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What are the novel findings of this work?
Deep learning enabled automatic identification of the
slice of minimal hiatal dimensions and segmentation
of the urogenital hiatus in transperineal ultrasound
(TPUS) volumes of women with symptomatic pelvic
organ prolapse. This allowed automatic measurement of
the urogenital hiatal area, anteroposterior diameter and
coronal diameter.

What are the clinical implications of this work?
Our tool can be implemented in the software of TPUS
machines, which should make the analysis of TPUS
data less time-consuming and observer-dependent, thus
reducing clinical training and analysis time and simplify-
ing the examination of TPUS data for research and clinical
purposes.

ABSTRACT

Objective To develop and validate a tool for automatic
selection of the slice of minimal hiatal dimensions
(SMHD) and segmentation of the urogenital hiatus (UH)
in transperineal ultrasound (TPUS) volumes.

Methods Manual selection of the SMHD and segmenta-
tion of the UH was performed in TPUS volumes of 116
women with symptomatic pelvic organ prolapse (POP).
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These data were used to train two deep-learning algo-
rithms. The first algorithm was trained to provide an
estimation of the position of the SMHD. Based on this
estimation, a slice was selected and fed into the second
algorithm, which performed automatic segmentation of
the UH. From this segmentation, measurements of the UH
area (UHA), anteroposterior diameter (APD) and coronal
diameter (CD) were computed automatically. The mean
absolute distance between manually and automatically
selected SMHD, the overlap (dice similarity index (DSI))
between manual and automatic UH segmentation and the
intraclass correlation coefficient (ICC) between manual
and automatic UH measurements were assessed on a test
set of 30 TPUS volumes.

Results The mean absolute distance between manually
and automatically selected SMHD was 0.20 cm. All DSI
values between manual and automatic UH segmentations
were above 0.85. The ICC values between manual
and automatic UH measurements were 0.94 (95% CI,
0.87–0.97) for UHA, 0.92 (95% CI, 0.78–0.97) for APD
and 0.82 (95% CI, 0.66–0.91) for CD, demonstrating
excellent agreement.

Conclusions Our deep-learning algorithms allowed reli-
able automatic selection of the SMHD and UH segmenta-
tion in TPUS volumes of women with symptomatic POP.
These algorithms can be implemented in the software of
TPUS machines, thus reducing clinical analysis time and
simplifying the examination of TPUS data for research
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and clinical purposes. © 2021 The Authors. Ultrasound
in Obstetrics & Gynecology published by John Wiley &
Sons Ltd on behalf of International Society of Ultrasound
in Obstetrics and Gynecology.

INTRODUCTION

Transperineal ultrasound (TPUS) is an imaging technique
used to investigate pelvic floor dysfunction1, which
enables assessment of the urogenital hiatus (UH) and
levator ani muscle (LAM)2–4. The UH, the surface of
which is measured as the urogenital hiatal area (UHA)
on TPUS, is an opening encircled by the pubic bone
and the puborectalis muscle (PRM) and is the largest
potential hernial portal in the female body. Pelvic organ
prolapse (POP) is the herniation of pelvic organs through
the UH and is one of the most common types of pelvic
floor dysfunction5. An enlarged UHA on TPUS is a sign
of impaired pelvic organ support and is associated with
POP2.

The LAM is the largest muscle complex of the pelvic
floor. The disconnection of its most medial part from
the insertion on the inferior pubic ramus can occur
during vaginal delivery and is called LAM avulsion3.
LAM avulsion is associated with POP and reduced
pelvic floor muscle function3,6,7. A crucial step for the
assessment of both UHA and LAM avulsion on TPUS is
the identification of the slice of minimal hiatal dimensions
(SMHD). This is performed by locating the shortest line
between the pubic symphysis and the anorectal angle in
the midsagittal plane8. The SMHD is the slice passing
through this line, perpendicular to the midsagittal plane.
In this slice, UH can be segmented to measure its diameters
and UHA, and LAM avulsion can be assessed.

