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ABSTRACT

Ecstasy use is commonly combined with ethanol consumption. While combination drug use in general
is correlated with a higher risk for toxicity, the risk of the specific combination of ecstasy (3,4-methyle-
nedioxymethamphetamine (MDMA)) and ethanol is largely unknown. Therefore, we have reviewed the
literature on changes in MDMA pharmacokinetics and pharmacodynamics due to concurrent ethanol
exposure in human, animal and in vitro studies. MDMA pharmacokinetics appear unaffected: the
MDMA blood concentration after concurrent exposure to MDMA and ethanol was comparable to lone
MDMA exposure in multiple human placebo-controlled studies. In contrast, MDMA pharmacodynamics
were affected: locomotor activity increased and body temperature decreased after concurrent exposure
to MDMA and ethanol compared to lone MDMA exposure. Importantly, these additional ethanol effects
were consistently observed in multiple animal studies. Additional ethanol effects have also been
reported on other pharmacodynamic aspects, but are inconclusive due to a low number of studies or
due to inconsistent findings. These investigated pharmacodynamic aspects include monoamine brain
concentrations, neurological (psychomotor function, memory, anxiety, reinforcing properties), cardiovas-
cular, liver and endocrine effects. Although only a single or a few studies were available investigating
these aspects, most studies indicated an aggravation of MDMA-induced effects upon concurrent etha-
nol exposure. In summary, concurrent ethanol exposure appears to increase the risk for MDMA toxicity.
Increased toxicity is due to an aggravation of MDMA pharmacodynamics, while MDMA pharmacokinet-
ics is largely unaffected. Although a significant attenuation of the MDMA-induced increase of body
temperature was observed in animal studies, its relevance for human exposure remains unclear.
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can be transported outwards, because MDMA reverses the
transport direction of monoamine reuptake transporters from
outside-inside (reuptake), to inside-outside (transporter-
mediated release), further increasing brain concentrations
of monoamines (for review see Dunlap et al. 2018).
Subsequently these extracellular monoamines can activate
receptors. High extracellular monoamine concentrations, as a
result of MDMA use, can overstimulate these receptors. In
addition, MDMA itself also modulates receptor function,
although mostly at a higher MDMA concentration than
necessary for transporter inhibition. However, MDMA does
modulate serotonin receptor function at submicromolar con-
centrations (for reviews see Rietjens et al. 2012; Hondebrink
et al. 2018; Dunlap et al. 2018). Due to these biochemical
changes, MDMA increases alertness and also causes entacto-
genic effects such as warm, euphoric and loving feelings, and
an increased closeness to others (Meyer 2013; Dunlap
et al. 2018).

However, adverse effects can also occur following MDMA
exposure, including an increase in heart rate (tachycardia),
blood pressure (hypertension) and body temperature (hyper-
thermia). Adverse effects range from mild to life-threatening
effects and occasionally deaths are reported (Green et al.
2003; Hall and Henry 2006). Based on the prevalence of
MDMA use and a registry of MDMA-related health incidents
in the Netherlands, the risk for moderate to severe effects is
estimated at 0.11% (1 in 900 pills) (van Amsterdam et al.
2020). Although the risk appears low, MDMA is the third
most common stimulant drug reported in drug-related emer-
gency department (ED) visits in Europe (EMCDDA 2020).
Integral worldwide or European figures on MDMA-related
incidents are absent. However, the Euro-DEN Plus network,
consisting of 31 sentinel centers, reported thousands of
MDMA-related ED visits between 2014 and 2017 (EMCDDA
2020; Noseda et al. 2020), indicating a substantial impact on
health care facilities.

MDMA users frequently combine MDMA and ethanol; 91%
of Australian clubbers (experienced MDMA users) reported
concurrent use (Morefield et al. 2011). Also, the combination
of MDMA and ethanol was the second most prevalent com-
bination reported among past year Dutch clubbers, after the
combination of ethanol and cannabis (Monshouwer
et al. 2016).

While the risk of combining MDMA and ethanol is mostly
unknown, an early review already reported interactions that
affected the pharmacokinetic and dynamic properties of
MDMA (Mohamed et al. 2009). Also, intoxication and mortal-
ity data indicate that combining MDMA and ethanol could
worsen health outcome (Calle et al. 2019; Schurmann et al.
2019). For example, in 70% of MDMA-related ED visits in
Europe, ethanol was also used (Noseda et al. 2020).

In addition, there are indications that MDMA-related
health incidents with concurrent ethanol exposure are more
severe compared to lone MDMA incidents (Dutch registry,
Schirmann et al. 2019). Furthermore, a higher proportion of
MDMA and ethanol intoxicated patients at a Belgium dance
event required hospital care, compared to lone MDMA intoxi-
cated patients (Calle et al. 2018).

In addition to recreational MDMA use, its therapeutic
potential for ethanol use disorder is under investigation
(Sessa et al. 2019). Consequently, additional populations
could be at risk for exposure to a combination of MDMA and
ethanol.

While several studies indicate that concurrent use of
MDMA and ethanol results in health incidents (Jones et al.
2016; Schirmann et al. 2019; EMCDDA 2020; Noseda et al.
2020), there are only few indications that these incidents are
more severe than those following lone MDMA use (Calle
et al. 2018; Schurmann et al. 2019). Therefore, a systematic
review was performed to investigate if concurrent use could
worsen adverse effects.

Methods

PubMed was queried for all English-written literature up
to 11 August 2020, using the following string: ((3,4-
methylenedioxymethamphetamine[Title]) OR MDMA[Title] OR
ecstasy[Title] OR xtc[Title]) AND (ethanol[Title/Abstract] OR
alcohol[Title/Abstract])). The string resulted in 222 articles of
which title and abstract were manually screened for rele-
vance. Human, animal and in vitro studies were included if
the dose or concentration of all exposures was reported and
at least two exposure conditions were investigated: (1)
MDMA and (2) MDMA and ethanol. In total, 37 articles were
included.

