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ABSTRACT Measuring in vivo dynamics can yield valuable information for studying the functioning of the
cardiovascular or the musculoskeletal system and for the diagnosis of related diseases. MRI is a powerful
medical imaging modality, but it shows severe limitations when dealing with motion at high spatial and
temporal resolutions. In this work, a method called spectro-dynamic MRI is proposed, which can identify
dynamical information directly from k-space data. It combines a measurement model, relating the measured
data in k-space to the displacement fields, and a dynamical model, introducing prior knowledge about the
dynamics of a system. The data sampling process is tailored to compute spatial and temporal derivatives
in the spectral domain at a high temporal resolution. Preliminary results from four simple pendulum setups
for which the dynamics are explicitly known show that spectro-dynamic MRI can estimate motion fields
from heavily undersampled data on a millisecond timescale. Furthermore, the length of the pendula and the
stiffness of the spring can be identified as the dynamical system’s parameters, giving additional information
about the systems under investigation.

INDEX TERMS Dynamic imaging, dynamical system identification, magnetic resonance imaging, spectro-
dynamic MRI.

I. INTRODUCTION
The human body is a dynamical system. Its performance is
not only determined by its static anatomy, but also by its
functioning in a dynamic setting. One specific example of
a dynamic organ is the heart. More than 26 million people
suffer from heart failure worldwide, and its prevalence is
increasing [1]. The most widely used parameter to diagnose
heart failure is left ventricular ejection fraction, measured
using echocardiography [2]. Moreover, myocardial strain
can give important additional information in the prognosis of
several cardiac diseases [3]. Being able to infer time-resolved
dynamic information of the heart could provide valuable
information for the diagnosis and understanding of arrhyth-
mia and heart failure.

Another example of a biomechanical system is the mus-
culoskeletal system. Conditions related to muscles and
joints can cause long-term pain, and a large portion of
the population suffers from musculoskeletal conditions [4].
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Time-resolved dynamic imaging is a valuable tool to investi-
gate the loads and motion of joints [5].

Magnetic resonance imaging (MRI) is a medical imaging
modality that provides excellent soft-tissue contrast, making
it an ideal candidate for imaging organs such as the heart or
other muscles. Furthermore, MRI can obtain 3D information
and does not involve ionizing radiation. However, a major
drawback of MRI in its current form is that it is a relatively
slow modality, complicating the analysis of dynamics at a
combined high spatial and temporal resolution. This limita-
tion is caused by the data acquisition process for conventional
MR images. The measurements are sampled in the spectral
domain, called k-space. Typically, the k-space is sampled
line by line, where the acquisition of one line is called a
readout [6]. Image reconstruction by the Fourier transform
requires a fully sampled k-space, for which many readouts
and thus long acquisition times are needed. This becomes
even more problematic when adding a third spatial or a
temporal dimension, whichmakes inferring time-resolved 3D
dynamic information extremely challenging.

Several techniques exist to accelerate MRI acquisitions for
imaging dynamic systems such as the heart [7]. The first
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option is to use real-time imaging [8], [9], a technique that
acquires all data in a single heartbeat. However, the resulting
images suffer from reduced image quality, and acquiring 3D
images is not possible with this technique. Another approach
is to use gated imaging [10], [11], where the acquisition
is segmented such that all measurements originate from
the same phase of the cardiac motion. This requires that
the motion is periodic, which is problematic for patients
with arrhythmia. Furthermore, addressing respiratory motion
requires additional motion correction strategies.

Alternatively, the number of required samples can be
reduced to accelerate data acquisition. However, this will
introduce undersampling artifacts when no additional prior
information is included in the reconstruction. Parallel imag-
ing is a technique that uses the sensitivities of the receive coils
to remove the aliasing in the undersampled images [12], [13].
Another option is to assume that the images are sparse
in a certain domain, which is used as prior knowledge in
compressed sensing approaches [14], [15], while low-rank
approaches place constraints on the rank of the data [16].
Non-Cartesian sampling of k-space is often used, as it shows
robustness against motion artifacts [17] and can allow self-
navigation [18]. Together, these techniques allow for the
reconstruction of a dynamic sequence of images [19]–[22].
Information about motion fields can additionally be used to
create images free of motion artifacts [23]. For an overview
of the artifacts caused by motion and how to deal with them,
we refer to [18].

The methods described thus far have in common that
they try to reconstruct images at a high temporal reso-
lution from which dynamical information can be derived,
or use motion correction during image reconstruction. How-
ever, some dynamics can also be estimated directly from
spectral data, removing the requirement of a fully sampled
k-space at every point in time. A recently developed method
called MR-MOTUS [24], [25] has shown that it is possible to
reconstruct motion fields directly from highly undersampled
k-space data.While this method does provide motion fields at
a high temporal resolution, it does not identify the parameters
of the dynamical system under investigation.

In this work, we develop spectro-dynamicMRI as amethod
to probe time-resolved dynamic information using MRI data.
Two models are combined to identify the dynamics of a
system. The first model is a measurement model, providing
a relation between the displacements of a moving object
and the measured magnetization in the spectral domain. This
model acts as a data consistency term and can reconstruct
the dynamics from fully sampled data. The second model is
a dynamical model, which is introduced to deal with under-
sampled data by adding prior knowledge about the dynamics.
This dynamical model is based on the partial differential
equation (PDE), describing the equations of motion for the
system under investigation. Together with the measurement
model, the motion fields can thus be reconstructed at a high
spatial and temporal resolution. Additionally, the dynamical
model allows for the reconstruction of the dynamical system

parameters, which give information about the material prop-
erties of the scanned object.

Both models contain spatial and temporal derivatives.
A properly tailored sampling strategy is used to infer these
fundamental properties of dynamical systems. This can be
done in real time by working with measurements in the
spectral domain. Spatial derivatives can be conveniently cal-
culated in k-space through multiplications with spatial fre-
quencies. For the temporal derivatives, finite differences can
be used, which require a small time step to be accurate.
By using the measurements in the spectral domain, no image
reconstruction is involved. This allows for a reduction of the
time interval to just a few milliseconds.