The limitation is that SMHD selection and UH
measurements are currently performed manually, which
makes the analysis time-consuming and requires each
observer to complete a learning curve to perform
the measurements properly9. In addition, even though
previous studies showed good inter- and intraobserver
variability10,11, automating this procedure may reduce
variability even further.

Several papers have been published recently on the
automatic segmentation of the UH12–14. However, this
automatic segmentation was based on a manually selected
SMHD. The selection of the SMHD itself has not been
automated to date. Our aim was to use deep learning to
develop a tool that would allow both automated selection
of the SMHD and UH segmentation, with the purpose of
reducing analysis time and observer variability.

METHODS

Data

The data used in this study were collected as part
of the GYNecological Imaging using three-dimensional
(3D) UltraSound (GYNIUS) project on the assessment

of pelvic floor contractility using TPUS, which was
performed at a tertiary urogynecological clinic. Women
were included in the GYNIUS project between May
2018 and December 2019. The Medical Research Ethics
Committee exempted the project from ethical approval
(reference number, 18/215) and all women provided
written informed consent.

Women underwent TPUS in the supine position after
bladder emptying. Women were instructed to perform
maximum pelvic floor contraction and maximum Valsalva
maneuver according to the method described by Dietz5.
We used a Philips Epiq 7G machine (Philips, Bothell, WA,
USA) with a X6-1 transducer covered with a 2-cm thick
gel pad and a glove. The gel pad was used to create more
distance between the transducer and the pelvic floor, such
that the LAM was fully visible within the opening angle
in the coronal plane.

The ultrasound scans used in this study were selected
and segmented for analysis in two previous clinical
studies15,16. The UH was segmented manually by one
observer (C.M.) during rest, on maximum pelvic floor
contraction and on maximum Valsalva maneuver in
the SMHD. This segmentation was performed using
in-house developed software17, which was implemented in
MeVisLab 3.0.2. All steps for SMHD selection were saved
in the software, including the position of the SMHD in
the 3D volume and segmentation of the UH in the SMHD,
which enabled automation of the process.

Deep learning

Deep learning is a set of algorithms that try to mimic
the learning of the human brain, also known as neural
networks. After the ImageNet 2012 Challenge was won by
a convolutional neural network (CNN)18, CNNs quickly
became state of the art for (medical) image analysis, often
resulting in human-level performance in tasks such as
image segmentation and classification19.

Segmentation CNNs are trained by providing them
with manually labeled data. During training, the CNN
learns the patterns needed to perform the segmentation
task by minimizing a loss function, which quantifies the
performance of the network. The more data (preferably
from a representative sample of the entire population)
that are used, the better a CNN is able to generalize the
learned task to the entire population. An independent
validation set is used to check during training how well
the CNN performs on data that are not part of the
training set, which is a measure of the generalization
capability of the CNN. The CNN that performs best
on the validation set, i.e. for which the loss function
has the lowest value on the validation set, is used for
further analysis. A test set is then used to analyze the
resulting performance of the CNN on new, unseen data
(i.e. different from the training set), as well as on data
for which the CNN is not optimized (i.e. different from
both training and validation sets). Our data were assigned
randomly to the training set (104 patients, 381 frames,
337 two-dimensional (2D) slices), validation set (two

© 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2022; 60: 570–576.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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572 van den Noort et al.

patients, 12 frames, six 2D slices) or test set (10 patients,
30 frames, 30 2D slices).

Selection and segmentation pipeline

Two different CNNs that can operate in a pipeline to make
the process of SMHD selection and UH segmentation fully
automated were trained (Figure 1). The first CNN was a
SMHD-selection CNN (SS-CNN), which has the same
network architecture as the CNN presented previously to
segment automatically the PRM in 3D TPUS volumes20.
This network processes the data slice by slice, but
remembers interslice information, enabling full usage of
the 3D context. The same segmentation network was used
to estimate the position of the SMHD. This network was
trained on sagittal slices because manual selection of the
SMHD is done mainly in the midsagittal plane.