The effects reported in the included studies were
extracted by two scientists and effects observed after concur-
rent ethanol and MDMA exposure were compared to effects
after lone MDMA exposure. Both pharmacokinetic and phar-
macodynamic effects are summarized.

Results
Pharmacokinetic effects

Several pharmacokinetic factors, such as absorption, distribu-
tion, metabolism, and elimination could be influenced by
concurrent exposure to MDMA and ethanol. However, litera-
ture on such specific aspects is scarce and most studies have
only investigated effects on MDMA blood concentrations.
Seven human placebo-controlled studies have investigated
the effect of concurrent ethanol exposure on the MDMA
blood concentration (Table 1). Most studies observed a com-
parable MDMA blood concentration after concurrent MDMA-
ethanol exposure compared to lone MDMA exposure
(Kuypers et al. 2006; Ramaekers and Kuypers 2006; Dumont
et al. 2008; Dumont, Schoemaker, et al. 2010; Veldstra et al.
2012; Spronk et al. 2014). One human placebo-controlled
study reported a slightly, but significantly, higher MDMA
blood concentration (+13%) after concurrent MDMA-ethanol
exposure (Hernandez-Lépez et al. 2002). This finding is corro-
borated by one study in rats that reported a higher MDMA
blood concentration at 15 min after exposure, but not after 5
and 60 min (Hamida et al. 2009).

In addition to blood concentrations, the effect of concur-
rent ethanol exposure on MDMA brain concentrations was
investigated in three animal studies. One mice study reported
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Table 1. Pharmacokinetics: additional ethanol effects (MDMA + ethanol vs lone MDMA).

Study Subject, N MDMA (mg*) Ethanol (BAC*) Time MDMA blood* concentration
Hernandez-Lépez Human, 9 100 p.o. 0.89/kg po 1.5h (Cmax) Increase in Cmax 13%7, No effect on Tmax and AUC
et al. (2002)
Ramaekers and Human, 18 75, 100 p.o. 0.6 p.o. 1.5h No effect
Kuypers 2006)
Kuypers et al. (2006) Human, 18 75, 100 p.o. 0.6 BAC i.v. 1,5,55h No effect
Dumont et al. (2008) Human, 14 100 p.o. 0.6 i.v. 1.5h No effect
Dumont et al. (2010) Human, 16 100 p.o. 0.6 i.v. 0.5, 1.5, 2.5, 4, 5, 6h No effect
Veldstra et al. (2012) Human, 19 100 p.o. 0.5 p.o. 1.5h No effect, also not on saliva concentration
Spronk et al. (2014) Human, 14 100 p.o. 0.6 i.v. 1.5h No effect
Hamida et al. (2007) Rat, 79 6.6 mg/kg i.p. 1.5g/kg i.p. 45 m No effect in brain (cortex, striatum, hippocampus)
Hamida et al. (2009) Rat, 130 6.6/10 mg/kg i.p. 1.5g/kg i.p. 5,15,60 m Increase — only at 15 m - in blood (1.3-1.8x), also in brain
(cortex (1.6-2x), striatum (1.4-2.5x), hippocampus(1.6-2x)
Johnson et al. (2004) Mice, 108 15mg/kg i.p. 3g/kg s.c. 2h Increase in brain (striatum: 4x)
Study Subject MDMA (mg*) Ethanol (BAC*) Time Metabolism
Upreti et al. (2009) Rat, 12 10 p.o. 3g/kg i.p 7h Potentiation of MDMA-induced decrease in ALDH1 activity
(not ALDH2)
Pontes et al. (2010) Primary rat 1.6 mM 300 mM 24 h Increased metabolite formation (MDA, HMA, HMMA, especially
hepatocytes at 41,5C), which was reduced by blocking CYP3A, CYP2E1

at 41,5C

*unless otherwise specified.
Red text indicates an aggravation of the effect color figure online).

Abbreviations: ALDH: aldehyde dehydrogenase (acetaldehyde metabolizing enzyme); AUC: area under the curve; BAC: blood alcohol concentration; Cmax: max-
imum concentration; CYP: cytochrome P450; h: hour; HMA: 4-hydroxy-3-methoxyamphetamine; HMMA: 4-hydroxy-3-methoxymethamphetamine; i.p.: intraperito-
neal; m: minute; i.v.: intravenous; MDMA: 3,4-methylenedioxymethamphetamine; MDA: 3,4-methylenedioxyamphetamine; N: number of subjects; p.o: per os;

s.c.: subcutaneous; Tmax: time of Cmax.

MDMA striatal concentrations increased fourfold (Johnson
et al. 2004). One rat study reported increased MDMA concen-
trations in the cortex, striatum or hippocampus at 15min
after exposure, but not after 5 and 60 min (Hamida et al.
2009). In contrast, a comparable MDMA concentration was
observed in the cortex, striatum or hippocampus of rats
45 min after concurrent MDMA and ethanol exposure com-
pared to lone MDMA exposure (Hamida et al. 2007). Higher
MDMA concentrations in the brain could increase toxicity.
For example, inhibition of monoamine reuptake transporters
increases with an increasing MDMA dose (Rickli et al. 2015;
Zwartsen et al. 2017).

Although little interaction through metabolic enzymes is
expected since different enzymes are involved in ethanol and
MDMA metabolism, two studies reported altered metabolism
during concurrent MDMA-ethanol exposure. In rats, a
decreased activity was observed of the enzyme metabolizing
the toxic ethanol metabolite acetaldehyde (aldehyde
dehydrogenase (ALDH1), Upreti et al. 2009, Table 1). Possibly,
this increases the acetaldehyde concentration, resulting in
increased hepatotoxic effects. Furthermore, an increase in
MDMA metabolite formation was observed in primary rat
hepatocytes (Pontes et al. 2010). Since some of these metab-
olites have a higher toxic potential than MDMA itself (Monks
et al. 2004), this could aggravate hepatotoxicity. However,
both studies used a high MDMA dose or concentration
(10mg/kg and 1.6 mM) and therefore, it remains unclear if
these additional ethanol effects also occur at recreational
MDMA doses (2-3 mg/kg).