This work starts with the theoretical derivation of the
spectro-dynamicMRI framework. Themeasurementmodel is
derived and converted to the spectral domain. Subsequently,
four different dynamical systems with increasing levels of
complexity are used to validate our approach. To measure
these systems in a 1.5T MRI scanner, an experimental setup
is created. Finally, the performance of the spectro-dynamic
MRI model with highly undersampled data is investigated,
showing that our proposed method can correctly reconstruct
motion fields and dynamical parameters even with only two
samples per readout.

II. THEORY
A. SIGNAL ACQUISITION
In an MRI experiment, the complex transverse magnetization
in the spatial domain m(r, t) ∈ C depends on the spatial
location r ∈ Rd and time t . The number of spatial dimensions
is indicated by d . By applying linear gradient magnetic fields
to the static magnetic field inside the scanner, this signal can
be sampled in the spectral domain at the spatial frequencies
k ∈ Rd [6]. The spatial and spectral domains are related
through the Fourier transform:

M (k, t) = F (m(r, t)) =
∫
Rd
m(r, t)e−i2πk·r dr, (1)

m(r, t) = F−1 (M (k, t)) =
∫
Rd
M (k, t)ei2πk·r dk. (2)

Note that variables in the spatial domain are indicated with
lower case symbols, while upper case symbols are used for
the spectral domain. Vectors are indicated in bold font.

In conventional MRI, the measurements in the spectral
domain M (k, t) are reconstructed to image data m(r, t) by
using the inverse discrete Fourier transform, thereby approx-
imating (2). Since the signal contribution of one specific
voxel affects the whole k-space, and each sample in k-space
contains information about the complete field of view in the
image domain, the k-space must be fully sampled to prevent
undersampling artifacts in the reconstructed image.

The goal of spectro-dynamic MRI is to infer the dynamics
of a system aswell as identify its dynamical parameters. To do
this, the dynamics can be modeled with spatial and temporal
derivatives. As will be explained in Section III-C, these tem-
poral derivatives can be estimated using finite differences.
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FIGURE 1. (a) Sampling pattern as used in conventional MRI. Each
colored square indicates one readout, separated in time by the repetition
time (TR). The vertical axis and the colors represent the different spatial
frequencies that need to be sampled to get a fully sampled k-space (the
phase-encoding steps for a Cartesian acquisition). With every readout,
a different line in k-space is sampled. Thus, after N readouts (N = 6 in
this schematic illustration), an image can be reconstructed. Typically, N is
in the order of several thousand repetitions for a 3D acquisition.
(b) Sampling pattern as used in spectro-dynamic MRI. The same readout
line is repeated Nrep times (3 in this case) before different k-space
frequencies are sampled. This greatly reduces the time difference 1t
between the acquisition of the same data point in k-space (from N · TR
to 1 · TR), thereby allowing the computation of temporal derivatives
through finite differences.

If one would use the measured data in the spatial domain,
this would require the image values m(r, t) and m(r, t +1t)
to be available at some spatial location r. Since these images
must first be reconstructed, this also means that two fully
sampled k-spaces at these time points need to be available.
Therefore,1t cannot be smaller than the time it takes to sam-
ple a complete k-space (Fig. 1(a)), which for 3D acquisitions
is in the order of seconds. This low temporal resolution leads
to motion artifacts in the reconstruction.

Instead, we propose to use the data in the spectral domain
directly. To estimate temporal derivatives using finite differ-
ences, we need the measurements M (k, t) and M (k, t +1t)
in k-space. Since the intermediate reconstruction step is no
longer required, 1t can be as short as the repetition time TR,
which is in the order of milliseconds (Fig. 1(b)). Thus, the
temporal resolution of the measurements can be improved by
using heavily undersampled k-spaces at successive points in
time.

B. SPECTRO-DYNAMIC MRI MODEL
The dynamics of a moving and possibly deforming object can
be described by a displacement field u(r, t) ∈ Rd , with its
Fourier transform U(k, t). A measurement model G will be
used to describe the relation between this displacement field
and the measurementsM (k, t) in the spectral domain:

G(M (k, t),U(k, t),k) = 0. (3)

Here,G is written in implicit form. For an explicit example,
see (10) as derived in Section II-C.

When fully sampled data is available, this measurement
model is sufficient to reconstruct the unknown displacement
field. In this case, (3) can be inverted, for example by recon-
structing all images and applying image registration to find
the displacements. However, acquiring time-resolved fully-
sampled k-space data in 3D is extremely challenging. There-
fore, the measured data will be undersampled, turning the
inversion of (3) from a well-posed problem into an ill-posed
problem. Therefore, additional information about the system
under investigation needs to be provided. The measurement
model G will be used in combination with a dynamic model
F which provides a priori knowledge about the dynamics
of the system. This dynamical model also allows for the
reconstruction of a set of dynamical parameters, yielding
more information about the system’s dynamical properties.

The dynamics of a system can be modeled with a PDE.
In general, this PDE is a function of the displacement field,
its spatial and temporal derivatives, and a set of dynamical
parameters θ (r), which can be spatially dependent. Like the
measurement model, this dynamical model can also be con-
verted to the spectral domain, resulting in:

F(U(k, t),2(k),k) = 0. (4)

The specific form for (4) depends on the dynamical system
that is being investigated. See (12) and Section III-D for more
details about the dynamical systems used in this study.

Given the measurement modelG and the dynamical model
F , the dynamics as described by the displacement field and
the dynamical parameters can be reconstructed. One option
is to minimize the L2 norm of the error of one model while
using the other model as an equality constraint. However,
it is important to note that both (3) and (4) will be subject to
imperfections.Measurement noise will introduce errors in the
measurement model, while model imperfections will result in
a difference between the observed dynamics and the modeled
dynamics. Therefore, a single optimization problem will be
solved, where we use the dynamical model as a penalty term
(or regularizer) on the measurement model [26]:

min
U,2
‖G(M ,U,k, t)‖22 + λ‖F(U,2,k, t)‖

2
2. (5)

Here, λ is introduced as a trade-off parameter that changes
the amount of regularization of the dynamical model on
the measurement model. If λ = 0, only the measurement
model is used. This will allow for the reconstruction of the
displacement field U in case of a fully sampled acquisition.
However, the solution will be more sensitive to noise, and
no dynamical parameters can be estimated. Increasing λ will
increase the robustness to measurement noise, but it will
create a bias towards the dynamics included in the dynamical
model. Ultimately, when λ goes to infinity, the reconstructed
solution is equivalent to the one obtained when the dynamical
model is used as an equality constraint on the measurement
model. In this case, anymodel imperfections in the dynamical
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model will no longer be corrected, and any dynamics not
included in the dynamical model will no longer be recon-
structed. Therefore, it is important to find a suitable value for
λ which balances the residuals of both models.

