase of ADAMTS-1 
was detected after lipopolysaccharide (LPS) induced 
systemic inflammation, suggesting that the ADAMTS-1 
gene is an inflammation-associated gene (5–7).  
An immunomodulatory role for ADAMTS-1 is also in-
dicated by the pro-inflammatory phenotype observed 
in ADAMTS-1-deficient mice (16).

We studied ADAMTS-1 serum protein levels in pe-
diatric sepsis and studied the association with mortality, 
illness severity, coagulation, and infecting pathogen.

MATERIALS AND METHODS

This study comprises data from two independent 
cohorts; a single-center cohort of children admitted to 
PICU with meningococcal sepsis (cohort 1) and an in-
ternational, multicenter cohort of children admitted to 
hospital with invasive bacterial infections of differing 
etiologies (cohort 2).

Cohort 1

Children 1 month to 18 years old with meningococcal 
sepsis presenting to the PICU of Erasmus MC-Sophia 
Children’s Hospital between October 1991 and 
February 2000 were prospectively enrolled in menin-
gococcal sepsis studies (17–19). All patients fulfilled 
internationally agreed criteria for sepsis with pete-
chial rash and/or purpura (20). Blood samples were 
collected at admission to PICU, at 24 hours, and at 1 
month after PICU admission.

Serum samples were processed on ice and stored at 
–80°C until analysis. In remaining serum samples avail-
able from these studies, we measured ADAMTS-1 levels 
using a commercially available human enzyme-linked 
immunosorbent assay (ELISA) kit as described by the 
manufacturer (ADAMTS-1 ELISA kit, MBS2021525; 
MyBioSource, San Diego, CA). The lower limit of detec-
tion (LLOD) of this assay was 1.6 ng/mL (1,600 pg/mL).  
ADAMTS-1 levels measured below the LLOD were 
considered 1.6 ng/mL.

The samples obtained 1 month after PICU admis-
sion were considered as convalescent samples.

Cohort 2

Children suspected of community-acquired bacte-
rial infection at hospital admission were prospectively 
enrolled between July 2012 and December 2016. This 
multicenter cohort study (EUCLIDS) involves 195 
hospitals from 10 countries. Detailed information on 
consortium and enrollment strategy has been pub-
lished elsewhere (2, 3). Patients were recruited as early 
as possible in the illness within a time window from 
admission to hospital to the time when microbiology 
results became available.

For this laboratory study, we selected children 1 month 
to 18 years old recruited in five countries (United Kingdom, 
Spain, Austria, The Netherlands, and Switzerland) with 
an invasive infection caused by Neisseria meningiti-
dis, Streptococcus pneumoniae, Staphylococcus aureus, 
or group A streptococcus, from whom serum samples 
obtained within 48 hours after hospital admission were 
available. Invasive bacterial infection was defined as iso-
lation by culture or polymerase chain reaction of a bacte-
rial organism from a normally sterile site. We considered 
blood, cerebrospinal fluid, urine, bronchoalveolar lavage, 
joint aspirate, abscess aspirate, intraoperative swabs, and 
pleural aspirate as sterile sites. Positive cultures from sites 
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such as endotracheal tube aspirate, nasopharyngeal aspi-
rate, throat/nasal swabs, and wounds were not considered 
as sterile sites.

ADAMTS-1 levels were measured with a cus-
tom-made Luminex assay based on a capture anti-
body, detection antibody, and recombinant human 
ADAMTS-1 (ADAMTS-1 DuoSet ELISA assay; R&D 
Systems, Abingdon, United Kingdom). This Luminex 
assay, being a far more sensitive assay than the ELISA 
used for cohort 1, had a LLOD of 7.0 pg/mL.

For comparison, EUCLIDS recruited healthy con-
trols from whom serum was obtained prior to elective 
surgical procedures. The controls did not have any un-
derlying inflammatory comorbidity.

Ethical Aspects

This study was conducted in accordance with the 
Declaration of Helsinki and Good Clinical Practice guide-
lines. The Erasmus MC—meningococcal sepsis study 
was approved by the ethical committee of Erasmus MC 
(MEC-2015-497), and the EUCLIDS study protocol was 
approved by at least one ethical review board in every par-
ticipating country (Coordinating Center Research Ethics 
Committee reference: 11/LO/1982). Written informed 
consent was obtained from parents or legal guardians.