Pharmacodynamic effects

Neurological effects
Biochemical effects. Acute MDMA exposure increases brain
concentrations of monoamines, mainly due to inhibition and

reversal of monoamine reuptake transporters. In humans and
rats the strongest effect is observed on the serotonin concen-
tration, although norepinephrine and dopamine concentra-
tions also increase. Following the initial increase in the
serotonin brain concentration, a serotonin depletion is
observed that can last up to a week. In contrast, in mice,
MDMA more strongly affects the dopaminergic system
instead of the serotoninergic system (for reviews see Green
et al. 2003; Mohamed et al. 2011; Meyer 2013). Acute ethanol
exposure also increases serotonin and dopamine brain con-
centrations. In addition, serotonergic and dopaminergic
receptors are modulated (for reviews see Lovinger 1997,
Charlet et al. 2013; Trantham-Davidson and Chandler 2015).
Fourteen animal studies have investigated biochemical
effects of concurrent MDMA-ethanol exposure, mostly
focused on serotonin and dopamine brain concentrations
(Table 2, Figure 1, Johnson et al. 2004; Cassel et al. 2005;
Hamida et al. 2007; Izco et al. 2007; Riegert et al. 2008;
Hernandez-Rabaza et al. 2010; Jones et al. 2010; Ribeiro Do
Couto et al. 2011; Rodriguez-Arias et al. 2011; Ribeiro Do
Couto et al. 2012; Ros-Simd et al. 2012; Vidal-Infer et al. 2012;
Ros-Simé et al. 2013; Navarro-Zaragoza et al. 2015).
Unfortunately, additional acute effects of ethanol remain
largely unknown, since most of these studies investigated
effects on monoamine concentrations one to three weeks
after exposure. Only one study examined acute effects and
reported that concurrent ethanol exposure potentiated the
MDMA-induced increase in striatal serotonin and dopamine
outflow in exposed brain slices of unexposed (whole) rats
(Riegert et al. 2008). Four studies investigated serotonin brain
concentrations in rats 7-20 days after concurrent MDMA-etha-
nol exposure. Two observed a further decrease relative to
lone MDMA exposure (Izco et al. 2007; Jones et al. 2010) and
two observed no difference (Cassel et al. 2005; Hamida et al.
2007). Three studies investigated dopamine brain
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Table 2. Continued.

Study

5-HT and 5-HIAA

DA and DOPAC

Time

MDMA (mg/kg*) Ethanol

Subject, N
Mice, 78

No effect on 5-HT in striatum and hippocampus

No effect on MDMA-induced reduction in striatal DA,

22 days

1.259/kg i.p., NN

10/ 20 ip, NN

Vidal-Infer

(MDMA: no effect).
No effect on 5-HIIA in striatum or hippocampus (MDMA:

(lone MDMA 20 mg/kg: —40%, 10 mg/kg: no effect)

No effect on MDMA-induced reduction in striatal

et al. (2012)

no effect).

DOPAC

(lone MDMA 10 mg/kg: — 40%, 20 mg/kg: —50%)

Other biochemical effects

Other: NE: no effect in striatum, hippocampus and cortex (MDMA: no effect).

20 days

Rat, 72 10 i.p., NN 1.59 /kg i.p., NN
51i.p. 30C, N 6h

Cassel et al. (2005)
Izco et al. (2007)

Dumont, Kramers,

ROS: potentiation of MDMA-induced increase in 2,3-dihydroxybenzoic acid (DHBA)

4.5 BAC. Inhalation; NN

0.6 BAC i.v., N

Rat, 6-12

E in blood: No effect on the MDMA-induced increase in E (MDMA: +300%). NE: No effect on the MDMA-induced

increase in NE (MDMA: +20%)

60, 150 m

100 mg p.o., N

Human, 16

et al. (2010)
Hernandez-Rabaza

Cell types: No effect on MDMA-induced decrease in BrdDU + cells (hippocampal stem cells) and CD11B cells

(microglial). No effect on DCX + cells (neurogenesis) (MDMA: no effect).

1/159/kgi.p, N 15 days

10ip, N

Rat, 36

et al. (2010)
Ros-Simé et al. (2012)

GFAP: Attenuation of the MDMA-induced increase in striatal GFAP at 48 h, at 72 h: no effect on MDMA-induced

Fluid with 20%. Oral, NN 2, 3, 7 days

20 i.p., N

Mice, 12-16

increase in on striatal GFAP. No effect on striatal Iba1 at 48 h (microglial activation, MDMA: no effect), at 72 h: no

effect on MDMA-induced increase in on striatal Iba1.
Fluid with 20%. oral, NN 48h, 72h, 7 days ROS: No effect on MDMA-induced oxidative damage of hippocampal proteins (inactivation of proteins related to

20 ip., N

Ros-Simé et al. (2013) Mice, 12-16

energy metabolism, neurotransmitter release, neuronal stability and growth). No effect on proteins in cortex

(MDMA: no effect)

NE in heart ventricle tissue: no effect on MDMA-induced increase at 72 h. At 48 h no effect (MDMA: no effect).

Fluid with 20% p.o.,, NN 48h, 72h

20ip, N

Mice, 60-72

Navarro-Zaragoza

et al. (2015)
*Mg/kg unless otherwise specified.

Red text indicates an aggravation of the effect, while green text indicates an attenuation of the effect (color figure online).