C. MEASUREMENT MODEL
The measurement model describes how the measured magne-
tization changes due to the dynamics of the measured system.
We will assume that the magnetization is in steady state, that
the receive and excitation fields are homogeneous or very
smooth (which is reasonable to assume at the targeted field
strength of 1.5T [24]), and that short readouts are used such
that T1 and T2 effects during readout can be ignored. Under
these assumptions, the magnetization of an object is con-
served. Therefore, the derivation of the measurement model
is similar to the one used for the conservation of mass when
modeling fluid mechanics [27]. This results in a differential
equation, describing the conservation of magnetization using
the continuity equation, as derived in Appendix A:

∂

∂t
m(r, t)+∇m(r, t) · v(r, t)+ m(r, t)

[
∇ · v(r, t)

]
= 0.

(6)

To couple this measurement model with the dynamical
model, we will need to introduce the displacements u(r, t)
into our measurement model. The displacement field is
defined in the Eulerian description (see Appendix B), where
the displacement of a particle at a spatial location r in the
current configuration is the difference between that location
and the original location r0 of the same particle in some
reference configuration:

u(r, t) = r− r0(r, t). (7)

Note that the initial location is a dependent variable in this
notation. To describe (6) in terms of (7), we assume that the
velocity field is the temporal derivative of the displacement
field:

v(r, t) ≈
∂

∂t
u(r, t). (8)

This assumption is valid as long as the displacement field
is smooth across space (see Appendix B). Combining (6)
and (8) gives us themeasurementmodel in the spatial domain:

∂

∂t
m(r, t)+∇m(r, t) ·

∂

∂t
u(r, t)

+m(r, t)
[
∇ ·

∂

∂t
u(r, t)

]
= 0. (9)

In MRI, the measurements are sampled in the spectral
domain. If we would use (9) directly, we would have to
reconstruct the image datam(r, t) from the measured k-space
data M (k, t). The temporal resolution can be increased by
directly using the spectral data, removing the need for an
image reconstruction step. To do so, we must transform (9)
to the spectral domain. This can be done using the properties

of the Fourier transform, resulting in:

∂

∂t
M (k, t)+ i2π

d∑
j=1

kjM (k, t) ∗
∂

∂t
Uj(k, t)

+i2π
d∑
j=1

M (k, t) ∗ kj
∂

∂t
Uj(k, t) = 0. (10)

III. METHODS
A. DYNAMICAL MODEL
In this work, we study the dynamics of systems consisting
of discrete particles and with n degrees of freedom. For
example, a single particle that is free to move in both the
x- and y-direction has two degrees of freedom. Systems with
nonconservative or external forcing terms will be excluded.
The (linearized) equations of motion of these systems can be
described by a second-order differential equation [28]–[30]:

MD(θ )
d2

dt2
q(t)+ KD(θ )q(t) = 0. (11)

Here, q(t) ∈ Rn are the generalized coordinates for
each of the n degrees of freedom, MD = MT

D ∈ Rn×n and
KD = KT

D ∈ Rn×n are respectively the mass and stiffness
matrix, which depend on the dynamical parameters θ . Which
parameters are included in θ depend on the dynamical model,
and are specified in Section III-D.

None of the quantities in (11) are dependent on r. The
spatial dependencies are implicitly included in the model,
as each generalized coordinate corresponds to one part of
the moving system, with its own location in space. It is
assumed that a coordinate system is chosen such that q = 0
is the equilibrium position. The generalized coordinates are
connected to the displacement field u(r, t) through a set of
basis functions, as described in Section III-B.

Note that despite the names of MD and KD, this model is
not only applicable to mass-spring systems. Any nonlinear
system, such as a swinging pendulum, can also be described
by (11) as long as the displacement from equilibrium is small.
Furthermore, (11) can directly be used in the spectral domain,
since neither r nor k appear explicitly.

The dynamical model is premultiplied with (MD(θ ))−1.
This results in a better scaling of the parameters and pre-
vents the optimization from converging towards parameters
for which the mass matrix is very small. Using the matrix
�D(θ ) =

(
MD(θ )

)−1KD(θ ), whose eigenvalues are the
squared natural frequencies of the system, the dynamical
model can alternatively be written as:

d2

dt2
q(t)+�D(θ )q(t) = 0. (12)

B. BASIS FUNCTIONS
The displacement field u(r, t) is defined at every spatial
location, while the dynamical systems only have a limited
number of degrees of freedom. Therefore, we can reduce the
dimensionality of our optimization problem (5) by using a
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set of n spatially varying basis functions. We assume that,
by using the right choice of basis functions, a relation between
the displacement field u(r, t) and the ith generalized coordi-
nate qi(t) can be defined by the ith basis function ξ i(r) ∈ Rd :

u(r, t) =
n∑
i=1

ξ i(r)qi(t). (13)

Next, (13) can be converted to the spectral domain since
the Fourier transform is a linear transformation:

U(k, t) =
n∑
i=1

4i(k)qi(t). (14)

C. DISCRETIZATION
As described in Section II-A, we can sample k-space at a high
temporal resolution. This allows for the approximation of the
temporal derivatives in (10) and (12) using finite differences.
Using (14), the first temporal derivatives in (10) using finite
differences are defined as:

∂

∂t
M (k, ti) ≈

M (k, ti+1)−M (k, ti−1)
21t

, (15)

∂

∂t
U(k, ti) ≈

n∑
i=1

4i(k)
qi(ti+1)− qi(ti−1)

21t
. (16)

Applying finite differences to the second temporal deriva-
tive in (12) gives:

d2

dt2
q(ti) ≈

q(ti+1)− 2q(ti)+ q(ti−1)
1t2

. (17)

