
Ultrasound in Med. & Biol., Vol. 47, No. 3, pp. 569�581, 2021
Copyright © 2020 The Author(s). Published by Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Printed in the USA. All rights reserved.

0301-5629/$ - see front matter

https://doi.org/10.1016/j.ultrasmedbio.2020.11.016
� Original Contribution
3D ULTRASOUND STRAIN IMAGING OF PUBORECTALIS MUSCLE

T AGGEDPSHREYA DAS,* HENDRIK H.G. HANSEN,* GIJS A.G.M. HENDRIKS,* FRIEDA VAN DEN NOORT,y

CLAUDIA MANZINI,z C. HUUB VAN DER VAART,z and CHRIS L. DE KORTE*,x TAGGEDEND
*Medical Ultrasound Imaging Center, Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The

Netherlands; yRobotics and Mechatronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical
Centre, University of Twente, Enschede, The Netherlands; zDepartment of Reproductive Medicine and Gynecology, University
Medical Center, Utrecht, The Netherlands; and xPhysics of Fluids, MIRA, University of Twente, Enschede, The Netherlands

(Received 31May 2020; revised 9 November 2020; in final from 17 November 2020)
A
ing Cen
Center,
Nijmeg
Abstract—The female pelvic floor (PF) muscles provide support to the pelvic organs. During delivery, some of
these muscles have to stretch up to three times their original length to allow passage of the baby, leading fre-
quently to damage and consequently later-life PF dysfunction (PFD). Three-dimensional (3D) ultrasound (US)
imaging can be used to image these muscles and to diagnose the damage by assessing quantitative, geometric and
functional information of the muscles through strain imaging. In this study we developed 3D US strain imaging
of the PF muscles and explored its application to the puborectalis muscle (PRM), which is one of the major PF
muscles. (E-mail: shreya.das@radboudumc.nl) © 2020 The Author(s). Published by Elsevier Inc. on behalf of
World Federation for Ultrasound in Medicine & Biology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

Female pelvic floor (PF) muscles provide support to the

pelvic organs by compensating for gravity and abdomi-

nal pressure (Hoyte and Damaser, 2016). The set of

muscles located in the PF is collectively called the leva-

tor ani muscles (LAM). During vaginal delivery, LAM

is extended by approximately 245%, allowing the levator

hiatus (LH) to widen during crowning

(DeLancey et al. 2007; Shek and Dietz 2010;

Tubaro et al. 2011; Dixit et al. 2014; Dieter et al. 2015).

Vaginal delivery is associated with multiple LAM

defects, all of which are risk factors for later-life pelvic

floor dysfunction (PFD) (Dalpiaz and Curti 2006;

Shek and Dietz 2010; Tubaro et al. 2011;

Dixit et al. 2014; Dieter et al. 2015; Notten et al. 2017;

de Araujo et al. 2018). PFD comprises disorders that

include stress urinary incontinence (SUI), overactive

bladder and pelvic organ prolapse (POP)

(Bedretdinova et al. 2016; de Araujo et al. 2018). It has

been reported that the primary cause of these late-age
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PFD in women result from the damage of one or more of

the LAM, although the symptoms of this damage can

manifest years after the actual occurrence (Dietz and

Simpson 2008; Dietz 2013; Shek and Dietz 2013).

Imaging plays a crucial role in diagnosis of PFD.

Magnetic resonance imaging (MRI) and ultrasound (US)

are most frequently used to image the PF. These techni-

ques are mainly used to image the anatomy to diagnose

POP or SUI. Segmented organs in MRI or US images

are used in biomechanical analysis to gain a better under-

standing of various pelvic organ disorders or specifically

to diagnose POP (Akhondi-Asl et al. 2014;

Onal et al. 2014, 2016; Nekooeimehr et al. 2016;

Wang et al. 2018). Furthermore, biomechanical model-

ing using imaging as input has been performed to

enhance understanding of the anatomy of PF, aid in the

diagnosis of various PF disorders and aid in surgical

planning for corrective surgeries (Damser et al. 2002;

Parikh et al. 2002; Bellemare et al. 2007; Pu et al. 2007;

Lee et al. 2009). Diagnosis of POP and SUI is also per-

formed using anatomically significant reference points

(e.g., bladder neck and anorectal angle)

