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A B S T R A C T   

Automatic cardiac chamber and left ventricular (LV) myocardium segmentation over the cardiac cycle signifi-
cantly extends the utilization of contrast-enhanced cardiac CT, potentially enabling in-depth assessment of 
cardiac function. Therefore, we evaluate an automatic method for cardiac chamber and LV myocardium seg-
mentation in 4D cardiac CT. 

In this study, 4D contrast-enhanced cardiac CT scans of 1509 patients selected for transcatheter aortic valve 
implantation with 21,605 3D images, were divided into development (N = 12) and test set (N = 1497). 3D 
convolutional neural networks were trained with end-systolic (ES) and end-diastolic (ED) images. Dice similarity 
coefficient (DSC) and average symmetric surface distance (ASSD) were computed for 3D segmentations at ES and 
ED in the development set via cross-validation, and for 2D segmentations in four cardiac phases for 81 test set 
patients. Segmentation quality in the full test set of 1497 patients was assessed visually on a three-point scale per 
structure based on estimated overlap with the ground truth. 

Automatic segmentation resulted in a mean DSC of 0.89 ± 0.10 and ASSD of 1.43 ± 1.45 mm in 12 patients in 
3D, and a DSC of 0.89 ± 0.08 and ASSD of 1.86 ± 1.20 mm in 81 patients in 2D. The qualitative evaluation in the 
whole test set of 1497 patients showed that automatic segmentations were assigned grade 1 (clinically useful) in 
98.5%, 92.2%, 83.1%, 96.3%, and 91.6% of cases for LV cavity and myocardium, right ventricle, left atrium, and 
right atrium. 

Our automatic method using convolutional neural networks performed clinically useful segmentation across 
the cardiac cycle in a large set of 4D cardiac CT images, potentially enabling in-depth assessment of cardiac 
function.   

1. Introduction 

Segmentation of the cardiac chambers and left ventricular (LV) 
myocardium over the whole cardiac cycle enables the assessment of 
cardiac morphology and function. Cardiac MRI and echocardiography 

are standardly used to determine cardiac function. However, for a 
growing number of applications, 3D contrast-enhanced cardiac CT scans 
are also acquired over the whole cardiac cycle, resulting in 4D cardiac 
CT images. These have great potential for in-depth cardiac function 
assessment and could be used to derive the LV ejection fraction (LVEF) 
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[1], for automatic LV wall motion analysis [2], or for the assessment of 
right ventricular function [3]. 

Manual segmentation of the cardiac chambers and the LV myocar-
dium, especially over the whole cardiac cycle, is time-consuming and 
practically unfeasible. To overcome this limitation, automatic methods 
for the segmentation of cardiac structures in contrast-enhanced cardiac 
CT images have been developed, including model-based approaches [4, 
5] and atlas-based approaches [6–8]. Over the recent years, deep 
learning-based approaches have become state-of-the-art for cardiac 
segmentation [9–11]. Recent advances include using a deeply super-
vised 3D U-Net and a combination of focal loss and Dice loss for a better 
extraction of contextual information [12], combining deep learning with 
volumetric shape models [13], end-to-end training of one localization 
and one segmentation network [14], knowledge distillation for 
cross-modality segmentation in MRI and CT [15], using two variational 
autoencoders with segmentation modules for unsupervised domain 
adaptation between MRI and CT [16], and disentangling 
domain-invariant and domain-specific features for cross-modality car-
diac segmentation [17]. However, 4D cardiac CT images pose several 
challenges for automatic segmentation methods. Unlike whole-heart 
segmentation in one specific cardiac phase, heart chambers may have 
a different appearance depending on the phase in the cardiac cycle. This 
is challenging for a learning method that is only trained on images of one 
cardiac phase, such as the end-diastolic (ED) phase in Ref. [9]. To ach-
ieve temporally consistent segmentations, Myronenko et al. have used a 
4D CNN with a sparse loss function to segment the LV cavity and 
myocardium in 4D cardiac CT images [18]. Kong et al. use an end-to-end 
trainable architecture consisting of a voxel encoder, a voxel decoder, 
and a mesh decoder that take an image and a template mesh as input and 
directly output surface meshes of cardiac chambers, and also applied it 
to 4D cardiac CT images [19]. However, imaging artifacts caused by 
metal implants, large atherosclerotic calcifications, or other pathology 
might complicate automatic segmentation in a clinical dataset of 4D 
cardiac CT images. 