If we have measurements from p different time points, and
n degrees of freedom, we can concatenate all vectors q(ti) for
i = 1 . . . p to form one vector q ∈ Rnp which contains all
generalized coordinates at every time point. By combining
(10), (12), and (15)–(17), we can rewrite both models as a
linear expression in q:

G = i2π
(
ST (Km)+ T (m)SK

)
DtBq+Dtm = 0, (18)

F =
(
Dtt + Ip ⊗�D(θ )

)
q = 0. (19)

Here:
• q ∈ Rnp is a vector with all generalized coordinates at
every time point;

• m ∈ CNp is a vector with all measured data;
• Dt ∈ RNp×Np is the first-order finite difference operator
in the temporal dimension;

• B ∈ RNp×np is a matrix whose columns represent the
basis functions 4i(k) evaluated at the desired k-space
coefficients, thereby converting the generalized coordi-
nates to the displacement field according to (14);

• K ∈ RNpd×Np is a matrix that performs multiplication
with the k-space coefficients for the spatial derivatives;

• S ∈ {0, 1}Np×Npd performs a summation over the spatial
dimensions;

• T (·) creates a Toeplitz matrix such that T (f)g = f ∗ g;
• Dtt ∈ Rnp×np is the second-order finite difference oper-
ator in the temporal dimension;

FIGURE 2. Schematic overviews of the four different dynamical systems:
(a) simple pendulum, (b) coupled pendula, (c) spherical pendulum, and
(d) coupled spherical pendula. All pendula have length l and mass m, m1,
or m2. They are subject to a gravitational force in the vertical direction,
with gravitational acceleration g. The position of each pendulum is
described by two orthogonal coordinates x and y , both in the horizontal
plane. Systems (b) and (d) also contain a spring, attached to the two
pendula at a distance lk from the pivot point, with spring constant k .

• Ip is the p× p identity matrix;
• ⊗ is the Kronecker product;
• �D(θ ) =

(
MD(θ )

)−1KD(θ ) is an n×nmatrix depending
on the dynamical parameters θ .

Equations (18) and (19) can be rewritten in short notation
as G = Aq − b and F = C(θ )q, respectively. Substituting
these linear models in (5), the optimization problem can now
be formulated as a regularized linear least squares problem:

min
q,θ
‖Aq− b‖22 + λ‖C(θ )q‖

2
2. (20)

D. EXPERIMENTAL SETUPS
To test the validity of the derived spectro-dynamical model,
we performed several experiments. Different dynamical
systems were used, with increasing degrees of complexity.
The variables used in these equations are shown in Table 1.

1) SIMPLE PENDULUM
To start, a simple pendulum with one degree of freedom
(Fig. 2(a)) was considered. Using the angle φ the pendulum
makes with respect to the vertical position, the differential
equation of this system is:

ml
d2φ
dt2
+ mg sinφ = 0. (21)

The dynamics of this system can be linearized around the
stable equilibrium φ = 0, introducing an error larger than
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TABLE 1. Variables used in the dynamical equations.

1% only if φ is more than 14 degrees. This small-angle
approximation results in a differential equation analogous to
the one of a mass connected to a spring. Written in the format
of (11), this results in:

n = 1,

q =
[
x
]
,

MD(θ ) =
[
l
]
,

KD(θ ) =
[
g
]
. (22)

Since the gravitational acceleration g is fixed to 9.81 m/s2,
the only remaining unknown dynamical parameter is the
length of the pendulum l:

θ =
[
l
]
. (23)

Note that the polar coordinate φ has been replaced by the
Cartesian coordinate x. Since there is only one degree of
freedom, there is only a single basis function, which has a
constant value of 1 over the entire spatial domain:

ξ1(r) = 1 ∀ r. (24)

2) COUPLED PENDULA
Two simple pendula, as described by (21), can be coupled
together with a spring to form a slightly more complicated
dynamical system (Fig. 2(b)). This coupled oscillator shows
nonlinear dynamics. However, we can again linearize these
equations using the small-angle approximation and rewrite
them in terms of the Cartesian coordinates x1 and x2 of both
pendula. The system then becomes equivalent to two masses
connected with three springs, as described by:

n = 2,

q =
[
x1
x2

]
,

MD(θ ) =
[
m1l2 0
0 m2l2

]
,

KD(θ ) =
[
m1gl + kl2k −kl2k
−kl2k m2gl + kl2k

]
. (25)

Here, x1 and x2 are respectively the x-coordinates of the
first and second pendulum, m1 and m2 are their masses, and

k is the spring constant. Both pendula have the same length l,
and the spring is attached at a distance lk from the pivot point.

In total there are six unknown dynamical parameters
in (25). However, because of the structure of the matrices,
only three parameters can be estimated. Again, the gravita-
tional acceleration g is fixed to 9.81 m/s2 such that the length
l can be estimated. The remaining parameters are captured by
τ1 and τ2, which are defined as:

τ1 =
kl2k
m1l2

, (26)

τ2 =
kl2k
m2l2

. (27)

This leaves only three unknown parameters to be
estimated:

θ =
[
l, τ1, τ2

]
. (28)

It is assumed that the maximum displacement of each pen-
dulum is not larger than half the distance between the pivot
points, such that each pendulum is confined to a separate half-
plane. Two basis functions are used, one for each pendulum:

ξ1(r) = 1− Hx(r), ξ2(r) = Hx(r), (29)

where Hx(r) is the Heaviside step function in the x-direction:

Hx(r) =

{
0, for x < 0,
1, for x ≥ 0.

(30)

3) SPHERICAL PENDULUM
If a simple pendulum can swing in two directions, it is called a
spherical pendulum since its tip traces the surface of a sphere
(Fig. 2(c)). The dynamics of this system can be described in
spherical coordinates by two coupled, nonlinear differential
equations [31]. Again, these equations must be linearized
around the equilibrium. For small displacements, this system
is analogous to a single mass connected to two identical
springs placed along the x- and y-directions:

n = 2,

q =
[
x
y

]
,

MD(θ ) =
[
l 0
0 l

]
,

KD(θ ) =
[
g 0
0 g

]
. (31)

Again, the length of the pendulum is the only unknown
parameter:

θ =
[
l
]
. (32)

Two basis functions were used for the displacement in the
x- and y-direction respectively:

ξ1(r) =
[
1
0

]
∀ r,

ξ2(r) =
[
0
1

]
∀ r. (33)
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FIGURE 3. Experimental setup as used in all experiments. Two spherical
pendula of length l were connected with a spring (light blue arrow),
attached at distance lk from the pivot point. The complete setup was
made from plastic. At the tip of each pendulum, a gel-filled glass vial was
placed (red arrow). Thin cotton strings allowed the operation of the
pendula from a distance.