(Basarab et al. 2011; Czyrnyj et al. 2016). Current stud-

ies also include deformation analysis of the PF, which
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has been performed using PF organs such as the bladder,

uterus and rectum (Rahim et al. 2009, 2011;

Ogier et al. 2019). Lastly, research on PF also includes

vaginal tactile imaging, magnetic resonance defecogra-

phy and distribution representation of PF muscles in

human motor cortex (Egorov et al. 2010;

Costa et al. 2014; Yani et al. 2018). In summary, the PF

as a whole has been investigated, yet the PF muscles

have not been evaluated individually in detail. As a

result, functional information on PF muscles is scarce.

For the detection of PFD, however, it is crucial to

have functional information on the PF muscles. Studies

that have investigated the PF muscles conclude that the

biomechanics of these muscles can be an indicator of PF

disorders such as POP (Silva et al. 2017; Hu et al. 2019).

The female PF muscles provide support to the pelvic

organs. Therefore, apart from understanding the biome-

chanics of the entire PF, it is also important to determine

the function of these muscles when undamaged, to serve

as a reference when investigating damaged muscles.

Quantification of functional information on and damage

to PF muscles might be possible with strain imaging.

Strain imaging can be performed using both MRI and

US. However, 3D US imaging has several benefits with

respect to MRI, for example, its ease of use, portability,

minimal discomfort, relatively short period required for

acquisition of the data and low price (Shek and Dietz

2010; Tubaro et al. 2011; Shek and Dietz 2013; Dixit

et al. 2014; Dieter et al. 2015). Furthermore, good con-

sistency between US and MRI in the imaging of PF

muscles has been established (Yan et al. 2017).

US-based strain imaging can be used to investigate

muscle movement and has been used extensively to

understand and investigate the complex movements of

the heart and skeletal muscles (Kalam et al. 2014;

Gijsbertse et al. 2017). To date, US-based strain imaging

is concentrated predominantly on 2D US images,

whereas the PF muscles are complex 3D structures and

their movements and deformations constitute an inherent

3D phenomenon. This means that the muscle has to be

tracked in three dimensions to accurately quantify the

3D motion and deformation over time. Furthermore, the

deformation has to be quantified in multiple directions to

fully characterize the deformation of the muscle and to

be able to identify dysfunctional or damaged parts of it.

In the work described here, we developed 3D US

strain imaging specifically for PF muscles and investi-

gated the puborectalis muscle (PRM), one of the major

muscles of the LAM. To the best of our knowledge, no

existing study has investigated the function of individual

muscles of the female PF. The reason for investigating

this muscle is twofold. First, this muscle is frequently

damaged during childbirth, and that damage is the pri-

mary cause of SUI or POP later in life (Dietz and
Simpson 2008; Dietz 2013; Shek and Dietz 2013). Sec-

ond, the PRM forms the outline of the LH when it is

viewed in the top view in US data of the female PF

(Grob et al. 2014). The LH is one of the most important

parameters assessed in transperineal ultrasound (TPUS)

studies. Therefore, studying strain of the PRM first

seems to us the most logical choice and would allow us

to relate our results to the existing literature.

We hypothesized in this work that it is possible to

quantify strain in three dimensions for the deforming

PRM using a time series of volumetric US data. Strain

imaging was performed in four nulliparous women

(n = 4), who were asked to contract (n = 4) their PF

muscles or perform both a contraction and a Valsalva

maneuver (n = 1). We chose nulliparous women, that is,

women who have not yet given birth because these

women are considered to have intact PF muscles. There-

fore, this study provides insight into how the undamaged

muscle strains in three dimensions during activation.

Summarized, the aim of this study was to develop

3D US strain imaging of the PF muscles and to explore

its application to the PRM, which is one of the PF

muscles.
METHODS

Data acquisition

Dynamic 3D TPUS volumes were acquired using a

Philips X6-1 matrix transducer connected to an EPIQ 7G

US machine (Philips Healthcare, Bothell, WA, USA), at

the University Medical Centre (UMC), Utrecht, The

Netherlands. Total acquisition length was 11�15 s at a

volume rate of 1.5 Hz.

US data were obtained over time for female volun-

teers (n = 4) who had never given birth (nulliparous).