The MDMA and ethanol exposures are specified in dose or concentration and details on exposure are provided by indicating whether animals were naive (N) or non-naive (NN) to MDMA and ethanol. Non-naive animals

were animals that were exposed to MDMA or ethanol more than once with at least 12 hours in between different exposures. ‘Time" indicates the time between measurements and last exposure.
Abbreviations: BAC: blood alcohol concentration; d: day; DA: dopamine; DOPAC: 3,4-dihydroxyphenylacetic acid (DA metabolite); DNT: developmental neurotoxicity; 5-HT: serotonin; 5-HIAA: 5-Hydroxyindoleacetic acid (5

HT metabolite); E: norepinephrine; GFAP: glial fibrillary acid protein; h: hour; Iba1: lonized calcium-binding adaptor molecule 1 (marker for glial activation); i.p.: intraperitoneal; m: minutes; N: naive; NE: norepinephrine;

NN: non-naive; p.o: per os; ROS: reactive oxygen species; s.c.: subcutaneous.
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concentrations in mice 3-22days after MDMA and ethanol
exposure. Two showed no additional effect of ethanol
(Rodriguez-Arias et al. 2011; Vidal-Infer et al. 2012) and one
study reported attenuation of MDMA-induced reduction in
striatal dopamine (Johnson et al. 2004).

In addition, one rat study investigated the effect of con-
current MDMA-ethanol exposure on the norepinephrine brain
concentration 20 days after exposure. Lone MDMA exposure
as well as concurrent MDMA-ethanol exposure did not affect
the norepinephrine brain concentration (Cassel et al. 2005,
Table 2).

Locomotor activity. In humans, acute MDMA exposure has
stimulatory effects and agitation is frequently reported
(Mohamed et al. 2011, Noseda et al. 2020). In animals, pri-
marily in rats, MDMA exposure increases locomotor activity
(Green et al. 2003). Acute effects following exposure to low
ethanol doses include stimulatory effects in humans, while at
higher doses sedative effects are observed (Hendler et al,
2013). In animals, acute ethanol exposure increases loco-
motor activity (Moore et al. 1993; Cohen et al. 1997 Abrahao
et al. 2014; Filev et al. 2017; Hernandez-Vazquez et al. 2018).

Evidence for additional ethanol effects on MDMA-induced
increases in locomotor activity is rather strong. Seven rat
studies showed a consistent additional increase in locomotor
activity upon concurrent MDMA-ethanol exposure (Cassel
et al. 2004; Hamida et al. 2006, 2007, 2008; Riegert et al.
2008; Hamida et al. 2009, 2020, Table 3, Figure 1). A higher
MDMA brain concentration in rats upon concurrent MDMA-
ethanol exposure was suggested to contribute to the
increase in locomotor activity (Hamida et al. 2009). Also, the
increased locomotor activity is in line with higher dopamin-
ergic and serotonergic activity (Green et al. 2003, Ryczko and
Dubuc 2017).

Notably, increased locomotor activity was not observed in
four mice studies, which showed variable results (Pontes,
Duarte, et al. 2008; Rodriguez-Arias et al. 2011; Ros-Siméd
et al. 2012; Rostami et al. 2017). This lack of additional effect
in mice could be due to MDMA'’s primarily dopaminergic
effect in mice, in contrast to its primarily serotoninergic effect
in rats. Possibly, locomotor activity, which is also mediated
through dopaminergic activity (Ryczko and Dubuc 2017), is
already maximal increased in mice, hampering detection of
additional ethanol effects.

Human data investigating corresponding effects of concur-
rent ethanol exposure, such as agitation, are lacking.

Body temperature. Following exposure to low recreational
doses of MDMA (1.5-2mg/kg oral) significant, but small,
increases in body temperature (+0.4-0.8°C) have been
reported in human volunteers (for review see Liechti 2014).
However, increases of several degrees, up to hyperthermia,
can occur in humans, likely due to higher doses of MDMA,
higher ambient temperature, or due to individual susceptibil-
ity (Mallick and Bodenham 1997; Patel et al. 2005;
Davies et al. 2014). Hyperthermia is correlated to poor out-
come in humans (Eyer and Zilker 2007). In both rat and mice
studies high MDMA doses are often applied (5-20 mg/kg i.p),
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and large increases in body temperature have been
reported (Cassel et al. 2004; Johnson et al. 2004; Hamida
et al. 2006; Cassel et al. 2007; Hamida et al. 2007; Izco et al.
2007; Hamida et al. 2008; Pontes, Duarte, et al. 2008;
Rodriguez-Arias et al. 2011; Ros-Simé et al. 2012, see Table 3,
Figure 1). Following exposure to ethanol, most animal
studies have reported a decrease in body temperature.
Presumably, ethanol dysregulates the thermoregulatory sys-
tem. In addition, the effect also depends on ambient tem-
perature. At higher ambient temperatures, hyperthermia has
also been reported. Changes in serotonin brain concentra-
tions have been implicated in the hypothermic effects of
ethanol (for review see Crawshaw et al. 1998; Wasielewski
and Holloway 2001).

One human placebo-controlled study investigated the
effect of concurrent MDMA-ethanol exposure and observed
merely a trend (non-significant difference) for attenuation of
the small MDMA-induced increase in body temperature
(37.3°C to 37.1°C, Dumont, Kramers et al. 2010), Table 3,
Figure 1). In contrast, the evidence that ethanol abolishes the
MDMA-induced increase in body temperature is quite strong
in animal studies. Significant attenuation was observed in
eight out of ten animal studies (six in rats and four in mice)
(Cassel et al. 2004; Johnson et al. 2004; Hamida et al. 2006;
Cassel et al. 2007; Hamida et al. 2007, 2008; Rodriguez-Arias
et al. 2011; Ros-Simé et al. 2012, see Table 3). Some rat stud-
ies only observed this attenuation after the first combined
exposure, while others observed a consistent effect, also fol-
lowing multiple exposures at different days (Cassel et al.
2004, 2005; Izco et al. 2007; Hamida et al. 2008). Notably, one
study showed progression in the attenuation of the MDMA-
induced increase in body temperature by ethanol exposure
(ethanol sensitization) (Hamida et al. 2008). However, attenu-
ation was not present at high ambient temperatures (32°C,
Cassel et al. 2007, Table 3).