4) COUPLED SPHERICAL PENDULA
Finally, we can couple two spherical pendula together by
placing a spring between the two swinging rods (Fig. 2(d)).
This results in a system with four degrees of freedom. The
linearized differential equations are equivalent to the ones for
two masses, each connected to two orthogonal springs, with
another spring connecting the two masses:

n = 4,

q =


x1
y1
x2
y2

 ,

MD(θ ) =


m1l2 0 0 0
0 m1l2 0 0
0 0 m2l2 0
0 0 0 m2l2

 ,

KD(θ )=


m1gl + kl2k 0 −kl2k 0

0 m1gl 0 0
−kl2k 0 m2gl + kl2k 0
0 0 0 m2gl

 .
(34)

The parameters τ1 and τ2 as described by (26) and (27) are
used again, resulting in three unknown parameters:

θ =
[
l, τ1, τ2

]
. (35)

During reconstruction, four basis functions were used; two
for the x- and y-displacements in one half of the spatial
domain, and two for those in the other half:

ξ1(r) =
[
1− Hx(r)

0

]
, ξ2(r) =

[
0

1− Hx(r)

]
,

ξ3(r) =
[
Hx(r)
0

]
, ξ4(r) =

[
0

Hx(r)

]
. (36)

Again, this assumes that the masses are confined to nonin-
tersecting half-planes.

E. DATA ACQUISITION
A setup was made using Lego (The Lego Group, Billund,
Denmark) that allowed for testing all the described dynamical
systems (Fig. 3). Since this construction was made entirely
from plastic, it did not generate any signal during the scan that
could interfere with the measurements. It consisted of two
rigid arms with a pivot allowing for motion in two directions.
The two pendula could additionally be coupled using a plastic
spring. Since the linearization of the differential equations
for the coupled systems required that the spring’s orientation
remains straight, the spring was attached near the top of the
pendula to minimize its displacement.
At the extremity of each arm, a gel-filled glass vial (TO5,

Eurospin II test system, Scotland) was placed in a vertical
position (see Fig. 3), generating MR signal. Thin cotton
strings with negligible weight were attached to each pendu-
lum to allow manual operation of the pendula from outside
the MRI scanner bore. The pendula were brought from equi-
librium just before data acquisition started, and were able
to swing freely during the measurements. By removing the
second pendulum, or by not giving any initial displacement in
the y-direction, all four systems as described in Section III-D
could be measured using this single setup.
The experiments were performed with a 1.5T MRI scan-

ner (Ingenia, Philips Healthcare, Best, The Netherlands).
A spoiled gradient echo sequence was used with the scan
parameters as reported in Table 2. The body coil was used as
receive array to get a homogeneous receive sensitivity. Data
acquisition was done in a horizontal 2D slice perpendicular to
the orientation of the gel-filled tubes, with a Cartesian sam-
pling pattern and a right-left readout direction. The imaging
slice was placed in the middle of the tubes, such that they
did not leave the slice at any point during the motion. Every
readout line was repeated N rep times before moving on to the
next line, as in Fig. 1(b). This pattern resulted in fully sampled
data along the kx-direction, while only a single ky frequency
was sampled per readout.

F. RECONSTRUCTION
The noise in themeasured (complex-valued) k-space data was
smoothed out by applying a Gaussian filter with a standard
deviation of 10 ms in the temporal dimension (by convolu-
tion) and 1 cm in the readout direction (by windowing the
k-space). The generalized coordinates q and the dynamical
parameters θ were estimated by solving the optimization
problem as given in (20). A suitable value for the regular-
ization parameter λ was chosen by comparing the residuals
of the measurement model and the dynamical model using
the L-curve approach [32]. Since the optimization is lin-
ear in q, variable projection (VARPRO) [33]–[35] could be
used to solve for q and θ separately. Thus, the generalized
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FIGURE 4. L-curves of both models’ residuals for the experiments with
(a) a simple pendulum, (b) coupled pendula, (c) a spherical pendulum,
and (d) coupled spherical pendula. The horizontal axis is the residual of
the measurement model G, while the residual of the dynamical model F
is given on the vertical axes. The 61 values for λ used to create these
curves ranged from 10 to 1.0× 107, spaced evenly on a logarithmic scale.
The red dot indicates the chosen value λ = 5.0× 103.

TABLE 2. Data acquisition parameters.

coordinates could be estimated efficiently using a complete
orthogonal decomposition [36] as implemented in Matlab
(The MathWorks Inc., Natick, MA, USA). The dynamical
parameters θ were optimized using Matlab’s lsqnonlin
function.

G. VALIDATION
To validate the estimated displacements, a 1D Fast Fourier
Transform (FFT) was performed on each readout line. The
maximum intensity of each glass vial was determined and,
after smoothing over time, used as a reference position for
that tube in the readout direction. Note that this cannot be
done in the phase-encoding direction (orthogonal to the read-
out direction), since only one sample point in this direction is

available at each repetition interval, while the measurements
are fully sampled along the readout direction. This reference
signal for the displacements was compared to the recon-
structed displacements by calculating the root mean square
error (RMSE) for the nx generalized coordinates qi(t) in the
x-direction:

RMSEx =

√√√√ 1
nxp

∑
i

p∑
j=1

(
qi(tj)− qi,ref(tj)

)2
. (37)

The estimated dynamical parameters θ were validated by
taking the FFT of the reference displacements in the temporal
dimension. The resulting spectrum gives the contribution of
each frequency in the dynamics. The frequencies with the
highest contribution should be concentrated around the natu-
ral frequencies of the system, which can be found by solving
the following eigenvalue problem for ω [28]–[30]:

det
(
KD(θ )− ω2MD(θ )

)
= 0. (38)

The validation signal was zero-padded before taking the
FFT, increasing the spectral resolution of the frequency spec-
trum. This allowed for better visibility of the frequencies
corresponding to the peaks in the spectrum.