These women had overactive PFs, which is chronically

raised pelvic muscle tone. The PRMs in these women

were intact and undamaged, as confirmed by the clini-

cian. US volumes were recorded during two types of

exercise. During the first exercise, contraction, the

women were asked to actively contract their PF muscles,

commencing and ending with the muscles in a state of

rest. During the second exercise, they performed a Val-

salva maneuver. A Valsalva maneuver is performed by a

moderately forceful exhalation against a closed airway.

It is used to increase the abdominal pressure, which

causes LAM distension and allows the clinician to

assess the full extent of a POP (Hoyte and Damaser

2016). Data acquisition commenced with rest and ended

at maximum Valsalva maneuver. The data were stored

in the Digital Imaging and Communications in Medicine

(DICOM) format. Table 1 summarizes the demographic

characteristics (age and body mass index) and the exer-

cises performed by the included volunteers.



Table 1. Demographic characteristics of the four volunteers included in the study

Volunteer 1 Volunteer 2 Volunteer 3 Volunteer 4 Volunteer 4

Age (yr) 52 38 61 23 23
Body mass index (kg/m2) 26.9 19.0 24.8 19.2 19.2
Exercise performed Contraction Contraction Contraction Contraction Valsalva maneuver
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The Medical Research Ethics Committee of UMC

Utrecht exempted the project from approval, and all vol-

unteers signed appropriate research consent forms.

PF imaged through TPUS

Figures 1 and 2 illustrate US data acquired from a

PF in the rest state, as imaged with TPUS. In this exam-

ple, we can observe the PRM in the rest state. The trans-

ducer was positioned against the PF while the women

were in supine position.

Both the bone pubic symphysis (PS) and the PRM

can be visualized with ease in the sagittal view, as can

the surrounding PF organs. In Figures 1 and 2, the PRM

is the yellow region bordering the anal canal.

Data processing

The block diagram in Figure 3 illustrates the proc-

essing steps performed to calculate strain volumes of the

PRM. The input comprised the recorded dynamic US

volumes and the region of interest (ROI) for which strain

was calculated. To obtain the ROI, the PRM was manu-

ally segmented by an experienced clinician in the initial

US volume (rest before exercise) (van den Noort

et al. 2018). The output was a set of accumulated echo

volumes as a function of time. The influence of segmen-

tation of the ROI was varied by decreasing the ROI, and

displacement estimates were calculated using these vol-

umes. The difference in the values obtained at these dif-

ferent sizes was identical for corresponding voxels. The

processing sequence can be divided into four steps:
Fig. 1. Pelvic floor anatomy and puborectalis muscle (PRM) as
(z-y plane in ultrasound (US) grid) (a) B-mode US image. (b)
floor organs. (c) Outline of the B-mode US in sagittal view w

2013).
volumetric data preparation, intervolume displacement

estimations, tracking (involving an update of the ROI)

and strain calculations.

Each processing step is explained in detail hereafter.

Volumetric data preparation

The first of the two inputs for the work was the data

from the US machine, which were in DICOM format.

These data were first converted to a rectilinear format

with “.fld” extension using a proprietary software called

QLAB, Version 10.8 (Philips Healthcare, Andover, MA,

USA). Conversion of the data was performed to allow

import in MATLAB R2018 a (The MathWorks, Inc.,

Natick, MA, USA), which was the program we used to

develop our 3D strain analysis software. The total num-

ber of volumes per data set was 22, and each of the 3D

volumes contained 352£ 229£ 277 (X£ Y£ Z) pixels

which were uniformly sampled at distances of

0.42£ 0.60£ 0.34 mm (dx£ dy£ dz).

Intervolume displacement estimations

The next step was to calculate intervolumetric dis-

placements. Therefore, displacements were estimated

between the first two volumes within the initial ROI

(illustrated in Figs. 1 and 2 for volunteer 1). Intervolu-

metric displacements for each pair of subsequent vol-

umes were estimated with a 3D normalized cross-

correlation algorithm (Gijsbertse et al. 2017;

Hendriks et al. 2016) optimized for PF muscles and the

US system used in this study.
observed in transperineal ultrasound data in sagittal view
B-mode US image with labeling of the important pelvic
ith labeling of the pelvic floor organs (Shek and Dietz



Fig. 2. Transperineal ultrasound data of the pelvic floor (puborectalis muscle in yellow) in (a) Axial view (z-x plane in
ultrasound grid). (b) Coronal view (y-x plane in ultrasound grid).