Although eight animals studies observed an attenuation
of the MDMA-induced increase in body temperature by con-
current ethanol exposure (Figure 1), most studies adminis-
trated high MDMA doses, far above human recreational use,
but possibly relevant during overdose (Table 3). The reduc-
tion in temperature during concurrent MDMA-ethanol expos-
ure is attributed to the ethanol-induced peripheral
vasodilation and possibly due to ethanol effects on neurons
in the central nervous system, which are involved in thermo-
regulation (Hamida et al. 2007; Zuniga et al. 2020). However,
even if the attenuation of the MDMA-induced increase in
temperature by ethanol proofs true in humans at relevant
MDMA doses, it is unlikely to have public health consequen-
ces (e.g. prevention measures), due the ethical concerns.

Cognitive and psychiatric effects. Regular MDMA exposure
has been associated with poorer memory and psychomotor
performance in humans (for review see Meyer 2013).
However, no or limited effects on human psychomotor per-
formance were observed during acute, and shortly after,
MDMA exposure (Hernandez-Lopez et al. 2002; Kuypers et al.
2006; Ramaekers and Kuypers 2006; Dumont et al. 2008;
Dumont, Schoemaker, et al. 2010, Table 4). Ethanol exposure,

when high enough, impairs psychomotor performance in
humans (Fagan et al. 1994; Farquhar et al. 2002; for review
see Charlet et al. 2013).

No additional ethanol effects were observed upon concur-
rent MDMA-ethanol exposure on psychomotor function in
five human studies and one rat study (Hernandez-Lépez
et al. 2002; Cassel et al. 2005; Kuypers et al. 2006; Ramaekers
and Kuypers 2006; Dumont et al. 2008; Spronk et al. 2014,
Table 4). However, one human study reported an increased
psychomotor speed following MDMA exposure which was
decreased during concurrent ethanol exposure (Dumont,
Schoemaker, et al. 2010).

With respect to memory function, MDMA exposure low-
ered specific aspects of memory function (Dumont et al.
2008; Hernandez-Rabaza et al. 2010; Rodriguez-Arias et al.
2011; Vidal-Infer et al. 2012; Ros-Simd et al. 2013; Rostami
et al. 2017, Table 5). Ethanol exposure also disrupts specific
aspects of memory function, including spatial and working
memory (for review see Matthews and Silvers 2004; Charlet
et al. 2013).

The effect of concurrent MDMA-ethanol exposure on
memory function was investigated in one human study
(acutely) and five animal studies (3—-22days after exposure,
rats and mice). Two animal studies (one rat, one mice)
reported additional ethanol effects of decreased memory
function (Hernandez-Rabaza et al. 2010; Vidal-Infer et al.
2012) while three other studies did not (two mice and one
human, Dumont et al. 2008, Rodriguez-Arias et al. 2011; Ros-
Simé et al. 2013).

With respect to anxiety, many human studies reported anx-
iety during MDMA exposure (for review see Baylen and
Rosenberg 2006). Long-term effects have also been reported;
regular ecstasy users report increased feelings of anxiety
(Meyer 2013). In contrast, acute ethanol exposure reduces anx-
iety (for reviews see Charlet et al. 2013; Trantham-Davidson
and Chandler 2015). Two mice studies reported increased anx-
iety a few days to three weeks after concurrent MDMA-ethanol
exposure, compared to lone MDMA exposure (Rodriguez-Arias
et al. 2011; Ros-Simé et al. 2012). MDMA exposure also
reduced social animal behavior, which was not affected by
concurrent ethanol exposure (Rodriguez-Arias et al. 2011,
Table 5).

Although there have been mixed results regarding the poten-
tial reinforcing effects of MDMA, most animal studies do show
daily self-administration of low MDMA doses (for review see
Schenk 2009). Also, many animal studies report a conditioned
place preference (CPP) for MDMA (Bilsky et al. 1991; Aberg et al.
2007; Prus et al. 2009; Roger-Sanchez et al. 2013; Garcia-Pardo
et al. 2015). In addition, it is well known that acute ethanol
exposure has rewarding and reinforcing effects (Sommer and
Spanagel 2013; Trantham-Davidson and Chandler 2015).

MDMA-induced CPP was affected by concurrent ethanol
exposure and depending on the specific exposure scenario,
both attenuation and potentiation of CPP were observed in
mice (Ribeiro Do Couto et al. 2011, 2012, Table 5). A study in
rats observed no CPP following lone MDMA exposure, but
did observe CPP following concurrent MDMA-ethanol expos-
ure (Jones et al. 2010, Table 5). Possibly, the increased dopa-
mine outflow upon concurrent MDMA-ethanol exposure
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Table 3. Pharmacodynamics — additional ethanol effects on locomotor activity and body temperature (MDMA + ethanol vs lone MDMA).