Therefore, we present a detailed evaluation of an automatic method 
for cardiac chamber and LV myocardium segmentation in 4D contrast- 

enhanced cardiac CT images in a large clinical dataset that uses both 
end-systolic and ED images for training. In a preliminary study, we 
presented the automatic segmentation method and focused on the 
automatic selection of ES and ED phases as the main mode of evaluation 
[1]. In the present study, we have significantly increased our dataset to 
1509 patients who were scanned in the work-up for transcatheter aortic 
valve implantation (TAVI) [20,21]. In this clinical dataset with larger 
anatomical variability and variability in image quality, we perform a 
detailed qualitative evaluation to investigate the performance of the 
method for potential clinical use. 

2. Material and methods 

2.1. Data and annotations 

This retrospective study included 1602 consecutive patients who 
underwent the work-up for TAVI at the Amsterdam University Medical 
Center between 2009 and 2020. We excluded 93 patients who did not 
have a contrast-enhanced cardiac CT scan with at least ES and ED 
reconstructed images. For the remaining 1509 patients, at least ES and 
ED images were available and a total of 21,605 3D images were collected 
under a waiver from the local ethics committee. In our preliminary 
study, we reported on a subset of 472 patients included in this current 
study [1]. Further details on patient population and image acquisition 
parameters can be found in Table 1. 

The data set was divided into a set for method development and a test 
set (Fig. 1). To develop a method that generalizes well while keeping the 
annotation time attainable, the development set contained contrast- 
enhanced cardiac CT scans of twelve patients selected to represent 
data variability in terms of scanners, patient sex, body weight, heart 
rate, and the presence of pacemakers. Per patient, full 3D reference 
segmentations for method development were obtained in the ES and ED 
images for a total of 24 full 3D reference segmentations. First, automatic 
segmentations of LV myocardium, LV cavity, right ventricle (RV), left 
atrium (LA), and right atrium (RA) were obtained using a method 
trained on a different dataset, which has been published for LV 
myocardium segmentation and spectral CT augmentation [22]. Where 
necessary, these were manually corrected by a radiology resident 
(TPWB), three years of experience, level II cardiac CT reader) by 
voxel-wise annotation. While this approach significantly reduces the 
manual workload, manual correction of the full 3D segmentation of all 
structures still took roughly 5 h per 3D image. 

Table 1 
Patient population and image acquisition parameters for the development set 
and the test set. Median values and range for continuous variables.  

Specification Development set Test set 

Patients 12 1497 
Male 6 704 
Female 6 793 

Age (y) 81 (range 69–87) 81 (range 36–96) 
Scanners 

SOMATOM Force, Siemens 
Healthcare, Erlangen, Germany 

8 898 

Brilliance 64, Philips Healthcare, Best, 
The Netherlands 

4 576 

SOMATOM Definition AS+, Siemens – 14 
SOMATOM Definition Flash, Siemens – 9 

Low-pitch spiral scan 8 576 
Axial scan 4 921 
Tube potential (kVp) 90 (range 70–120) 90 (range 

70–120) 
Tube current-time product (mAs) 399 (range 

310–628) 
406 (range 
95–901) 

In-plane resolution (mm) 0.41 (range 
0.31–0.61) 

0.41 (range 
0.28–0.79) 

Slice thickness (mm) 0.6 (range 0.6–0.9) 0.6 (range 
0.6–3.0) 

Increment (mm) 0.45 0.45 
Reconstructed 3D images 162 21,443 
Number of phases available 11 (range 8–21) 11 (range 2–21) 
Interval between phases 