Fig. 3. Block diagram of the processing steps involved to obtain 3D strain output from the 3D ultrasound data sequence.
PRM = puborectalis muscle; ROI = region of interest.
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In this algorithm, two subsequently recorded vol-

umes were subdivided into 3D blocks called kernels and

templates. The kernel and template sizes used for those

volumes were 111£ 81£ 41 and 51£ 51£ 11 pixels,

respectively. The kernels were matched on the templates,

and the locations of the 3D cross-correlation peaks were

calculated. These locations of peaks indicated the dis-

placements between the two blocks. To estimate subsam-

ple displacements, the cross-correlation peaks were

interpolated (parabolic fit) (Hendriks et al. 2016). The

displacement estimates were finally filtered using a 3D

median filter.

Tracking

As the PRM changes (position and shape) from

volume to volume, that is, changes with time, the

position and shape of the ROI for displacement esti-

mation also needs to be updated over time. Other-

wise, displacement estimation would no longer be

performed for PRM tissue only, but would gradually

shift to the surrounding tissue. The ROI coordinates

(position of the manually segmented PRM) of the

next volume were updated using the displacement

estimates as calculated in the previous step. In the

next step, displacements were calculated between the
next two subsequently acquired volumes, and the ROI

was updated. The process of estimating intervolumet-

ric displacements and updating ROI is called tracking

(Lopata et al., 2009; Lopata et al. 2010). Tracking

began after the displacement estimations between the

first two subsequently acquired volumes were esti-

mated using the initial ROI.

The input to this processing step was the filtered

intervolume displacement estimates from the previous

step. Filtering was done using a median filter (2£ 2£ 2

cm) to smoothe the displacement estimates and remove

outliers (Hansen et al. 2010; Hendriks et al. 2016). This

was required for tracking.

Accumulation of the filtered displacement estimates

was performed using the equation

accum_disp_estmts nþ 1ð Þz;x or y direction
¼

Xnþ1

n¼1
inter_vol_disp_estmts n;nþ 1ð Þz;x or y direction

ð1Þ
where accum_disp_estmts = accumulated displacement

estimates in z, x or y direction, inter_vol_dis-

p_estmts = intervolume displacement estimates in z, x or

y direction and n = number of US volume.
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The accumulated displacement estimates were the

total movement of the muscle up to the (n + 1)th volume

or time point. These displacement estimates were

obtained in number of US grid points that a certain index

had passed. The indexes were updated with these accu-

mulated displacement estimates.

Because the updated indexes are subsample values,

displacement estimates were calculated from the eight

surrounding sample points, and the displacement esti-

mates of the subsample points were arrived at by linear

interpolation (Fig. 4). In this way, the muscle could be

tracked throughout its complete deformation cycle. After

each update of the ROI, it was checked visually on the

respective US volume to ensure whether it was at the

same position as the displaced muscle.

Therefore, for this processing step, the inputs were

the intervolume displacement estimates, and the outputs

were the updated ROIs.
Strain calculations

Strain calculation was the last processing step.

Accumulated displacements were calculated by sum-

ming intervolumetric displacements up to each time

point. The non-filtered intervolumetric displacements

were used and filtered with a median filter kernel

(1£ 1£ 1 cm) before accumulation (Hansen et al. 2010;

Hendriks et al. 2016). A kernel size smaller than that in

the tracking step was applied to avoid too much smooth-

ing of the displacements, which would result in the

absence of a gradient in the strain calculations. As the

displacement estimates were filtered using a different

kernel, interpolation was again performed, now for the

updated indexes. In the next step, the interpolated dis-

placement estimates were accumulated using eqn (1).

These accumulated displacement estimates were used to

calculate the 3D strain tensor using a 3D least-squares

strain estimator (LSQSE) (Kallel and Ophir 1997).