The labels of the manual UH segmentation are only one
slice thick. However, a shift of a few slices also results
in correct visualization of the UH. Such shift may occur
between observers or if the same observer performs repeat

selection of the SMHD. Therefore, the segmentation
mask was enlarged by performing a dilatation operation
to cover five slices in order not to restrict SMHD
segmentation to the slice of the label. The choice of
five slices was arbitrary. The network was trained to
maximize the overlap with this enlarged mask by using
the dice similarity index (DSI) loss function (DSI-LF)21.
However, since an overlap (DSI) is not always the perfect
indicator of a successful estimation of the position of
the SMHD, a loss function that integrated the estimated
position of the SMHD with respect to the manual mask
was also added (Appendix S1).

After training, the network provided estimates of the
position of the SMHD in the 3D volume, which were
not in a perfectly straight plane. Therefore, a plane
(least-square error) was fitted through the datapoints of
the estimation, and 3D data in this plane were interpolated
to obtain a 2D slice (the SMHD).

The second network was the 2D-segmentation CNN
(2DS-CNN), which has been presented in our previous
work on 2D-SMHD segmentation of the PRM and UH14.

SS-CNN

Input:
TPUS volume

Fit plane through
probability map

Create image
on fitted plane

Input:
SMHD

Output:
segmentation of SMHD

2DS-CNN

Output:
3D probability map of

SMHD position

Figure 1 Pipeline for selection of the slice of minimal hiatal dimensions (SMHD) and segmentation of the urogenital hiatus in a transperineal
ultrasound (TPUS) volume. A TPUS volume is fed into the trained SMHD-selection-convolutional-neural-network (SS-CNN). The SS-CNN
provides a three-dimensional (3D) probability map (yellow line) of the position of the urogenital hiatus in the SMHD in the TPUS volume. A
plane (red) is fitted through the probability map, which is used to create a two-dimensional (2D) image of the SMHD, provided that the
SS-CNN has identified the urogenital hiatus correctly. The SMHD is fed into the trained 2D-segmentation CNN (2DS-CNN), which
performs segmentation of the urogenital hiatus (orange area) in the SMHD. From this segmentation, the area, anteroposterior diameter and
coronal diameter of the urogenital hiatus are calculated.

© 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2022; 60: 570–576.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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Minimal hiatal dimensions: automatic identification 573

For the current study, the network was trained (with
DSI-LF) on the manually selected 2D-SMHD to perform
UH segmentation. Based on the output of this CNN,
relevant parameters, including UHA and anteroposterior
(APD) and coronal diameter (CD) of the UH, were
measured automatically.

Validation

The different steps of the pipeline were validated
separately to ensure their proper functioning. The
functioning of the SS-CNN and plane fitting was validated
by measuring the mean absolute distance (MAD) and the
Hausdorff distance (HDD), i.e. the maximum absolute
distance, between the manually and automatically selected
SMHD of the test set. In addition, a non-quantitative,
visual inspection of the manually and automatically
selected SMHD was performed.

The 2DS-CNN was validated by applying it to
the SMHD of the test set. The overlap between
automatic and manual UH segmentation was quantified
using the DSI, according to the following formula:
DSI = 2(X∩Y)/(X + Y), where X ∩ Y is the number
of overlapping pixels of the two segmentations, and
X and Y are the number of pixels of the two
segmentations, respectively. A DSI of 1 represents
maximum segmentation overlap, while a DSI of 0
indicates no segmentation overlap.

The results of the complete pipeline were investigated
by comparing the manual and automatic measurements of
UHA, APD and CD. The intraclass correlation coefficients
(ICCs) with 95% CI were calculated for each parameter
and evaluated according to the subgroup definitions of
Landis and Koch22. Box plots were created to compare the
distribution of the manual and automatic measurements,
and the mean difference and limits of agreement were
investigated using Bland–Altman analysis23.