Study Subject, N MDMA (mg/kg*) Ethanol Time Locomotor Temperature
Dumont, Human, 20 100 mg p.o., N 0.6 BAC i.v.,, N 0.5,1.5,25,4,5 6h Trend for attenuation of MDMA-
Kramers, induced increase
et al. (2010)
Cassel Rat, 35 10 i.p., NN 1.59/kg i.p (1.8 1-6h Potentiation of MDMA- Attenuation of MDMA-induced
et al. (2004) BAC), NN induced increase at day 1,2 increase (—1.3 Cat Th at day 1,
and 4 not day 2-4)
Cassel Rat, 72 10 i.p.,, NN 1.59/kg i.p (1.8 4-19 days Repeated data of Cassel et al.
et al. (2005) BAC), NN (2004). New: at day 2
potentiation of MDMA-induced
increase, only at 1h
Hamida Rat, 48 6.6 i.p., N 1.59/kg i.p., NN 5m-3h on 8 days  Potentiation of MDMA- Attenuation of MDMA-induced
et al. (2006) induced increase (with and increase (with and without
without alcohol pretreatment) alcohol pretreatment)
Cassel Rat, 60 6.6 i.p., N 1.59/kg i.p., NN 0,5 1h Attenuation of MDMA-induced
et al. (2007) increase at 23 °C. No effect on
MDMA-induced increase at 32°C
Hamida Rat, 79 6.6 i.p., NN 1.59 /kg i.p., NN 1-6h Potentiation of MDMA- Attenuation of MDMA-induced
et al. (2007) induced increase (1h after increase (1-3 h after exposure at
exposure at day 4, 6, 11,13)  day 4, 6, 11,13)
lzco Rat, 6-12 5ip. 30°CN 4.5 BAC. NN 0-6h No effect on MDMA-induce
et al. (2007) increase
Hamida Rat, ~200 33/6.6ip., NN 159 /kg i.p., NN 1-4h Potentiation of 3,3 and Attenuation of 3.3. and 6,6 mg/kg
et al. (2008) 6,6 mg/kg MDMA-induced MDMA-induced increase (1-2h
increase (1 h after exposure  after exposure)
at day 4, 6, 11,13)
Riegert Rat, n.r. 3.3.6.6. 10. 20 i.p.,, N 1.5g/kg i.p., N 1h Potentiation of 6,6, 10,
et al. (2008) 20 mg/kg MDMA-induced
increase (1 h after exposure)
Hamida Rat, 64 6.6/10i.p., N 1.59/kg i.p., N 30m — 2h Potentiation of MDMA-
et al. (2009) induced increase (30, 60 and
90 m after exposure)
Hamida Rat, 48-60 6.6 i.p., N 1.59/kg i.p.N 0-3h Potentiation of MDMA-
et al. (2020) induced increase (only 1hr
after exposure (not at 2 and
3 hr) and only following co-
exposure or ethanol
pretreatment shortly before
MDMA exposure (15 min)
Johnson Mice, 108 15s.c., NN 3g/kg s.c, NN 3 days Attenuation of MDMA-induced
et al. (2004) increase (2-6 C)
Pontes, Duarte, Mice, 24 10 i.p, N Fluid with 12%. 15, 30, 45 m, 1, 1,5, Attenuation of MDMA- Potentiation of MDMA-induced
et al. (2008) p.o., NN 2,25,3,4,5, induced increase increase (1, 2, 5h)
6,7h
Rodriguez- Mice, 110 10 /20 i.p., NN 1.25g/kg i.p., NN hours-24 days No effect on MDMA-induced  Attenuation of (20 mg/kg)
Arias increase (first 6 h) MDMA-induced increase (30 m)
et al. (2011)
Ros-Siméd Mice, 100-120 20 i.p., N Fluid with 20% 2, 3,7 days No effect (lone MDMA: no Attenuation of MDMA-induced
et al. (2012) p.o., NN effect). increase (2 h)
Rostami Mice, 80 0.25-1 pg i.hi., N 0.25g/kg i.p., N 30 m No effect (lone MDMA: no
et al. (2017) effect)

*Mg/kg unless otherwise specified.

Red text indicates an aggravation of the effect, while green text indicates an attenuation of the effect (color figure online).

The MDMA and ethanol exposures are specified in dose or concentration and details on exposure are provided by indicating whether animals were naive (N) or
non-naive (NN) to MDMA and ethanol. Non-naive animals were animals that were exposed to MDMA or ethanol more than once with at least 12 hours in
between different exposures. ‘Time’ indicates the time between measurements and last exposure.

Abbreviations: BAC: blood alcohol concentration; d: day; h: hour; i.h.i.: intrahippocampal injection; i.p.: intraperitoneal; m: minute; p.o: per os.

observed in rat brain slices (Riegert et al. 2008), contributes
to increases in rewarding and reinforcing effects. In addition,
modulation of dopamine D1 receptors, which was shown of
importance in locomotor potentiation, can also contribute
(Hamida et al. 2020).

Cardiovascular effects

A recreational MDMA dose mildly increases heart rate and
blood pressure in human volunteers (Dumont, Kramers, et al.
2010, Vizeli and Liechti 2017). This is largely mediated by
increases in  epinephrine and norepinephrine blood

concentrations shortly after MDMA exposure (307% and 23%
respectively) (Dumont, Kramers, et al. 2010). During high
MDMA doses, tachycardia and hypertension can occur, as
well as cardiac arrhythmias and myocardial infarction (Green
et al. 2003; Dunlap et al. 2018). Acutely, ethanol exposure
presumably has a limited effect on blood pressure, although
higher doses (>5 drinks) can slightly increase blood pressure.
Chronic alcohol abuse can result in hypertension (for review
see Kawano 2010 and Piano 2017).

One human study investigated the acute biochemical and
cardiovascular effects of concurrent MDMA-ethanol exposure.
No additional increases were observed for epinephrine and
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Table 4. Pharmacodynamics — psychomotor effects: additional ethanol effects (MDMA + ethanol vs lone MDMA).

Study Subject, N MDMA (mg/kg*) Ethanol Time Psychomotor

Hernandez-Lépez Human, 9 100 mg p.o. 0.89/kg p.o. 15m — 24h No effect (DSST, RT, Maddox-wing, MDMA:

et al. (2002) no effect except on maddox wing)

Ramaekers and Human, 18 75/100 mg p.o. 0.6 BAC p.o. 1,5-2h No effect (stop signal task, go/no go task,

Kuypers (2006) lowa gambling task, MDMA improved
impulse control)

Kuypers et al. (2006) Human, 18 75/100 mg p.o. 0.6 BAC i.v. 1,5,55h No effect (MDMA: no effect, critical
tracking task, object movement
estimation)

Dumont et al. (2008) Human, 14 100 mg p.o. 0.6 BAC i.v. 1.5h No effect (MDMA: no effect, point and
pursuit task, SDST motor time and
matching time)

Dumont, Schoemaker, Human, 16 100 mg p.o. 0.6 BAC i.v. 0.5, 1.5, 2.5, Decreased MDMA-induced increase in

et al. (2010) 4,5 ,6h psychomotor speed. No effect on
psychomotor accuracy (MDMA: no
effect).