The contraction direction of the PRM is not co-

aligned with the rectilinear coordinate system. To deter-

mine the major or principal component of the strain that
Fig. 4. Visual explanation of the temporary surrounding eight-
cled corners represent the positions or indices forming part of t
tions of the indexes when updated by accumulated z, x and y
(gray circles). (c) One example of surrounding eight points

updated out of grid position
is induced in the contraction or Valsalva maneuver of

PRM, principal strains were calculated from the individ-

ual strain values in the z, x and y directions (Tuttle 2012).

As we have observed from the LSQSE strain that strain

for contraction is negative and strain for Valsalva

maneuver is positive, we chose the largest negative prin-

cipal strain component for data during contraction and

the largest positive strain component for data during the

Valsalva maneuver.

RESULTS

Accumulated displacement estimates are illustrated

in Figures 5 and 6, and principal strain results, in Figures

7 and 8, for two of four volunteers. These time points

are, respectively, muscle at rest, muscle at maximum

contraction and muscle at rest post-contraction, for vol-

unteer 1. In the case of volunteer 4, the time points are

rest and maximum Valsalva maneuver. The principal

strain magnitudes and principal strain directions are

illustrated in the figures.

Accumulated displacement estimates

In volunteer 1, at the time point at which the muscle

is at rest (Figure 5a, 5d, 5g, first column), the estimated

displacements between the first two volumes are quite

low in all directions, which is expected at rest. We

observed this for displacement estimates of all volun-

teers.

In Figure 5b, 5e, 5h (second column) are the accu-

mulated displacement results for maximum contraction.

The displacement estimates in the z-direction are the

highest, followed by displacement estimates in the y-

direction. In the x-direction, we see that displacement

estimates are almost zero.

During contraction, in the z-direction, negative dis-

placement estimates mean that the PRM is moving

toward the bone PS and, thus, toward the US transducer.

In the y-direction, displacement estimates are positive,

which means that in this direction, the muscle is moving

away from the US transducer. There is very little lateral
point grid. (a) Part of the ultrasound grid, where the cir-
he region of interest (black circles). (b) Changes in posi-
displacement estimates to positions that are out of grid
in the ultrasound grid (blue circles) to follow a certain
or index (gray circle).



Fig. 5. Accumulated displacement estimates at three time points during the rest-contraction-rest sequence of volunteer 1.
(a-c) Accumulated z-direction displacement estimates. (d-f) Accumulated x-direction displacement estimates. (g-i)

Accumulated y-direction displacement estimates).
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or side-to-side movement of the muscle, that is, in the x-

direction. These movements or lack of movement with

respect to the muscle at rest are illustrated in

Figure 9b�d.

In Figure 5c, 5f, 5g (third column), we see that the

muscle is almost back at rest, and so the accumulated

displacement estimates are again back to approximately

zero values. The muscle does not completely return to

the rest position, because these data sets were acquired

in women who have overactive PFs. Thus, these women

might take longer to return to the rest position post-con-

traction.

In the data sets acquired during the Valsalva

maneuver, data acquisition was stopped when the muscle

reached maximum Valsalva maneuver. The accumulated

displacement results are illustrated in Figure 6. We

observe that displacements are initially close to zero, as

the muscle is at rest.

During the maximum Valsalva maneuver the accu-

mulated displacements are predominantly positive in the

z-direction and negative in the x- and y-directions. This

indicates elongation of the muscle in Valsalva maneuver
as opposed to shortening during contraction. This defor-

mation with respect to the muscle at rest is illustrated in

Figure 10b�d.

The movements of the PRM during contraction and

Valsalva maneuver, axial, sagittal and coronal views, are

illustrated in the supplementary videos in the Supple-

mentary Data (online only). In these videos, the dark

gray area represents the position of the muscle during

rest, and the yellow area, the muscle during contraction/

Valsalva maneuver. We can observe that the movement

during contraction with respect with the bone PS is com-

plementary in direction compared with that of Valsalva

maneuver.

Principal strain values

During contraction, as illustrated in Figure 7, it is

observed that the major principal strain becomes more

negative with increasing contraction. As the muscle

returns to the rest position, the negative strain decreases

but does not become zero.