For the 2D experiments, time-resolved images were recon-
structed by correcting all readout lines using the estimated
displacements. Since the displacement field was piecewise
constant, a convolution with the basis functions in the spectral
domain was performed on the data to separate the pendula.
Next, a linear phase shift corresponding to the difference
between the estimated displacement and the target position
was applied, after which the corrected data from the two
pendula were summed together. Finally, averaging over the
temporal dimension and a spatial FFT resulted in a sequence
of images that could be played as a movie showing the
moving phantom.

H. UNDERSAMPLING
The acquired data used so far has been fully sampled for the
1D acquisitions, and only undersampled in the phase-encode
direction for the 2D experiments. In future 3D experiments,
an additional dimension would have to be undersampled.
To investigate the behavior of the reconstructions with even
fewer available data, the readout direction was retrospec-
tively undersampled by selecting a small subset of N samples
per readout. These few points were selected symmetrically
around the center of k-space (except for N = 1). Again,
the estimated displacements in the x-direction were validated
using the RMSE as given by (37). The number of samples N
must be at least equal to the number of degrees of freedom
n, or the measurement model is underdetermined and the
displacement field can no longer be estimated.

IV. RESULTS
The L-curves of the residuals for both models can be seen in
Fig. 4. For all four experiments, a regularization parameter of
λ = 5.0 × 103 resulted in a good trade-off by suppressing
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FIGURE 5. Spatial 1D FFT of all readout lines, for the experiments with (a) a simple pendulum, (b) coupled pendula,
(c) a spherical pendulum, and (d) coupled spherical pendula. The maximum intensity of each tube was determined
and smoothed over time to obtain the red reference lines. Note that for the 2D acquisitions in (c) and (d), only the
data in the x-direction could be reconstructed. Furthermore, the contrast changes after every 100 repetitions, as the
next ky -coordinate is sampled.

noise in the measurement model, without introducing too
much bias towards the dynamical model.

In Fig. 5, the spatial 1D FFT of the data can be seen. For
the 1D experiments, which are fully sampled, the oscillations
with one or two frequencies are clearly visible. The data of the
2D experiments can only be visualized along the x-direction,
as only one ky frequency was sampled at every point in time.
Furthermore, transitions in the image contrast are visible
every 100 readouts, as different ky-coordinates were acquired.
Still, this 1D reconstruction can be used to generate a refer-
ence line for the displacements in the x-direction.

The reconstructed displacements of all degrees of freedom
can be seen in Fig. 6. The estimated displacements accurately
follow the reference line, with a temporal resolution of one TR
(4.4 ms). This is also evident from the RMSEx , which is in
the order of 0.1 mm for the (fully sampled) 1D acquisitions,
and around 1 mm for the (undersampled) 2D acquisitions
(Table 3). Note that the amplitude of the estimated displace-
ments is gradually decreasing, even though no friction was
included in the dynamical model. This shows the robustness
of our method against imperfections in the dynamical model,
given the right choice of λ.

TABLE 3. Reconstructed dynamical parameters.

For the displacements in the y-direction, no reference line
is available. From the theoretical model, a harmonic oscil-
lation with a slowly decreasing amplitude due to friction
would be expected in this direction. However, as can be seen
in Fig. 6(c) and 6(d), the amplitude of the reconstructed
displacements is not constant, nor is it gradually decreasing.
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FIGURE 6. The estimated displacements. The black lines indicate the estimated displacements for the experiments
with (a) a simple pendulum, (b) coupled pendula, (c) a spherical pendulum, and (d) coupled spherical pendula. For
the 2D acquisitions in (c) and (d), the x- and y-displacements are plotted separately. The red line is the reference
line as computed from the spatial 1D FFTs of the readouts, as shown in Fig. 5.

By correcting every readout line using the estimated
displacements, a series of time-resolved images could be
reconstructed of the coupled spherical pendulum exper-
iment at a temporal resolution of 4.4 ms. The result
(Video S1) can be found as supplementary material on
https://ieeexplore.ieee.org. Note that the
images suffer from severe artifacts in the phase-encode direc-
tion due to the high undersampling factor. Better encoding
schemes could possibly solve this problem.

The estimated dynamical parameters are given in Table 3.
The length of the pendulum is consistently estimated to be
around 30 cm. The actual distance between the pivot point
and the center of the tube is 32 cm. However, care must
be taken when comparing these values, as the pendulum
is not a point mass. Additionally, since the masses of the
two pendula are equal, the other two parameters for the
coupled systems (τ1 and τ2) should be approximately equal,
which is the case as well. Note that these parameters can
only be estimated up to a certain scaling, as changing the
masses or the position of the spring’s attachment point has

the same effect on the dynamics as changing the spring
stiffness.

We can compare the natural frequencies of the dynam-
ical systems using the estimated dynamical parameters as
in (38) to the frequency spectrum of the reference line used
for validation. As can be seen in Fig. 7, the locations of
the natural frequencies correspond well to the peaks in the
zero-padded FFT spectrum. This indicates that the estimated
dynamical parameters are accurately identified, and can be
used to predict the dynamics of the systems.

Finally, the RMSEx values and estimated lengths for the
retrospectively undersampled data can be seen in Table 4.
Even with only 2 sample points per readout, the dynamics
could still be determined, albeit with a slightly larger error
compared to the reference. Fig. 8 shows that the displace-
ments estimated from undersampled data can barely be dis-
tinguished from the ones estimated from fully sampled data.
This indicates that reconstruction using the spectro-dynamic
MRI model is possible with extremely high undersampling
rates.
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FIGURE 7. Natural frequencies of the estimated systems for the experiments with (a) a simple pendulum, (b) coupled
pendula, (c) a spherical pendulum, and (d) coupled spherical pendula. The plotted spectra are the temporal FFTs of the
validation data, as determined in Fig. 5, which is regarded as reference data. The black dashed vertical lines indicate
the natural frequencies for each system as calculated from the dynamical model by (38), using the estimated
dynamical parameters θ .