RESULTS

Table 1 shows the demographic and clinical characteristics
of the included patients (n = 116). Mean ± SD age was
59.5 ± 11.8 years and mean ± SD body mass index was
24.7 ± 3.6 kg/m2. The majority (98.3%) of women were
vaginally parous and 45 (38.8%) had complete LAM
avulsion. Two (1.7%) women had Stage-I POP, 67
(57.8%) had Stage-II POP and 47 (40.5%) had Stage-III
POP.

In some cases, data from the same patient were acquired
and analyzed more than once, resulting in 423 frames
on which the 3D position of the SMHD was saved
successfully (150 at rest, 137 on maximum pelvic floor
contraction, 136 on maximum Valsalva maneuver). The
2D segmentations were not always saved successfully,
resulting in a dataset of 112 women and 373 training
images.

Figure 2 shows all manually and automatically selected
SMHD in the test set for visual comparison. All DSI values
between manual and automatic UH segmentations were

Table 1 Demographic and clinical characteristics of 116 included
patients with symptomatic pelvic organ prolapse (POP)

Parameter Value

Age (years) 59.5 ± 11.8
BMI (kg/m2) 24.7 ± 3.6
Postmenopausal 88 (75.9)
Vaginally parous 114 (98.3)
Hysterectomy 16 (13.8)
POP surgery* 12 (10.3)
Incontinence surgery 3 (2.6)
Type of POP

Anterior 66 (56.9)
Apical 6 (5.2)
Posterior 11 (9.5)
Anterior and apical 4 (3.4)
Anterior and posterior 21 (18.1)
Apical and posterior 3 (2.6)
Anterior, apical and posterior 5 (4.3)

POP stage
I 2 (1.7)
II 67 (57.8)
III 47 (40.5)

LAM avulsion 45 (38.8)

Data are presented as mean ± SD or n (%). *Hysterectomy
excluded. BMI, body mass index; LAM, levator ani muscle.

above 0.85, and the mean and median MAD between the
manually and automatically selected SMHD was 0.20 and
0.14 cm, respectively. The mean and median HDD was
0.50 and 0.39 cm, respectively (Figure 3).

To validate the performance of the complete pipeline,
the manual and automatic measurements of UHA, APD
and CD were compared. All parameters were visualized
using boxplots (Figure 4), and the agreement between
manual and automatic UHA measurements was also
evaluated using the Bland–Altman method (Figure 5).
The ICC values between manual and automatic UH
measurements were 0.94 (95% CI, 0.87–0.97) for UHA,
0.92 (95% CI, 0.78–0.97) for APD and 0.82 (95% CI,
0.66–0.91) for CD (Table 2).

DISCUSSION

In this study, we present a pipeline for fully automated
SMHD selection and UH segmentation, which allows
automatic measurement of UHA, APD and CD. An auto-
mated selection of the SMHD has not been reported
previously in the literature. We have presented the per-
formance results of each CNN and the accuracy of the
measurements by the complete pipeline. The validation
analysis comparing automatic and manual measurements
showed excellent agreement, demonstrating high reliabil-
ity of the automatic pipeline.

The selection of the SMHD is difficult because it is not
aligned with any principal anatomical plane (i.e. coronal,
sagittal or axial plane). In the literature, there have been
several studies of slice detection methods for other imaging
tasks, such as L3 slice detection in computed tomography
data24,25 and slice detection in fetal ultrasound data26–29.
Among these studies, only Li et al.28 described the method

© 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2022; 60: 570–576.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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574 van den Noort et al.