Clinical Data Collection

Data for both cohorts were collected prospectively. 
Illness severity and risk of mortality were assessed by 
the Pediatric Risk of Mortality (PRISM) score (21), 
Pediatric Index of Mortality 2 (PIM 2) (22), need for 
ventilation and/or inotropes, predicted death based 
on the base excess and platelet count at presentation 
score (23), predicted death based on the Rotterdam 
score (17), and disseminated intravascular coagulation 
(DIC) score (24). Coagulation and inflammation mark-
ers were measured for clinical reasons or measured as 
requirement for other meningococcal sepsis studies 
to which patients had been recruited (17, 18, 25). For 
the multicenter EUCLIDS study, monthly telephone 
conferences, biannual meetings, clinical protocols in-
cluding case definitions, data audits, and monitoring 
ensured uniform procedures among study sites.

Outcome Measures

The primary outcome measure was mortality. Patients 
were classified as deceased if death occurred during 

hospital stay. Secondary outcome measures were PICU-
free days at day 28 (days alive and free from the need 
for intensive care) and hospital length of stay. PICU-free 
days in patients who died were considered zero.

Statistical Analysis

Categorical variables are presented as counts (percent-
ages). We used the chi-square test (or Fisher exact test in 
case the number of events in one group was < 5) to com-
pare frequency distributions between two categorical vari-
ables. Continuous variables with normal distribution are 
presented as mean (± sd); non-normally distributed vari-
ables are reported as median (interquartile range [IQR]). 
We tested differences between groups with analysis of 
variance or Kruskal-Wallis and Student t test or Mann-
Whitney U test, as appropriate. In the cohort 1, Friedman 
tests were used to compare ADAMTS-1 levels between 
three time points. Correlations between ADAMTS-1 level 
and secondary outcome measures, illness severity, coagu-
lation markers, and inflammatory markers were assessed 
by Spearman rank correlation. Post hoc Bonferroni cor-
rection for multiple testing was applied. Statistical analy-
ses were performed with SPSS Version 21 (Armonk, 
NY). Graphs were created with GraphPad Prism 8.4.0 
(GraphPad Software, Inc.). A p value of less than 0.05 was 
considered statistically significant.

RESULTS

Cohort 1

We included 59 children admitted to PICU with me-
ningococcal sepsis, of whom 11 (19%) died, who had 
109 samples available for ADAMTS-1 measurements. 
Patient characteristics are shown in Table 1.

Because ADAMTS-1 levels of 90 of 108 samples 
(83%) were below the LLOD of the assay (1.6 ng/mL), 
we compared the number of samples with detectable 
ADAMTS-1 (designated as ADAMTS-1 ≥ 1.6 ng/
mL) with the number of samples with undetectable 
ADAMTS-1. At admission to PICU, ADAMTS-1 was 
detectable in 14 of 34 patients (41%), which was more 
frequent than in patients at t = 24 hours (5/40 [12%]; 
p = 0.005) and at t = 1 month (0/35 [0%]; p < 0.001) 
(Table 2). Nonsurvivors more frequently had detect-
able ADAMTS-1 levels compared with survivors at ad-
mission to PICU (nonsurvivors 8/11 [73%], survivors 
6/23 [26%]; p = 0.02) and at t = 24 hours (nonsurvivors 
2/3 [67%], survivors 3/37 [8%]; p = 0.04).
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TABLE 1. 
Baseline Characteristics Cohort 1 and Cohort 2

Variable

Cohort 1 Cohort 2 Cohort 2 Cohort 2

Patients  
(n = 59)

Patients  
(n = 240)

Controls  
(n = 64) p

Male 35 (59%) 131 (55%) 34 (53%) NS

Age 3.0 yr (1.8–9.7 yr) 3.4 yr (15 mo–9.2 yr) 5.4 yr (2.8–12.4 yr) < 0.01

Ethnicitya    NS

 African/North African — 12 (5%) 8 (13%)  

 Asian — 13 (6%) 4 (6%)  

 European — 185 (81%) 47 (75%)  