V. DISCUSSION
Wehave introduced spectro-dynamicMRI as amethod for the
identification of dynamical systems fromMRImeasurements
at a very high temporal resolution. A measurement model
has been derived to connect the measured data to the motion
fields. By using the measured data directly in k-space, a tem-
poral resolution of a few milliseconds could be achieved,
without assuming any periodicity in the motion pattern. To
handle highly undersampled data, a dynamical model has
been added as a regularization term. These two models were
optimized simultaneously to estimate the displacement field,
as well as a set of dynamical system parameters. Our pro-
posed method has been validated on four simple systems,
and we have shown that it is possible to accurately estimate
both 1D and 2D dynamics with only two data points per
readout.

The estimated displacements in Fig. 6 correspond well
to the reference motion fields, with an RMSEx of less than
1.3 mm in all experiments. When comparing these results to
those obtained from data acquired with a conventional linear

ordering, as in Fig. 1(a), the advantage of using the proposed
spectro-dynamic ordering becomes clear (see Fig. S1).

Note that the amplitude of the reconstructed displace-
ments gradually decreases. This is caused by the friction
of the pendula. Even though no friction force has been
included in the dynamical model, this phenomenon could
still be reconstructed from the data through the measurement
model together with the correct dynamical parameters. This
shows the importance of the trade-off coefficient λ in (20),
as dynamical model imperfections can still be reconstructed
when its value has been chosen correctly. Furthermore, this
allows the model to handle discontinuous motion, as shown
in Fig. S2.

The sampling pattern can have a large effect on the results
of the reconstruction. We used a Cartesian sampling pattern,
with one readout line per time point. Thus, the measurements
are intrinsically undersampled in the phase-encode direction,
as only a single ky-coordinate is sampled during every read-
out. As a result, the motion along the readout direction could
be estimated more accurately. The accuracy of the estimated
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FIGURE 8. The estimated displacements for the undersampled datasets of (a) a simple pendulum, and (b) a
spherical pendulum. The red line is the reference line as computed by the spatial 1D FFTs of the readouts shown in
Fig. 5. Note how the estimated displacements with only one or two samples every readout are almost identical to
those estimated with all 212 samples in the readout direction. This indicates that our method is robust against high
undersampling.

TABLE 4. Undersampled reconstruction.

displacements was dependent on which ky-coefficient was
sampled. For most objects, most of the energy of the signal
is located around the center of k-space where the low spatial
frequencies are sampled, while the noise is distributed evenly
over the entire k-space. Sampling at high spatial frequencies
thus results in a low signal-to-noise ratio (SNR). On the other
hand, at very low spatial frequencies, only global intensity
changes are encoded, which are less sensitive to small dis-
placements. This can be seen in the distribution of the spatial
derivative in the spectral domain (Section S.II and Fig. S3).
Therefore, most of the useful information about the dynamics
is located at those spatial frequencies with a sufficiently high
level of detail, while still having sufficient SNR.

Since our data consisted of a single measurement in the
phase-encode direction, the convolution in (10) cannot be
performed in this dimension. The basis functions used in
this work did not have a dependency on the y-coordinate
and therefore this problem was circumvented. However, the
convolution must be evaluated correctly for systems where

this is no longer the case. One possible solution would be
to iteratively reconstruct the motion fields together with the
missing data, enabling the calculation of the convolution.

Other sampling patterns could give better coverage of
k-space while still capturing the dynamic information. For
example, spiral or EPI trajectories can sample both low and
high spatial frequencies in both directions during a single
readout. Optimizing these trajectories could result in a better
trade-off between SNR and spatial resolution, thus enhanc-
ing the efficiency of the proposed method. However, not
all sampling patterns are suitable to be used for spectro-
dynamic MRI. A radial acquisition scheme cannot be used
for example, since it would introduce a linear dependency
between the k-space coordinates in (10). As a result, the
matrix A in (20) would become rank-deficient, creating an
ill-conditioned inversion problem and making it impossible
to estimate the displacements in all directions simultaneously.
This also occurs in a Cartesian acquisition when sampling
the ky = 0 line, where the displacements in the y-direction
cannot be estimated. In Fig. 6(c) and 6(d), the estimated
y-displacements during the acquisition of these samples are
solely based on the dynamical model, effectively interpo-
lating the dynamics between the closest surrounding points
for which ky 6= 0. Investigating which sampling patterns
are efficient for spectro-dynamic MRI will be the topic of
future research. For some preliminary results of simulations
with radial and spiral sampling patterns, see Section S.I and
Fig. S4.

Another option would be to use an interleaved sampling
pattern by sampling not one but a few different phase-encode
coefficients, after which this pattern is repeated. This can be
seen as a hybrid between Fig. 1(a) and 1(b). An interleaved
pattern will increase the amount of data sampled per time
interval, at the cost of a larger 1t . With a few interleaved
phase-encoding steps, this decrease in temporal resolution
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will likely remain acceptable. This can also provide a pos-
sible way to calculate the convolution in the measurement
model by sampling several consecutive phase-encode lines
and assuming that the displacement field is smooth and con-
tinuous in this direction.

The spectro-dynamic MRI model is generic and can be
applied to 3D experiments. However, this will increase
the effective undersampling factor since there are two
phase-encode directions (ky and kz). By retrospectively under-
sampling the 2D experimental data down to only 2 samples
per readout, we have shown that there is still room for further
reduction in the number of sampling points. This robustness
against undersampling is promising for future extensions of
spectro-dynamic MRI to 3D acquisitions. Optionally, more
regularization can be added to the displacement fields, as is
done in image registration [37]. Prior knowledge about the
dynamical parameters can also be added to regularize the
reconstruction. Finally, replacing the body coil with an array
coil and incorporating the sensitivity fields in the measure-
ment model can help to further increase the undersampling
factor [25].

Currently, the error of (18) is minimized using ordinary
least squares, implicitly assuming that only the vector b is
subject to noise. However, the measurements are also used
to construct the matrix A, thereby introducing errors in this
matrix as well. A total least squares method [36], [38] would
be required to take the systematic errors in the matrix A,
caused by measurement imperfections, into account during
the minimization of (20). This makes the optimization more
complex, but it could result in a better estimation of the
dynamics.