5% 8 891 
10% 4 554 
Only end-systolic and end-diastolic 
phases 

– 52  

Fig. 1. Dataset overview and available reference segmentations per set.  
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Therefore, it was infeasible to obtain 3D reference segmentations in 
all 21,443 3D images in the test set. To obtain reference segmentations 
in a representative number of patients across different cardiac phases, 
4D cardiac CT images of 81 consecutive patients were selected, and 2D 
reference segmentations for the LV myocardium, LV cavity, RV, LA, and 
RA were obtained in these images. For each patient, a central axial 2D 
image was manually segmented by a medical student at four different 
time points in the cardiac cycle, viz. the mid-systolic, ES, mid-diastolic, 
and ED phases. Annotations were verified and, if necessary, corrected by 
a radiology resident (TPWB). All manual annotations, both 2D and 3D, 
were performed with 3DSlicer (3D Slicer 4.8.1, http://www.slicer.org). 

For additional external evaluation of the method’s performance and 
for comparison to previously published methods, we used the CT data 
from the publicly available multi-modality whole heart segmentation 
challenge [9] consisting of 20 3D contrast-enhanced cardiac CT images 
for training and 40 3D contrast-enhanced cardiac CT images as a test set. 

2.2. Segmentation with convolutional neural network 

A 3D convolutional neural network (CNN) architecture was used for 
automatic multi-class segmentation of the LV myocardium, LV cavity, 
RV, LA, and RA across the entire cardiac cycle. The 3D CNN architecture 
was based on a previously proposed 2D architecture [23] and consisted 
of an encoding path with two downsampling layers with strided con-
volutions, six residual ResNet blocks, and a decoding path composed of 
two upsampling layers with transposed convolutions [24]. 3D batch 
normalization is used for stabilized network training. The softmax 
function as the output layer is used to predict per-class probabilities that 
sum up to 1. A detailed overview of all layers of the network can be 
found in Table 2. All 3D CT images were resampled to 0.8 × 0.8 × 0.8 
mm3 isotropic resolution, and CT numbers were linearly rescaled to a [0, 
1] range before processing with the CNN. No data augmentation was 
performed. CNN training was carried out with mini-batches of eight 128 
× 128 × 128 voxel patches. For each patch, one training image was 
randomly selected and padded with its edge values in each direction that 
was smaller than 128 voxels. After that, the center of the cube-shaped 
patch was randomly selected such that the entire patch was inside the 
(padded) image. Adam [25] was used as the optimizer and the negative 
sum of soft Dice similarity coefficients as the loss function for an equal 
weighting of structures of different sizes [26]. CNN training was per-
formed with an initial learning rate of 0.001 that was reduced by 70% 
every 4000 iterations. Early stopping was applied after 10,000 iterations 
to reduce overfitting. On average, CNN training took 8.5 h. These 
hyperparameters were selected based on previous work on whole-heart 
segmentation in non-contrast-enhanced cardiac CT [27]. During testing, 
3D CNN output probability maps were combined across image patches 
by averaging, and the largest connected component of each structure 
was retained in the final segmentation mask. On average, CNN inference 
took 11 s per image. 

We performed leave-one-patient-out cross-validation in the devel-
opment set to reduce overfitting. For 3D CT images of ES and ED phases 
separately, twelve CNNs were trained. Each CNN was trained using 
images of eleven patients and its performance was evaluated using the 

image of the patient not used for training. For evaluation of segmenta-
tion in the independent test set, an ensemble of all 24 trained CNNs was 
used. Each CNN independently segmented the 3D CT image, and output 
probabilities of all CNNs were averaged to obtain final segmentations. 
This approach increases the robustness of the method. CNN training and 
testing were performed with PyTorch 1.4.0 (https://www.pytorch.org) 
and Python 3.6 (https://www.python.org) on graphics processing units 
(GeForce RTX 2080 Ti, NVIDIA, Santa Clara, CA, USA). The code can be 
found at https://github.com/qurAI-amsterdam/cardiacSegmentat 
ionCCTA. 