 Meso/South American — 4 (2%) 0 (0%)  

 Middle Eastern — 3 (1%) 2 (3%)  

 Other/mixed — 12 (5%) 2 (3%)  

Number of underlying conditions    < 0.01

 None — 138 (58%) 25 (39%)  

 ≥ 1 — 102 (42%) 39 (61%)  

Immunizations up to dateb — 178 (95%) 58 (95%) NS

Illness severity

 Sepsis — 159 (66%)   

 PICU admission 59 (100%) 177 (74%)   

 Need for inotropesc 42 (95%) 107 (53%)   

  Days on inotropes — 3 (2–5)   

 Need for invasive ventilationd 31 (60%) 106 (52%)   

  Days on invasive ventilation — 4 (3–7)   

 Need for extracorporeal membrane  
  oxygenatione

— 4 (3%)   

 Pediatric Risk of Mortality (21)  
  scoref

20 (14–26) 11 (7–16)   

 Pediatric Index of Mortality 2 (22)  
  scoreg (predicted death, %)

— 3.5% (0.8–11.6)   

 Predicted death rate based  
   on the base excess and platelet 

count at presentation score 
(23)h

6.1 (3.4–19.8) —   

 Predicted death rate based  
  on the Rotterdam score (17)i

12.2 (1.6–77.0) —   

 Lactate (mmol/L)h 4.5 (3.3–6.5) —   

 DIC scorej 5 (4–7) 2 (0–2)   

 Presence of DIC (DIC score ≥ 5)j 22 (61%) 18 (10%)   

(Continued )
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TABLE 2. 
Cohort 1; A Disintegrin and Metalloproteinase With Thrombospondin Motifs-1  
Levels in Survivors and Nonsurvivors at Admission to PICU, at t = 24 Hours  
and at t = 1 Month

Time Point All Patients (n = 59) Survivors (n = 48) Nonsurvivors (n = 11) p

PICU admission n = 34, 1.6 (1.6–2.1) n = 23, 1.6 (1.6–1.6) n = 11, 2.0 (1.6–3.1) 0.02a

 n < 1.6 n = 20 (59%) n = 17 (74%) n = 3 (27%) 0.02b

 n > 1.6 n = 14 (41%) n = 6 (26%) n = 8 (73%)  

t = 24 hr n = 40, 1.6 (1.6–1.6) n = 37, 1.6 (1.6–1.6) n = 3, 2.1 (1.6–3.3) Not 
significanta

 n < 1.6 n = 35 (88%) n = 34 (92%) n = 1 (33%) 0.04b

 n > 1.6 n = 5 (12%) n = 3 (8%) n = 2 (67%)  

t = 1 mo n = 35, 1.6 (1.6–1.6) n = 35, 1.6 (1.6–1.6) n = 0 —

 n < 1.6 n = 35 (100%) n = 35 (100%) n = 0 —

 n > 1.6 n = 0 n = 0 n = 0  

aMann-Whitney U test.
bFisher exact test.
A Disintegrin and Metalloproteinase With Thrombospondin Motifs-1 levels are presented as median (interquartile range).
For each time point, we additionally analyzed the number of samples below and above the lowest level of detection (1.6 ng/mL). 
Dashes indicate data is on this variable is not available and no statistical test has been done.

Outcome

 PICU-free days at day 28 (d)k 23 (13–25) 23 (19–25)   

 Hospital length of stay (d)l 7 (3–12) 10 (6–17)   

 Death 11 (19%) 21 (9%)   

DIC = disseminated intravascular coagulation (24, 26), NS = not significant.
aEthnicity data were available for 229/240 patients and 63/64 controls.
bImmunization data were available for 188/240 patients and 61/64 controls.
cData on inotropes were available for 44/59 patients in cohort 1 and 202/240 patients in cohort 2.
dData on invasive ventilation were available for 52/59 patients in cohort 1 and 203/240 patients in cohort 2.
eData on extracorporeal membrane oxygenation were available for 161/240 patients.
fPediatric Risk of Mortality score (21) was available for 50/59 patients in cohort 1 and 150/240 patients in cohort 2.
gPediatric Index of Mortality 2 score (22) was available for 177/240 patients.
hPredicted death rate based on the base excess and platelet count at presentation score (23) and lactate were available for 52/59 
patients.
iPredicted death rate based on the Rotterdam score (17) was available for 48/59 patients.
jData on DIC were available for 36/59 patients in cohort 1 and 187/240 patients in cohort 2.
kData on PICU-free days at day 28 were available for 59/59 patients in cohort 1 and 177/177 PICU patients in cohort 2.
lData on hospital length of stay were available for 53/59 patients in cohort 1 and 240/240 patients in cohort 2.
Values are reported as counts (percentages) or medians (interquartile ranges) unless stated otherwise. Dashes indicate data is on this 
variable is not available and no statistical test has been done.