Rest Contraction Valsalva
Manual Automatic Manual Automatic Manual Automatic

Figure 2 Manually and automatically selected slices of minimal
hiatal dimensions, obtained during rest, on maximum pelvic floor
contraction and on maximum Valsalva maneuver from all patients
(Cases 1–10) in the test set.

for detecting a slice that is not aligned with any principal
anatomical plane. Although their approach was different
from the one presented in this work, their results in
terms of distance between manually and automatically
selected slices were comparable to ours, with a slightly
better agreement in this study (average MAD of 0.20 cm
in this study vs 0.34 cm and 0.35 cm in the study by Li
et al.28). However, we restricted the distance calculation
to the area of the manual UH segmentation, which is
our region of interest, instead of calculating the average
distance between manual and automatic SMHD. This
restriction may have had a slight positive influence on our
results.
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Figure 3 Overlap between manual and automatic segmentation of
the urogenital hiatus, expressed as dice similarity index (DSI), and
mean absolute distance and Hausdorff distance between the manu-
ally and automatically selected slices of minimal hiatal dimensions.
Boxes are median and interquartile range, and whiskers are range
after excluding outliers (+) lying outside 1.5 × interquartile range.
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urogenital hiatus in the test set. Boxes are median and interquartile
range, and whiskers are range after excluding outliers (+) lying
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Figure 5 Bland–Altman plot of urogenital hiatal area measure-
ments in the test set obtained during rest (+), on maximum pelvic
floor contraction ( ) or on maximum Valsalva maneuver ( ). Mean
difference ( ) and limits of agreement ( ) are also shown.

© 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2022; 60: 570–576.
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Table 2 Comparison of manual and automatic measurements of urogenital hiatal area, anteroposterior diameter and coronal diameter

Measurement Automatic pipeline Manual Mean difference (LOA) ICC (95% CI)

Urogenital hiatal area (cm2) 27.4 ± 9.8 26.1 ± 10.1 −1.3 ± 3.3 (−7.7 to 5.2) 0.94 (0.87–0.97)
Anteroposterior diameter (cm) 6.5 ± 1.2 6.2 ± 1.3 −0.3 ± 0.4 (−1.1 to 0.6) 0.92 (0.78–0.97)
Coronal diameter (cm) 5.6 ± 0.9 5.5 ± 1.0 −0.1 ± 0.6 (−1.3 to 1.1) 0.82 (0.66–0.91)

Data are given as mean ± SD, unless stated otherwise. ICC, intraclass correlation coefficient; LOA, limits of agreement.

Only one automatically selected SMHD was more than
0.5 cm away from the manually selected SMHD (Figure 3),
which corresponds to the image of Case 8 on maximum
Valsalva maneuver in Figure 2. However, this difference
had little influence on the UH measurements. The clear
outlier among CD measurements (Figure 4) corresponds
to the CD measurement on maximum Valsalva maneuver
in Case 10 (Figure 2) and may be explained by the
unclear borders of the automatically selected SMHD,
which hindered proper automated segmentation.

The UHA measurements obtained on maximum
Valsalva maneuver had the largest differences between
manual and automatic assessments (Figure 5). However,
the average UHA measurements on Valsalva maneuver
of most women in the test set were almost twice as large
as those obtained on maximum pelvic floor contraction
and during rest. Therefore, the error appears to be
proportional to the size of the measured area. There was
an overall trend of slight overestimation of UHA (average
of 1.3 cm2) by the automatic pipeline. This error is similar
to the interobserver variability for manually performed
UHA measurements30.

The overlap results of the 2DS-CNN are comparable
to those of other automated and semiautomated methods
presented in the literature12–14, which report average
DSI values of 0.92–0.94 (0.93 in this study). The
ICC for UHA, CD and APD measurements between
manual analysis and the fully automated pipeline were
excellent, supporting our previous results on automatic
segmentation of UHA, APD and CD14. This indicates
that automation of slice selection (SS-CNN) does not
have a negative impact on the segmentation results.
The interobserver variability for the manually performed
measurements differs substantially across studies9,10,30,31.
Our ICC values are higher than those reported in the
literature, proving the success of the presented automated
SMHD selection and segmentation pipeline.