2.3. Quantitative evaluation 

Automatic 3D segmentations across the whole cardiac cycle in the 
cross-validation in the development set were evaluated against the 
available 3D reference segmentations in ES and ED phases using the Dice 
similarity coefficient (DSC) and the average symmetric surface distance 
(ASSD). Moreover, automatically obtained volumes were compared to 
reference volumes through Bland-Altman analysis. 

In the test set, all cardiac phases were segmented, too, and the ES and 
ED phases were automatically selected as the ones with minimal and 
maximal LV volume, respectively. The mid-systolic and mid-diastolic 
phases were selected between the automatically identified ES and ED 
phases. Automatic segmentations in these four cardiac phases were 
evaluated against the 2D reference segmentations in axial slices in 81 
patients using DSC and ASSD. 

To facilitate comparison with other automatic segmentation 
methods, we re-trained our method with the training data from the 
publicly available multi-modality whole heart segmentation challenge 
[9] and segmented their test set of 40 3D contrast-enhanced cardiac CT 
images. 

2.4. Qualitative evaluation 

Our method automatically segmented all 21,443 3D CT images in the 
test set. Due to the extensive manual workload required for manual 
segmentations of all 3D images, we could not perform a complete 
quantitative evaluation. Therefore, we performed a qualitative analysis 
on all patients in the test set in addition to the quantitative evaluation on 
the subset of patients. A 4th year radiology resident (JHR, with 10 years 
of experience in image analysis) inspected six central 2D images (axial, 
sagittal, coronal for ES and ED phases) with corresponding automatic 
segmentation masks in each patient and graded image quality and seg-
mentation quality. 

Eight image quality categories were assessed separately on a three- 
point scale (1: no issues, 2: mild issues, 3: severe issues): correct 
image orientation, heart coverage in the field-of-view, contrast 
enhancement level, image noise level, metal artifacts, step-and-shoot 
artifacts, cardiac motion artifacts, and anatomical abnormalities. 

Segmentation quality of the five segmented structures was graded 
separately on a three-point scale. Because previously published methods 
for whole-heart segmentation in contrast-enhanced cardiac CT that 
perform well report DSC values between 0.85 and 0.95, and inter- 

Table 2 
Overview of CNN architecture. 3D convolutional layers (Conv3D) with 3D batch normalization (3D BatchNorm) and rectified linear units (ReLU) are used. Strided 
convolutions are used in the downsampling path, followed by residual ResNet blocks, and transposed convolutions for upsampling.  

Layer Type Kernel size Padding Stride Channels 3D BatchNorm ReLU 

1 Conv3D 7 3 1 8 yes yes 
2 Conv3D 3 1 2 (strided) 16 yes yes 
3 Conv3D 3 1 2 (strided) 32 yes yes 
4–9 ResNet block 3 1 1 32 yes yes 
10 Conv3D 3 1 2 (transposed) 16 yes yes 
11 Conv3D 3 1 2 (transposed) 8 yes yes 
12 Conv3D 7 3 1 6 no no 
13 Softmax – – – 6 – –  
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observer DSC are found to be between 0.81 and 0.94 [9], we define 
grade 1 as a visually estimated >85% segmentation overlap between 
automatic segmentation and expected ground truth, clinically useful for 
volume quantification. Grade 2 is defined as 60–85% overlap, clinically 
useful after minor manual correction, and grade 3 is defined as <60% 
overlap, failed segmentation. In a subset of 274 patients stratified for the 
CT scan date, a second observer (TPWB) performed the same qualitative 
analysis. 

Spearman rank-order correlation coefficients were used to investi-
gate correlations between image quality and quality of automatic 
segmentations. 

3. Results 

3.1. Quantitative evaluation 

Fig. 2 shows DSC and ASSD for 3D segmentation in the cross- 
validation experiments in the development set. These results demon-
strate that automatic segmentation of the LV myocardium and the LV 
cavity is more accurate in the ED phase than in the ES phase, while 
segmentation of the RA is more accurate in the ES phase. Overall, the 
results show that the median DSC is always above 0.85, and the median 
ASSD is always below 1.5 mm, with the left atrium showing the highest 
DSC and lowest ASSD values. 