TABLE 1.(Continued ). 
Baseline Characteristics Cohort 1 and Cohort 2

Variable

Cohort 1 Cohort 2 Cohort 2 Cohort 2

Patients  
(n = 59)

Patients  
(n = 240)

Controls  
(n = 64) p



Boeddha et al

6     www.ccejournal.org November 2021 • Volume 3 • Number 11

Median ADAMTS-1 level at admission to PICU (n = 
34; 1.6 ng/mL [IQR, 1.6–2.1 ng/mL]) did not differ from 
ADAMTS-1 level at t = 24 hours (n = 40; 1.6 ng/mL [IQR, 
1.6–1.6 ng/mL]) or at t = 1 month (n = 35; 1.6 ng/mL 
[IQR, 1.6–1.6 ng/mL]; Friedman test p = 0.37) (Table 2). 
At admission to PICU, ADAMTS-1 levels in nonsurvi-
vors (n = 11; 2.0 ng/mL [IQR, 1.6–3.1 ng/mL]) were sig-
nificantly higher than in survivors (n = 23; 1.6 ng/mL  
[IQR, 1.6–1.6 ng/mL]; p = 0.02). Although numbers were 
low (n = 40), after 24 hours, there still was a trend for higher 
ADAMTS-1 levels in nonsurvivors (n = 3; 2.1 ng/mL  
[IQR, 1.6–3.3 ng/mL]) compared with survivors (n = 37; 
1.6 ng/mL [IQR, 1.6–1.6 ng/mL]; p = 0.09).

ADAMTS-1 level at admission to PICU was not 
significantly correlated to PICU-free days at day 
28 (r = –0.31; p = 0.08) and hospital length of stay  
(r = –0.48; p = 0.01) nor did they correlate with illness 
severity, coagulation markers, or inflammatory mark-
ers (Supplemental Digital Content, http://links.lww.
com/CCX/A845).

Cohort 2

We included 240 children with an invasive infection 
caused by N. meningitidis (n = 83), S. pneumoniae  
(n = 63), S. aureus (n = 50), or group A streptococcus 
(n = 44), of which 21 children died (9%). Additionally, 
we included 64 controls (age ranged from 1 mo to 18 
yr). Baseline characteristics are shown in Table 1, and 
baseline characteristics per pathogen are shown in 
Table 3.

ADAMTS-1 level within 48 hours after admission 
to hospital was more frequently detectable in patients 
(110/240 [46%]) compared with controls (14/64 [22%]; 
p = 0.001). Furthermore, although median values were 
similar, ADAMTS-1 level analyzed by the rank-sum 
test differed between patients and controls (patients: 
median 7.0 pg/mL [IQR, 7.0–118 pg/mL]; controls: 
median 7.0 pg/mL [IQR, 7.0–7.0 pg/mL]; p < 0.001) 
(Fig. 1). The elevation in ADAMTS-1 was more pro-
nounced in PICU patients (n = 177; median, 11.7 pg/mL  
[IQR, 7.0–166 pg/mL]) than in non-PICU patients 
(n = 63; median, 7.0 pg/mL [IQR, 7.0–18.5 pg/mL];  
p = 0.001).

Detection of ADAMTS-1 was more frequent 
in patients with N. meningitidis (41/83 [49%];  
p = 0.001), S. aureus (21/50 [42%]; p = 0.02), and group 
A streptococcus (25/44 [57%]; p < 0.001) compared 

with controls (14/64 [22%]). Detection in patients with 
S. pneumoniae (23/63 [37%]; p = 0.07) did not differ 
from controls. ADAMTS-1 level per pathogen group is 
depicted in Figure 1.