The dynamical systems investigated in this work were
all constructed using nondeformable objects. As a result,
the third term in the measurement model (10), originating
from the divergence of the velocity field, is always equal
to zero. However, as soon as an object is deforming, the
divergence of the velocity field can become nonzero, and this
term of the measurement model must be taken into account.
We have seen in numerical simulations (shown in Fig. S5)
that the omission of this term leads to a significant error in
the estimated displacements when the simulated divergence
is nonzero. In the future, we would like to perform additional
experiments with more complex dynamics, and deformable
systems in particular, to verify the spectro-dynamic MRI
method when the displacement fields are no longer piecewise
constant.

Spectro-dynamic MRI could enable the identification of
dynamical systems, such as the heart or the motion of
joints, in vivo at a high temporal resolution. Although the
measurement model does not depend on the system under
investigation, additional effects such as static or RF field
inhomogeneities could play a role in biological systems. Fur-
ther research will determine the best way to deal with these
complications in more complex setups.

Furthermore, the dynamical model would need to be
adjusted to model deformable organ tissues with different

dynamical parameters. Deriving such a model from first
principles, as was done for the simple systems in this work,
is challenging and would result in complex models with
many parameters. This would make it extremely difficult to
estimate these parameters without overfitting, as well as ana-
lyzing these complex systems once a proper model has been
found. As an alternative, data-driven discovery of dynami-
cal systems [39]–[41] can be applied to learn the dynamics
directly from the observed data. These methods generate phe-
nomenological models with reduced complexity compared to
those derived from first principles, while still being able to
capture complex dynamics. Using this data-driven approach,
prior information about cardiac or musculoskeletal dynamics
can be introduced in the spectro-dynamic MRI framework.
Addressing this challenge will be the topic of future research.

VI. CONCLUSION
We have developed spectro-dynamic MRI as a method that
makes the identification of dynamical systems possible at a
high temporal resolution of a fewmilliseconds. The measure-
ments in k-space were connected to the displacement field
through a measurement model. Adding the dynamical model
allowed for the reconstruction of the displacement fields and
the dynamical parameters of the system. We have experi-
mentally shown that spectro-dynamic MRI can accurately
reconstruct the dynamics of simple systems, even with very
high undersampling factors.

APPENDIX A
CONSERVATION OF MAGNETIZATION
To derive (6), we start by looking at the volume integral of the
transverse magnetization over an arbitrary volume element
V0 ∈ R3. This control volume is fixed in space, while the
object is moving. The rate of change of the magnetization
within V0 is equal to the inflow of magnetization across the
surface S0 of this volume element:

d
dt

∫∫∫
V0
m(r, t) dV +

∮∫
S0
m(r, t)v(r, t) · n dS = 0. (39)

Here v(r, t) is the velocity field, and n is the unit normal
vector of the surface element. Because our volume element is
not moving, we can move the temporal derivative inside the
integral:

d
dt

∫∫∫
V0
m(r, t) dV =

∫∫∫
V0

∂

∂t
m(r, t) dV . (40)

Furthermore, we can use the divergence theorem:∮∫
S

[
m(r, t)v(r, t)

]
· n dS =

∫∫∫
V
∇ ·

[
m(r, t)v(r, t)

]
dV .

(41)

Combining (39), (40), and (41), we can write the measure-
ment model in integral form:∫∫∫

V0

∂

∂t
m(r, t) dV +

∫∫∫
V0
∇ ·

[
m(r, t)v(r, t)

]
dV = 0.

(42)
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Since (42) must hold for any V0, we can extract the inte-
grand and rewrite our measurement model in the differential
form:

∂

∂t
m(r, t)+∇ ·

[
m(r, t)v(r, t)

]
= 0. (43)

APPENDIX B
VELOCITY FIELD APPROXIMATION
Assumewe have an object in a certain reference configuration
at time t0. The location of one specific particle within this
object at t0 is r0. As this object moves through space, the
location r of this particle changes. The displacement field is a
function of both space and time. It can be written as a function
of the location of each particle in the reference configuration,
called the Lagrangian description, where the initial location
r0 is an independent variable:

u(r0, t) = r(r0, t)− r0. (44)

Alternatively, we can use the Eulerian description of the
displacement field, in which the current coordinate is used as
independent variable:

u(r, t) = r− r0(r, t). (45)

Notice that the initial coordinate of the particle is now no
longer an independent variable, but it has become a function
of the current coordinate. Both descriptions can be used to
describe the same displacement field, but the Lagrangian
description ‘‘follows’’ the same particles over time, while
in the Eulerian description, the displacements are always
described with respect to the same static spatial coordinates.

Since the magnetization is measured at fixed coordinates,
it is more convenient to use the Eulerian description for the
displacement field in the measurement model, as is done
in Section II-C. This requires an Eulerian expression of the
velocity field as well.

The velocity field is the rate of change in the position of
each particle. That means we need to keep r0 constant when
taking the temporal derivative:

v =
dr
dt

∣∣∣∣
r0=constant

≡
Dr
Dt
. (46)

Here, D
Dt is the material derivative [42]. When the

Lagrangian description as in (44) is used, the velocity field
can be readily obtained from the displacement field:

v(r0, t) =
D
Dt

u(r0, t) =
∂

∂t
u(r0, t). (47)

However, for the Eulerian description as in (45), the total
derivative with respect to time must be taken:

v(r, t) =
D
Dt

u(r, t)

=
∂

∂t
u(r, t)+∇u(r, t) ·

dr
dt

=
∂

∂t
u(r, t)+∇u(r, t) · v(r, t). (48)

Solving for v(r, t) gives us an expression for the velocity
field in the current configuration:

v(r, t) = (I −∇u(r, t))−1
∂

∂t
u(r, t), (49)

where I is the identity matrix.
When the deformation of the moving object is small,
∇u(r, t) is small as well. Note that this assumption does not
limit the displacements themselves, only the spatial derivative
of the displacement field. In this case, the velocity field can
be approximated as the partial temporal derivative of the
displacement field in the Eulerian description:

v(r, t) ≈
∂

∂t
u(r, t). (50)

This assumption allows us to express the measurement
model as a linear function of the displacement field, as can
be seen in (9).
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