Fig. 3 illustrates the best and worst segmentations obtained in our 
cross-validation experiments. For the patient shown in Fig. 3 (a), auto-
matic segmentation was very accurate in both ES and ED phases across 
all structures. For the patient in Fig. 3 (b), the contrast enhancement 

Fig. 2. Dice similarity coefficient (a) and average symmetric surface distance (b) of automatic segmentation for left ventricular (LV) myocardium, LV cavity, right 
ventricle (RV), left atrium (LA), and right atrium (RA) in end-systolic (ES) and end-diastolic (ED) phases against 3D reference segmentations in leave-one-patient-out 
cross-validation in the development set. Diamond markers indicate results for one patient with substantially lower contrast enhancement. 

Fig. 3. Automatic segmentations in end-systolic (ES) and end-diastolic (ED) images in the leave-one-patient-out cross-validation in the development set. a) images of 
a patient with a representative contrast enhancement, b) images of a patient with lower contrast enhancement level than the rest of the images in the development set 
resulting in a poor segmentation of the left ventricle and atria. 
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level is substantially lower than in the other images from the develop-
ment set, and the segmentation failed to a large extent. Quantitative 
results for this patient are indicated with diamond markers in Fig. 2. 
After excluding this patient with lower contrast enhancement level, bias 
and limits of agreement between reference and automatically obtained 
volumes were − 2.2 [− 16.6; 12.1] mL for LV cavity, 4.4 [− 16.8; 25.5] 
mL for RV, 3.9 [− 5.2; 13.0] mL for LA, 8.9 [− 33.4; 51.3] mL for RA, and 
10.1 [− 12.3; 32.4] mL for LV myocardium in the ES images, and 3.7 
[− 8.1; 15.5] mL for LV cavity, 12.6 [− 31.4; 56.7] mL for RV, 2.3 
[− 12.2; 16.9] mL for LA, 1.3 [− 37.3; 39.9] mL for RA, and 2.9 [− 19.0; 
24.7] mL for LV myocardium in the ED images, respectively. 

Fig. 4 shows DSC and ASSD for the 2D segmentations in mid-systolic, 
ES, mid-diastolic, and ED images of 81 patients in the test set. For all five 
structures, the automatic segmentation method produced accurate seg-
mentations with median DSC above 0.8 and median ASSD below 2.5 mm 
in the four different cardiac phases. Outliers are mainly observed when 
structures only cover a small area in the 2D reference image as can be 
seen in Fig. 5. 

Fig. 6 shows segmentations in a patient from the test set in com-
parison with the manual reference standard in these four cardiac phases, 
and the volume of the LV over the whole cardiac cycle. The 

automatically derived LVEF was 49.1% for this patient. Note that despite 
the imaging artifacts in the right atrium, the images were accurately 
segmented. A video of an automatically segmented beating heart can be 
found in the online version of this manuscript. The external evaluation 
of segmentation performance on the multi-modality whole-heart seg-
mentation challenge dataset [9] yielded a DSC of 0.915 ± 0.025 for 
whole-heart segmentation, which is slightly higher than the current best 
method from the challenge (0.908 ± 0.086). 

3.2. Qualitative evaluation 

The qualitative evaluation was performed on the full test set. In 68 
out of 1497 patients, the heart was not fully covered by the field-of-view 
as indicated by the main observer. These patients were excluded from 
further analysis because accurate volume quantification would not be 
feasible. Fig. 7 shows the results of our qualitative analysis for the 
remaining 1429 patients. Reduced contrast enhancement, especially in 
the right side of the heart, image noise level, and metal artifacts were the 
most frequently observed image quality issues, while step-and-shoot 
artifacts, cardiac motion artifacts, and anatomical abnormalities 
occurred less often. For all structures, in more than 80% of the cases, 

Fig. 4. Dice similarity coefficient (a) and average symmetric surface distance (b) of automatic segmentations for left ventricular (LV) myocardium, LV cavity, right 
ventricle (RV), left atrium (LA), and right atrium (RA) in mid-systolic, end-systolic (ES), mid-diastolic, and end-diastolic (ED) phases against 2D reference seg-
mentations in 81 patients in the test set. 