In samples taken within 48 hours after hospital 
admission, ADAMTS-1 was detected in nonsurvi-
vors (16/21 [76%]) more frequently than in survivors 
(94/219 [43%]; p = 0.003). Furthermore, ADAMTS-1 
levels in nonsurvivors (median, 260 pg/mL [IQR, 
45–1,548 pg/mL) were higher compared with sur-
vivors (median, 7.0 pg/mL [IQR, 7.0–96 pg/mL];  
p < 0.001) (Fig. 2A).

This was attributable to patients with N. men-
ingitidis (detectable nonsurvivors 7/7 [100%], de-
tectable survivors 34/76 [45%]; p = 0.005). Median 
ADAMTS-1 level also differed between meningo-
coccal infection nonsurvivors and survivors (nonsur-
vivors: median, 687 pg/mL [IQR, 120–4,108 pg/mL];  
survivors: median, 7.0 pg/mL [IQR, 7.0–111 pg/mL];  
p < 0.001) (Fig. 2B). In children with meningo-
coccal infections, ADAMTS-1 level at admission to 
hospital was correlated to PICU-free days at day 28  
(r = –0.54; p < 0.001), PRISM score (r = 0.47;  
p < 0.001), PIM 2 score (r = 0.42– p < 0.001), and plasmin-
ogen activator inhibitor-1 (PAI-1) (r = 0.42; p < 0.001), 
but not to hospital length of stay (r = 0.12; p = 0.30).

ADAMTS-1 detection did not differ significantly 
between survivors and nonsurvivors of infections with 
S. pneumoniae (detectable nonsurvivors 3/7 [43%], de-
tectable survivors 20/56 [36%]; p = 0.71), S. aureus (de-
tectable nonsurvivors 3/4 [75%], detectable survivors 
18/46 [39%]; p = 0.16), and group A streptococcus (de-
tectable nonsurvivors 3/3 [100%], detectable survivors 
22/41 [54%]; p = 0.12). ADAMTS-1 levels in survivors 
and nonsurvivors per pathogen group are depicted in 
Figure 2B.

With regard to secondary outcome measures, 
ADAMTS-1 levels at admission to hospital were 
strongly correlated to PICU-free days at day 28  
(r = –0.36; p < 0.001), PRISM score (r = 0.37;  
p < 0.001), DIC score (r = 0.27; p < 0.001), need for 
invasive ventilation (r = 0.27; p < 0.001), platelets  
(r = –0.30; p < 0.001), protein C (r = –0.24; p < 0.001), and 
PAI-1 (r = 0.33; p < 0.001), but less strongly with hos-
pital length of stay (r = –0.13; p = 0.05) (Supplemental 
Digital Content, http://links.lww.com/CCX/A845).

Thus, in both cohorts, ADAMTS-1 in nonsurvi-
vors was more frequently detectable and showed a 

http://links.lww.com/CCX/A845
http://links.lww.com/CCX/A845
http://links.lww.com/CCX/A845
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TABLE 3. 
Baseline Characteristics Cohort 2 by Pathogen

Variable
All Patients  

(n = 240)

Neisseria 
meningitidis  

(n = 83)

Streptococcus 
pneumoniae  

(n = 63)
Staphylococcus  
aureus (n = 50)

Group A 
Streptococcus  

(n = 44) p

Gender, male 131 (55%) 50 (60%) 39 (62%) 25 (50%) 17 (39%) NS

Age 3.4 yr (15 
mo–9.2 yr)

1.8 yr  
(8 mo–5.3 yr)

2.6 yr  
(16 mo–5.6 yr)

9.9 yr  
(4.2 yr–13.1 yr)

3.7 yr  
(18 mo–7.9 yr)

< 0.001

Ethnicitya      NS
 African/North  

  African
12 (5%) 2 (3%) 4 (7%) 4 (9%) 2 (5%)  

 Asian 13 (6%) 1 (1%) 2 (3%) 4 (9%) 6 (14%)  
 European 185 (81%) 69 (89%) 49 (79%) 35 (76%) 32 (74%)  
 Meso/South  