The presented fully automated pipeline requires a
few seconds to process a single volume. Therefore, it
can be implemented in the software of TPUS machines,
which should make the analysis of TPUS data less
time-consuming and observer-dependent, thus reducing
clinical training and analysis time and simplifying the
examination of TPUS data for research and clinical
purposes. This will lower the barriers that clinicians may
experience when using TPUS in their clinical practice.

The data of this study were acquired from women with
symptomatic POP, which are more complex to analyze
compared with data of women with intact LAM and/or
without pelvic floor dysfunction9. Due to its reproducibil-
ity, this pipeline is an excellent tool to standardize the UH

measurements in complex patient populations, making
them less observer-dependent. However, it should be
noted that the training data of the pipeline were based on
the manual analysis carried out by a single experienced
observer. Therefore, it can be assumed that the pipeline
is biased towards the way this specific observer analyzed
the data. Before implementation into clinical practice, we
recommend to add training data from multiple observers,
which should eliminate personal bias in the network.

For a more reliable analysis of minimal hiatal
dimensions on Valsalva maneuver, a rendered volume32

and OmniView combined with volume contrast imaging33

have been suggested in the literature. However, those
methods require the (approximate) position of the SMHD
to compute their interpolated 2D images. Since these types
of images look very similar to a single slice SMHD, we
expect that the 2D segmentation results using these images
would be similar to the results of this study.

Even when the pipeline generates some errors, these can
be identified easily in clinical practice by a quick visual
examination of the selected and segmented SMHD. In
these cases, manual analysis is recommended, which can
also be used to update the pipeline, making it more robust
over time. The only step that still needs automation is
the selection of the correct frame (i.e. rest, pelvic floor
contraction or Valsalva maneuver). However, this is the
least time-consuming step in the manual examination and,
based on the literature26,27,29, it can be expected that its
automation is feasible.

In conclusion, we have presented a pipeline that selects
and segments the SMHD reliably and thus automates
the analysis of the SMHD on TPUS in women with
symptomatic POP. Implementation of this pipeline in the
software of TPUS machines should make the analysis of
TPUS data less time-consuming and observer-dependent.
This should reduce clinical training and analysis time and
simplify the examination of TPUS data for research and
clinical purposes.
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24. Belharbi S, Chatelain C, Hérault R, Adam S, Thureau S, Chastan M, Modzelewski R.
Spotting L3 slice in CT scans using deep convolutional network and transfer learning.
Comput Biol Med 2017; 87: 95–103.

25. Kanavati K, Islam S, Aboagye EO, Rockall A. Automatic L3 slice detection in 3D CT
images using fully-convolutional networks. 2018. DOI: 10.48550/arXiv.1811.09244.

26. Chen H, Dou Q, Ni D, Cheng JZ, Qin J, Li S, Heng PA. Automatic fetal
ultrasound standard plane detection using knowledge transferred recurrent neural
networks. In: Medical Image Computing and Computer-Assisted Intervention,
Navab N, Hornegger J, Wells W, Frangi A (eds). MICCAI 2015, Munich, Germany;
507–514.

27. Baumgartner CF, Kamnitsas K, Matthew J, Smith S, Kainz B, Rueckert D.
Real-time standard scan plane detection and localisation in fetal ultrasound
using fully convolutional neural networks. In: Medical Image Computing and
Computer-Assisted Intervention, Ourselin S, Joskowicz L, Sabuncu M, Unal G,
Wells W (eds). MICCAI 2016, Athens, Greece; 203–211.

28. Li Y, Khanal B, Hou B, Alansary A, Cerrolaza JJ, Sinclair M, Matthew J,
Gupta C, Knight C, Kainz B, Rueckert D. Standard plane detection in
3D Fetal Ultrasound using an iterative transformation network. In: Medical
Image Computing and Computer-Assisted Intervention, Frangi A, Schnabel J,
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The following supporting information may be found in the online version of this article:
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