Fig. 5. Reference and automatic segmentations on mid-systolic, end-systolic (ES), mid-diastolic, and end-diastolic (ED) phase of a patient from the test set in which 
the automatic segmentation of the left atrium has low Dice similarity coefficient with respect to the 2D reference segmentation due to the small area covered by the 
left atrium in the chosen 2D image (corresponding to the most extreme outlier in Fig. 4). Note that segmentation in axial images in the transverse plane leads to 
foreshortening of the left ventricle. 
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clinically useful segmentations were obtained. The right ventricle was 
most challenging to segment (83.1% grade 1), the LV cavity was least 
challenging (98.5% grade 1). 

Table 3 shows the Spearman rank-order correlation coefficients be-
tween image quality grades and segmentation quality grades. We find a 
statistically significant correlation between contrast enhancement level 
and segmentation quality. Moreover, we find a strong correlation be-
tween image orientation and segmentation quality for almost all struc-
tures. High image noise, metal artifacts, cardiac motion, and anatomical 
abnormalities only slightly influence segmentation quality of some 

Fig. 6. Reference and automatic segmentations on mid-systolic, end-systolic (ES), mid-diastolic, and end-diastolic (ED) phases of a patient from the test set and the 
automatically derived left ventricular (LV) filling over the cardiac cycle. 

Fig. 7. Results of the qualitative evaluation in the test set. Percentage of scans 
assigned “grade 1: no issues” through “grade 3: severe issues” for different 
categories. Percentages of automatic segmentations assigned “grade 1: >85% 
segmentation overlap, clinically useful for volume quantification” through 
“grade 3: <60% overlap, failed segmentation” for all cardiac structures. 

Table 3 
Spearman rank-order correlation coefficients between qualitative grades for 
image quality categories and segmentation quality per structure. Values in bold 
are statistically significant (p < 0.05). LV = left ventricular, RV = right ventricle, 
LA = left atrium, RA = right atrium.   

LV cavity RV LA RA LV myo 

Image orientation 0.370 0.121 0.239 0.157 0.167 
Noise level 0.043 − 0.009 0.076 0.072 0.122 
Metal artifacts 0.026 − 0.009 0.089 0.102 0.017 
Cardiac motion 0.066 0.007 0.054 0.051 0.036 
Step-and-shoot 0.020 0.019 0.044 0.021 0.042 
Contrast enhancement level 0.133 0.265 0.101 0.043 0.022 
Abnormalities − 0.007 0.087 0.061 0.031 0.085  
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structures, whereas no statistically significant correlation is found for 
step-and-shoot artifacts. 

Table 4 shows the Spearman rank-order correlation coefficient be-
tween the image quality grades of different structures. The correlation is 
significant across all structures and highest between LV cavity and left 
atrium. In the subset of 274 patients, the first and second observers 
agreed on a segmentation quality grade in 94.9%, 77.4%, 90.5%, 83.6%, 
and 81.4% of the cases for LV, RV, LA, RA, and LV myocardium, 
respectively. The largest agreement between observers was found for the 
LV, which also received grade 1 most often, while the lowest agreement 
was found for the RV, which was most challenging to be segmented and 
was therefore likely more often on the edge between grade 1 and grade 
2. Over all structures, the observers agreed in 85.5%, differed by one 
grade in 13.9%, and differed by two grades in 0.6% of the cases. All 
reported grades for the qualitative evaluation can be found in Table 5. 