  American
4 (2%) 0 (0%) 2 (3%) 2 (4%) 0 (0%)  

 Middle Eastern 3 (1%) 2 (3%) 0 (0%) 1 (2%) 0 (0%)  
 Other/mixed 12 (5%) 4 (5%) 5 (8%) 0 (0%) 3 (7%)  
Number of underlying  

  conditions
     NS

 None 138 (58%) 56 (68%) 33 (52%) 23 (46%) 26 (59%)  
 ≥ 1 102 (42%) 27 (32%) 30 (48%) 27 (54%) 18 (41%)  
Immunizations  

  up to dateb

178 (95%) 63 (96%) 49 (96%) 32 (89%) 34 (97%) NS

Illness severity
 Sepsis 159 (66%) 65 (78%) 36 (57%) 25 (50%) 33 (75%) < 0.01
 PICU admission 177 (74%) 73 (88%) 40 (64%) 24 (48%) 40 (91%) < 0.001
 Need for inotropesc 107 (53%) 52 (71%) 12 (26%) 15 (36%) 28 (70%) < 0.001
  Days  

  on inotropes
3 (2–5) 3 (2–4) 4 (1–6) 3 (3–7) 4 (2–5) NS

 Need for invasive  
  ventilationd

106 (52%) 45 (62%) 18 (38%) 13 (30%) 30 (75%) < 0.001

  Days on invasive  
  ventilation

4 (3–7) 5 (3–6) 3 (2–9) 4 (3–19) 4 (2–8) NS

 Need for  
   extracorporeal 

membrane 
oxygenatione

4 (3%) 1 (2%) 0 (0%) 2 (9%) 1 (3%) NS

 Pediatric Risk  
   of Mortality 

(21) scoref

11 (7–16) 13 (7–16) 10 (6–17) 11 (7–19) 12 (7–15) NS

 Pediatric Index  
   of Mortality 2 

(22) scoreg 
(predicted 
death, %)

3.5%  
(0.8–11.6)

3.5%  
(0.8–13.0)

2.7%  
(0.8–9.3)

2.6%  
(0.8–4.5)

6.2%  
(1.0–13.0)

NS

 DIC scoreh 2 (0–2) 2 (2–4) 2 (0–2) 2 (0–2) 2 (0–2) < 0.01
 Presence of DIC  

   (DIC score ≥ 
5)h

18 (10%) 10 (14%) 2 (4%) 3 (8%) 3 (9%) NS

(Continued )



Boeddha et al

8     www.ccejournal.org November 2021 • Volume 3 • Number 11

Outcome

 PICU-free days  
  at day 28 (d)i

23 (19–25) 24 (21–25) 22 (18–26) 19 (2–25) 23 (16–25) NS

 Hospital length  
  of stay (d)

10 (6–17) 8 (5–13) 10 (4–15) 10 (7–19) 14 (8–21) < 0.05

 Death 21 (9%) 7 (8%) 7 (11%) 4 (8%) 3 (7%) NS

DIC = disseminated intravascular coagulation (26), NS = not significant.
aEthnicity data were available for 229/240 patients; 78/83 Neisseria meningitidis, 62/63 Streptococcus pneumoniae, 46/50 
Staphylococcus aureus, and 43/44 group A streptococcus (GAS) patients.
bImmunization data were available for 188/240 patients; 66/83 N. meningitidis, 51/63 S. pneumoniae, 36/50 S. aureus, and 35/44 
GAS patients.
cData on inotropes were available for 202/240 patients; 73/83 N. meningitidis, 47/63 S. pneumoniae, 42/50 S. aureus, and 40/44 
GAS patients.
dData on invasive ventilation were available for 203/240 patients; 73/83 N. meningitidis, 47/63 S. pneumoniae, 43/50 S. aureus, and 
40/44 GAS patients.
eData on extracorporeal membrane oxygenation were available for 161/240 patients; 67/83 N. meningitidis, 37/63 S. pneumoniae, 
22/50 S. aureus, and 35/44 GAS patients.
fPediatric Risk of Mortality score (21) was available for 150/240 patients; 66/83 N. meningitidis, 33/63 S. pneumoniae, 19/50 S. 
aureus, and 32/44 GAS patients.
gPediatric Index of Mortality 2 (22) score was available for 177/240 patients; 73/83 N. meningitidis, 40/63 S. pneumoniae, 24/50 S. 
aureus, and 40/44 GAS patients.
hData on DIC were available for 187/240 patients; 72/83 N. meningitidis, 45/63 S. pneumoniae, 36/50 S. aureus, and 34/44 GAS 
patients.
iData on PICU-free days at day 28 were available for 177/177 PICU patients; 73/73 N. meningitidis, 40/40 S. pneumoniae, 24/24 S. 
aureus, and 40/40 GAS patients.
Values are reported as counts (percentages) or medians (interquartile ranges) unless stated otherwise.