Spronk et al. (2014) Human, 14 100 mg p.o. 0.6 BAC i.v. No effect (MDMA: no effect reaction time,
performance adjustments)

Cassel et al. (2005) Rat, 72 10 i.p., NN 1.59/kg i.p 4-19 days No effect on MDMA-induced decrease (10

(1.8 BAC), NN days, Sensory motor coordination, beam

walking)

*Mg/kg unless otherwise specified.
Green text indicates an attenuation of the effect (color figure online).

The MDMA and ethanol exposures are specified in dose or concentration and details on exposure are provided by indicating whether animals were naive (N) or
non-naive (NN) to MDMA and ethanol. Non-naive animals were animals that were exposed to MDMA or ethanol more than once with at least 12 hours in
between different exposures. ‘Time’ indicates the time between measurements and last exposure.

Abbreviations: BAC: blood alcohol concentration; d: day; h: hour; i.h.i.: intrahippocampal injection; i.p.: intraperitoneal; m: minute; p.o: per os.

norepinephrine blood concentrations, blood pressure and
heart rate (Dumont, Kramers, et al. 2010, Table 6). In addition,
two mice studies reported potentiation of the MDMA-
induced increase in biomarkers indicative for cardiotoxicity
following concurrent ethanol exposure, but also an increase
in protective factors (Navarro-Zaragoza et al. 2015, 2019,
Table 6).

Hepatotoxic effects

In humans, MDMA can cause liver injury which sometimes
results in acute liver failure requiring a liver transplantation
(for review see Meyer 2013). MDMA-induced hepatotoxicity
has also been reported in animals (Carvalho et al. 2010). In
addition, it is well known that chronic ethanol exposure can
lead to severe hepatotoxicity (Dinis-Oliveira et al. 2015).
However, also acute exposure, primarily binge drinking can
lead to liver damage (Massey and Arteel 2012).

One mice study investigated the effect of concurrent
MDMA-ethanol exposure on the liver. A potentiation of
MDMA-induced hepatotoxicity was reported, based on
changes in biochemical and histopathological biomarkers
(Pontes, Duarte, et al. 2008, Table 6). In addition, two in vitro
studies using primary rat hepatocytes showed ethanol aggra-
vated the reduction in cell viability following high MDMA
concentrations, especially at higher ambient temperature
(Pontes, Sousa, et al. 2008; Pontes et al. 2010, Table 6). At
specific conditions (high MDMA concentration or high ambi-
ent temperature) ethanol exposure also aggravated the
decrease in cell energy (ATP) and phase Il metabolism (GSH,
GST, GSSG), and increased oxidative stress (ROS), compared
to lone MDMA exposure in primary rat and mice hepatocytes
(Pontes, Santos-Marques, et al. 2008; Pontes, Sousa,
et al. 2008).

Endocrine effects

In humans, MDMA exposure increased antidiuretic hormone
(ADH, vasopressin) blood concentrations (Dumont, Kramers,
et al. 2010). ADH promotes water retention, resulting in lower
sodium blood concentrations and sometimes in hyponatre-
mia. In severe cases, MDMA exposure can result in the syn-
drome of inappropriate antidiuretic hormone secretion
(SIADH) causing cerebral edema and coma (Salathe et al.
2018). In contrast, acute ethanol exposure decreases ADH
release, while during alcohol withdrawal ADH increases (for
review see Harper et al. 2018).

One human study showed that concurrent ethanol expos-
ure reversed the MDMA-induced increase of the ADH concen-
tration. However, sodium concentrations were unaffected,
possibly due to insufficient power of the study (Dumont,
Kramers, et al. 2010).

Furthermore, MDMA increases cortisol and prolactin blood
concentrations in humans. Concurrent ethanol exposure did
not affect these concentrations (Dumont, Schoemaker, et al.
2010, Table 6). Consistent findings for cortisol concentrations
were reported in a rat study (Pacifici et al. 2001).

Study limitations

Most studies that were available for this review involved ani-
mal studies. Importantly, pharmacokinetics and pharmaco-
dynamics in animals can differ from those in humans. Also,
differences in experimental set-up between studies, such as a
controlled environment versus a real life environment, can
lead to variable outcomes. For example, the ambient tem-
perature is often higher in real life than in volunteer studies,
and MDMA users are often not naive users but also not
“binge” users, two dosing regimens that are often applied in
animal studies. Even between controlled animal studies,
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Table 5. Pharmacodynamics — cognition and psychiatric effects: additional ethanol effects (MDMA + ethanol vs lone MDMA).

Study Subject, N MDMA (mg/kg*) Ethanol Time Cognition and psychiatric effects
Dumont et al. (2008) Human, 14 100 mg p.o. 0.6 BAC i.v. 1.5h Memory: no effect (MDMA: decreased delayed recall,
MDMA no effect: immediate recall, switch task)
Hernandez-Rabaza Rat, 36 10 i.p., N 1/1.59/kg i.p, N 15 days Memory: decrease (more errors in radial arm maze).
et al. (2010) MDMA: no effect
Jones et al. (2010) Rat, 26 6.6 i.p., NN 0.75g/kg i.p., NN 14 days CPP only occured with the combination
alcohol + MDMA
Rodriguez-Arias Mice, 110 10/ 20 i.p., NN 1.259/kg i.p, NN hours-24 days Learning + memory No effect (lone MDMA: no effect on
et al. (2011) passive avoidance 22 days)

Anxiety: potentiation of MDMA-induced increase ( 23
days, 10 mg/kg MDMA 30 vs 8%, 20 mg/kg 4 vs 6%,
less time in open arms of maze).