4. Discussion 

Automatic segmentation of the cardiac chambers and LV myocar-
dium over the whole cardiac cycle in contrast-enhanced cardiac CT 
might enable in-depth assessment of cardiac morphology and function. 
Given that manual segmentation is not feasible due to high workload in 
routine clinical practice, we developed a deep learning-based method 
for whole-heart segmentation in 4D contrast-enhanced cardiac CT and 
evaluated it in a large clinical dataset for TAVI planning. In this set of 
1429 patients, we found that our automatic method produced clinically 
useful segmentations in 98.5%, 92.2%, 83.1%, 96.3%, and 91.6% of the 
cases for LV cavity and myocardium, right ventricle, left atrium, and 

right atrium, respectively. 
Our quantitative evaluation showed that the automatic method 

produces very accurate segmentations for all cardiac structures. This 
indicates that the routinely acquired high-resolution contrast-enhanced 
cardiac CT scans could also be used for a more comprehensive assess-
ment of cardiac morphology and function. Results were on par with the 
results achieved by atlas-based and learning-based methods in a recent 
challenge on whole-heart cardiac CT segmentation in the ED phase [9]. 
Poor segmentation in the development set was found only in one patient 
whose scan showed low contrast enhancement not represented in the 
training data. Diversity in the levels of contrast enhancement in training 
data will likely improve the method’s robustness [22,28]. 

Furthermore, the results in the test set indicate that the method 
generalizes well to cardiac phases not included in the training. Seg-
mentation outliers were mainly observed when the corresponding 
structures covered only a small area in the 2D image that was manually 
segmented. Differences in segmentation quality between different car-
diac phases may be due to changing morphology: The LV cavity and 
myocardium might be more difficult to segment in the ES phase due to 
their strong contraction which has also been reported for automatic 
segmentation in cardiac MRI [29]. On the other hand, RA segmentation 
performance might depend strongly on the mixing of contrast agent and 
blood throughout the cardiac cycle. 

In this study, cardiac CT images of severely diseased patients who are 
not eligible for surgical valve replacement were analyzed. These scans 
are clinically used to accurately size the valve prosthesis, quantify valve 
calcifications, and determine the optimal access route [30,31]. The most 
frequently occurring image quality issues hampering segmentation were 
low contrast enhancement in the right side of the heart, image noise, and 
metal artifacts. Despite these issues, the method produced clinically 
useful segmentations in the majority of patients. The high number of 
clinically useful LV cavity and LA segmentations might be due to 
excellent contrast enhancement distinguishing them from neighboring 
structures, which is in line with existing literature [9]. On the other 
hand, the RV was affected the most by segmentation errors due to lower 
contrast enhancement and unclear boundaries. 

Functional markers such as the LVEF can directly be derived from the 
ES and ED segmentations of the LV cavity. Cardiac MR images, which 
are the reference standard for LVEF, were not clinically acquired during 
the workup for TAVI and could therefore not be used as a reference. In 

Table 4 
Spearman rank-order correlation coefficient between qualitative grades for 
segmentation quality of different structures. Values in bold are statistically 
significant (p < 0.05). LV = left ventricular, RV = right ventricle, LA = left 
atrium, RA = right atrium.   

LV cavity RV LA RA LV myo 

LV cavity 1.0 0.182 0.495 0.241 0.362 
RV 0.182 1.0 0.157 0.178 0.232 
LA 0.495 0.157 1.0 296 0.291 
RA 0.241 0.178 0.296 1.0 0.214 
LV myo 0.362 0.232 0.291 0.214 1.0  

Table 5 
Qualitative evaluation results in scans of 1429 patients after excluding the ones in which the heart was not fully covered. Image quality scored for different categories 
as grade 1: no issues, grade 2: mild issues, and grade 3: severe issues. Segmentation quality scored for different structures as grade 1: >85% segmentation overlap 
between automatic segmentation and expected ground truth, clinically useful for volume quantification, grade 2: 60–85% overlap, clinically useful after minor manual 
correction, grade 3: <60% overlap, failed segmentation.   