TABLE 3.(Continued ). 
Baseline Characteristics Cohort 2 by Pathogen

Variable
All Patients  

(n = 240)

Neisseria 
meningitidis  

(n = 83)

Streptococcus 
pneumoniae  

(n = 63)
Staphylococcus  
aureus (n = 50)

Group A 
Streptococcus 

(n = 44) p

higher level than in survivors. And in cohort 2 only, 
ADAMTS-1 levels were correlated to PICU-free days 
at day 28.

DISCUSSION

This study is the first to show that ADAMTS-1 serum 
levels are elevated in children admitted to hospital 
with bacterial infection and sepsis. Importantly, our 
study demonstrates that in nonsurvivors ADAMTS-1 
serum levels were more often detectable than in survi-
vors, especially in patients with N. meningitidis disease. 
Additionally, ADAMTS-1 levels were correlated to 
PICU-free days and other markers for illness severity.

Our findings are in line with observations in ex-
perimental sepsis models where plasma levels of 
ADAMTS-1 in rats increased after injection with 

Escherichia coli LPS (5). Furthermore, interleukin 
(IL)-1β, a pro-inflammatory cytokine implicated in pe-
diatric sepsis (27), was found to induce ADAMTS-1 pro-
duction in human decidual stromal cells in vitro (28).  
Apart from sepsis-induced inflammation, inflamma-
tion related to nerve injury and cancer is also associated 
with increased ADAMTS-1 production (7, 29).

The role of ADAMTS-1 in the pathophysiology of 
bacterial infection, and in particular meningococcal 
disease, is mostly unclear so far. The association of 
ADAMTS-1 on sepsis mortality may be due to interfer-
ence with vascular endothelial growth factor (VEGF) 
and VEGF receptor-2 signaling that have been involved 
in the pathophysiology of sepsis (30–35). ADAMTS-1 
binds VEGF and blocks the VEGF receptor-2 (36), thus 
potentially contributing to sepsis-induced organ dys-
function (31). Furthermore, an immune-modulatory/
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suppressive role for ADAMTS-1 has also been pro-
posed (16), possibly resulting in high levels of an-
ti-inflammatory cytokines (e.g., IL-10, IL-1 receptor 
antagonist, and soluble tumor necrosis factor recep-
tors) that are associated with sepsis mortality (37, 38). 
In line with these hypotheses, we found that a higher 
ADAMTS-1 serum level was associated with increased 
mortality. Although future studies should further elu-
cidate the pathophysiological role of ADAMTS-1, our 
current data indicate that ADAMTS-1 can be part of 
the inflammatory response to pediatric sepsis.

When comparing ADAMTS-1 levels in different 
pathogens, our findings in nonsurvivors versus survi-
vors were most pronounced in patients with N. menin-
gitidis and partly in Group A streptococcus infections. 
Although mortality across the pathogen groups was 
comparable, patients with N. meningitidis and group 
A streptococcus infections more often had sepsis, in-
cluding the need for inotropes and invasive ventilation. 
The systemic inflammatory response in these patients 
might have contributed to higher ADAMTS-1 levels. 
Additionally, pathogen-specific properties interfere 

with the host response to infection (39, 40). N. men-
ingitidis and/or group A streptococcus could possess 
properties interacting with ADAMTS-1.