Ribeiro Do Couto Mice, 60 5/10/20 i.p, NN 2g/kg i.p., NN 75 m CPP: possible potentiation of MDMA-induced CPP
et al. (2011) (increased reinstatement)

Ribeiro Do Couto Mice, 201 10 /20 i.p., NN 2g/kg i.p., NN 3 weeks CPP: potentiation of MDMA-induced CPP (increased
et al. (2012) duration and extinction, only at 10 mg/kg MDMA

pretreatment and trigger of 1,25 mg/kg MDMA).
Attenuation of MDMA-induced CPP (decreased
duration and extinction at 10/20 mg/kg MDMA
pretreatment and trigger of 5 mg/kg MDMA).
Vidal-Infer et al. (2012)  Mice, 78 10 /20 i.p., NN 1.259g/kg i.p, NN 22 days Learning: additional decrease compared to 10 mg/kg
MDMA (increase in latency score Hebb-Williams
maze). No effect on 20 mg/kg MDMA-induced
decrease
Ros-Simé et al. (2012) Mice, 100-120 20 i.p., N Fluid with 20% p.o., NN 2, 3, 7 days Anxiety: increased (3, 7 days) (lone MDMA: no effect)
(dark-light box test). Depression: increased (3, 7
days) (lone MDMA: no effect) (tail suspension test).
Ros-Simé et al. (2013) Mice, ~120 20i.p., N Fluid with 20% p.o., NN 3 days Memory: no effect on MDMA-induced reduction of
long-term and reference memory (object recognition
assay, radial arm maze). No effect on memory
acquisition, working memory (MDMA: no effect)
Rostami et al. (2017) Mice, 80 0.25-1 pg i.hi, N 0.25g/kg i.p., N 30 m Memory: improved memory retrieval (passive avoidance,
shorter latency to step down, MDMA: no effect)

*Mg/kg unless otherwise specified.

Red text indicates an aggravation of the effect, while green text indicates an attenuation of the effect (color figure online).

The MDMA and ethanol exposures are specified in dose or concentration and details on exposure are provided by indicating whether animals were naive (N) or
non-naive (NN) to MDMA and ethanol. Non-naive animals were animals that were exposed to MDMA or ethanol more than once with at least 12 hours in
between different exposures. ‘Time’ indicates the time between measurements and last exposure.

Abbreviations: BAC: blood alcohol concentration; CPP: conditioned place preference; d: day; h: hour; i.h.i.: intrahippocampal (CA1) microinjection; i.v.: intravenous;
m: minute

Il increase I decrease Il no effect

Hepatotoxicity N=3
Cardiotoxicity N=3
CPP N=3
Anxiety N=2
Memory/learning N=6
Psychomotor N=7
Temperature N=11
Locomotor N=11
Dopamine [brain] N=8
Serotonin [brain] N=9
MDMA [brain] N=3
MDMA [blood] N=8

1 1 1 1
0 25 50 75 100
% of studies

Figure 1. Summary of effects of concomitant MDMA-ethanol exposure relative to lone MDMA exposure reported in human and animal studies. For individual stud-
ies and details see Tables 1-6. CPP: conditioned place preference, indicative for reinforcing effects.
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differences in experimental setting often exist, hampering
comparison or confirmation of observed effects. Finally, the
dose applied in animal studies is often much higher than a
human recreational dose, while neurobiological effects occur
at similar doses in humans and rats (for review see Baumann
et al. 2007). To illustrate, humans typically consume 1-2 tab-
lets orally (150-300mg, Van der Gouwe and Vrolijk 2019,
2-4mg/kg), while animal studies apply doses that are 5-10
times higher, and often administrated via intraperitoneal
injection (Tables 2-5).

Conclusion

Concurrent ethanol exposure can modulate MDMA pharma-
cokinetics and pharmacodynamics. For a summary of studies
that have investigated effects of concurrent MDMA-ethanol
exposure, see Figure 1 and Tables 1-6. Primarily animal stud-
ies have shown that concurrent ethanol exposure appears to
aggravate many of MDMA’s effects, but also attenuates
some. With respect to MDMA pharmacokinetics, most studies
indicate only a small effect, or no effect, of concurrent etha-
nol exposure (Figure 1, Table 1). Therefore, most changes in
pharmacodynamics upon concurrent MDMA-ethanol expos-
ure are probably not due to changes in pharmacokinetics.
Notably, many studies found additional ethanol effects on
MDMA pharmacodynamics. For most effects, only a few stud-
ies are available and the majority indicated an aggravation of
MDMA-induced biochemical, psychological, neurological and
cardiovascular effects. However, a significant number of stud-
ies showed (relatively) consistent additional ethanol effects
on the MDMA-induced increases in locomotor activity and
body temperature. While locomotor activity in rats further
increased upon concurrent exposure, a remarkable decrease
in body temperature was consistently observed in many ani-
mal studies (Figure 1, Table 3). The relevance of this observa-
tion for human exposure remains unclear. Despite the
extensive evidence from animal studies and hypothesized
mechanisms explaining the decrease in body temperature
upon concurrent ethanol exposure, it is in contrast with the
scarce epidemiological data. These indicate that severe poi-
sonings are more frequently observed during concurrent
MDMA-ethanol poisoning compared to lone MDMA poison-
ing (35% vs 20% severe, Schirmann et al. 2019). Also, is it in
contrast to the common believe that multi-intoxications have
a more severe clinical course compared to mono-intoxica-
tions. For example, a large Swedish study (n~14.000)
reported that multiple drugs were involved in 80% of drug
fatalities and alcohol was the most prevalent drug in mono-
and multidrug fatalities (Jones et al. 2016).

In summary, concurrent ethanol exposure appears to
increase the risk for MDMA toxicity, although it also appears
to attenuate some clinically relevant effects.
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