Grade LV cavity Right ventricle Left atrium Right atrium LV myo Total 

Grade  1 2 3 1 2 3 1 2 3 1 2 3 1 2 3  
Image orientation 1 1407 11 8 1187 225 14 1376 29 21 1309 87 30 1318 78 30 1426 

3 0 0 3 0 0 3 0 0 3 0 1 2 0 0 3 3 
Contrast level 1 1048 5 3 938 112 6 1027 19 10 973 65 18 975 63 18 1056 

2 358 4 2 247 112 5 347 10 7 333 22 9 343 14 7 364 
3 1 2 6 2 1 6 2 0 7 3 1 5 0 1 8 9 

Noise level 1 1200 8 8 1008 195 13 1178 23 15 1124 69 23 1138 56 22 1216 
2 206 3 3 179 29 4 198 6 8 184 19 9 180 22 10 212 
3 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 

Metal artifacts 1 1242 8 10 1045 200 15 1221 20 19 1167 72 21 1164 69 27 1260 
2 165 2 1 141 25 2 155 8 5 141 16 11 154 8 6 168 
3 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 

Step-and-shoot 1 1375 11 10 1161 219 16 1346 27 23 1280 85 31 1290 74 32 1396 
2 31 0 0 26 5 0 29 2 0 28 3 0 28 3 0 31 
3 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 2 

Cardiac motion 1 1381 11 9 1164 222 15 1351 28 22 1286 86 29 1294 76 31 1401 
2 26 0 1 23 3 1 25 1 1 23 2 2 24 2 1 27 
3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 

Abnormalities 1 1403 11 11 1186 223 16 1373 29 23 1306 87 32 1316 77 32 1425 
2 4 0 0 1 2 1 3 0 1 3 1 0 2 1 1 4 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total  1407 11 11 1187 225 17 1376 29 24 1309 88 32 1318 78 33 1429  
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future work, we will collect a set of 4D contrast-enhanced cardiac CT 
images in patients for whom cardiac MRI is available as well, to compare 
the automatically determined LVEF from CT against the clinical refer-
ence standard. Besides LVEF, our method allows quantification of other 
markers for cardiac function such as ED LV volume, LV stroke volume, 
LV wall thickness, right ventricular ejection fraction, myocardial mass, 
and other cardiac chamber volumes for assessment of cardiac function 
and cardiovascular risk prediction [32–34], which need to be compared 
to the respective clinical reference standards in future work. This could 
also improve risk stratification in patients undergoing transcatheter 
aortic valve implantation [35]. Based on 4D segmentation, more so-
phisticated markers beyond volumes could be derived, such as 
myocardial wall motion, which is usually assessed using cardiac MRI 
[36]. 

Our study had several limitations. The CT scan protocol and contrast 
injection protocol were tailored to assess the left side of the heart and 
aorta. Minor changes to the contrast injection protocol would substan-
tially improve the attenuation of the right side of the heart and therewith 
improve automatic segmentation. Due to the high workload of manual 
segmentation, we did not quantitatively evaluate segmentation on all 3D 
images in all patients. The quantitative and qualitative analysis of 2D 
images that we performed instead can only be generalized to 3D with 
caution. A large part of the analysis was carried out on automatically 
determined ES and ED images. Although segmentation of ES and ED 
images already provide a wealth of information, valuable insights for the 
assessment of 4D cardiac function might lie beyond ES and ED images. In 
this work, 4D images were analyzed with 3D CNNs. With further hard-
ware improvements and increased availability of full 4D reference seg-
mentations, future work should explore true 4D CNN segmentation [18] 
in a large clinical dataset. 

To conclude, we developed an automatic deep learning-based 
method to segment cardiac chambers and left ventricular myocardium 
in 4D contrast-enhanced cardiac CT. We evaluated the method with a 
large set of routine clinical scans for transcatheter aortic valve implan-
tation planning. Our method produced clinically useful segmentations 
across the cardiac cycle and thus holds promise for automatic extraction 
of morphological and functional cardiac measures in any 4D contrast- 
enhanced cardiac CT. 
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