A major strength of our study is that we used two 
independent cohorts that both revealed comparable 
changes in ADAMTS-1 serum level. Because the 
assays in both cohorts differ, we are not able to com-
pare absolute values of ADAMTS-1. Other strengths of 
our study were that we examined ADAMTS-1 levels in 
sepsis caused by different pathogens and correlations 
of ADAMTS-1 with illness severity, coagulation, and 
inflammatory markers. Our study is possibly limited 
by the long-time storage of samples from cohort 1. 
The stability of ADAMTS-1 proteins in stored samples  

Figure 2. Cohort 2; A Disintegrin and Metalloproteinase With 
Thrombospondin Motifs-1 (ADAMTS-1) by mortality. A, ADAMTS-1 
levels in survivors and nonsurvivors. B, ADATMS-1 levels in 
survivors and nonsurvivors of invasive infections with Neisseria 
meningitidis (Nm; survivors: n = 76, median 7.0 pg/mL,  
interquartile range [IQR] 7.0–111 pg/mL; nonsurvivors: n = 
7, median 688 pg/mL, IQR 120–4,108 pg/mL; p < 0.001), 
Streptococcus pneumoniae (Sp; survivors: n = 56, median 7.0  
pg/mL, IQR 7.0–43 pg/mL; nonsurvivors: n = 7, median 7.0  
pg/mL, IQR 7.0–371 pg/mL; p = 0.42), Staphylococcus aureus 
(Sa; survivors: n = 46, median 7.0 pg/mL, IQR 7.0–76 pg/mL; 
nonsurvivors: n = 4, median 209 pg/mL, IQR 26–384 pg/mL;  
p = 0.07), and group A streptococcus (GAS; survivors: n = 41, 
median 24 pg/mL, IQR 7.0–175 pg/mL; nonsurvivors: n = 3, 
median 1,793 pg/mL, IQR 257–20,052 pg/mL; p = 0.008). 
Bar indicates median value, and whiskers indicate IQRs. Y-axis 
(ADAMTS-1 level) has a logarithmic scale (**p ≤ 0.01, ***p ≤ 0.001).

Figure 1. Cohort 2; A Disintegrin and Metalloproteinase With 
Thrombospondin Motifs-1 (ADAMTS-1) levels in controls and 
patients. Patients are further split into pathogen groups; Neisseria 
meningitidis (Nm; median, 7.0 pg/mL; interquartile range [IQR], 
7.0–165 pg/mL; p < 0.001), Streptococcus pneumoniae 
(Sp; median, 7.0 pg/mL; IQR, 7.0–48 pg/mL; p = 0.08), 
Staphylococcus aureus (Sa; median, 7.0 pg/mL; IQR, 7.0–80  
pg/mL; p = 0.02), and group A streptococcus (GAS; median, 
26.5 pg/mL; IQR, 7.0–249; p < 0.001). Bar indicates median 
value, and whiskers indicate IQRs. Y-axis (ADAMTS-1 level) has a 
logarithmic scale (*p ≤ 0.05, ***p ≤ 0.001).
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is unknown. However, if samples would be affected, 
we assume that all samples would be affected equally. 
Also, we did not compare ADAMTS-1 levels measured 
in cohort 1 with controls. We considered convales-
cent samples (taken at 1 mo after PICU admission) as 
appropriate control for the initial measurements, but 
ADAMTS-1 levels after critical illness are unknown.

Comparisons between cohort 1 and cohort 2 are 
also limited by the variation in time from hospital 
onset to blood sampling. Cohort 1 collected samples at 
admission to PICU, at 24 hours, and at 1 month after 
PICU admission, while cohort 2 included all blood 
samples taken within 48 hours after hospital admis-
sion. Because the course of ADAMTS-1 protein levels 
in human sepsis is unknown, we do not know the im-
pact of clustering of samples from cohort 2 for anal-
ysis. However, ADAMTS-1 level was not correlated to 
the time interval between hospital admission and the 
time of blood sample (data not shown).

CONCLUSIONS

Detectable ADAMTS-1 is associated with disease se-
verity in sepsis, particularly in meningococcal sepsis, 
with higher ADAMTS-1 levels in nonsurvivors than 
in survivors. Future studies should confirm the prog-
nostic value of ADAMTS-1 in adult sepsis and should 
study possible pathophysiologic mechanisms to iden-
tify potential therapeutic targets.
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