The principal strain component directions change

for all volunteers when the muscle contracts from rest



Fig. 6. Accumulated displacement estimates at two time points during the rest-Valsalva maneuver sequence of volunteer
4. (a-c) Accumulated z-direction displacement estimates. (d-f) Accumulated x-direction displacement estimates. (g-i)

Accumulated y-direction displacement estimates.
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and becomes predominantly aligned with muscle fiber

direction at maximum contraction. In Figure 7e, 7f, it

can be seen that the direction of strain further changes

when the muscle returns to the rest state after contrac-

tion.

As illustrated in Figure 8, the data for volunteer 4

contain a Valsalva maneuver. In this case, rest remains

the same as the rest during contraction, whereas during

maximum Valsalva maneuver, strain is positive with a

peak value of 60% strain.

The bottom row of Figure 8 illustrates the principal

strain component directions. Once again it is observed

that the directions change when the muscle changes

from rest to maximum Valsalva maneuver.

Table 2 lists the spatial means of the principal strain

(%) values over the PRM for all data sets. Mean princi-

pal strain (%) values in the rest position for all five vol-

unteers were less than 3%. The principal strains at

maximum contraction ranged between �8.9% and

�41.5%. For the data set for the Valsalva maneuver, the

maximum principal strain was 38.6%. At the last time
point, namely, rest post-contraction, strain had decreased

with respect to earlier time points before but was not

equal to that before contraction.
DISCUSSION AND SUMMARY

To our knowledge, this is the first study in which

3D displacement and strain were estimated in the PRM.

Normally, when clinicians examine the PF with TPUS,

they can only visually examine the motion of the PF and

measure the (relative) motion for certain specific ana-

tomic landmarks. In other words, a qualitative assess-

ment can be made. As can be observed, the proposed

algorithm allows quantitative determination of strain,

locally within the PRM.

We observe from the obtained results that the strain

during contraction and the strain during Valsalva maneu-

ver are complementary, which allows the algorithm to

distinguish between these two opposite movements of

the muscle. We also observe that there are changes in the

deformation of the muscle. These deformations are



Fig. 7. Accumulated principal strain (%) magnitudes (first row) and their respective directions (second row) for volun-
teer 1. US = ultrasound.
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different for contraction compared with Valsalva maneu-

ver. Because of the short data acquisition time, we can

observe the muscle returning to almost rest but not com-

plete rest post-contraction.

For this initial study, we focused on strain estima-

tion in the undamaged and intact PRM of nulliparous

women undergoing voluntary contraction or Valsalva

maneuver before focusing on strain estimation in

patients with a complex pathology, for example, avul-

sions.

We observe in the last column of displacement esti-

mates in Figure 5 that the muscle does not return to the

exact rest position post-contraction. There are three pos-

sible explanations for this: a clinical one, an explanation

related to the hardware and a technical explanation. The

clinical explanation is that the volunteers from whom the

data were acquired had overactive PFs. Therefore, it

might be that the PRM will take more time to return to

its rest position post-contraction. For example, in volun-

teer 1, we find the maximum contraction is at volumes

13 and 14, which means that 7 of the 11 s of total data
acquisition time had already passed. The PRM does not

return to rest within the remaining approximately 4 s. As

the volunteers were supine and contracting their PF

muscles only during data acquisition, motion of the vol-

unteer or global motion can be ignored. This can also

mean a hardware limitation; the time for data acquisition

was too short and ended before the muscle had returned

to its rest position. Lastly, the technical explanation is

that tracking might not be ideal. Small inaccuracies in

the displacement estimates accumulate over time to

introduce error in tracking.

The complementary sign is visible in the displace-

ment estimates and strain during Valsalva maneuver

(Figs. 7 and 8), compared with those observed during

contraction (Figs. 5 and 6). It can be observed that the

muscle has moved away from the US transducer in the z-

direction, and there is clearly a change in shape of the

muscle. In the x-direction, we can observe that one end

of the muscle has moved more than the other end. This

differs from the results for contraction, where there is lit-

tle or no movement in the x-direction. This might be



Fig. 8. Accumulated principal strain (%) magnitudes (first row) and their respective directions (second row) for volun-
teer 4. US = ultrasound; Val. Man. = Valsalva maneuver.
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because the contracting muscle is expected to move

toward the bone PS (in effect the US transducer) to

which it is attached. It is not expected to move laterally

or from side to side in contraction. In the Valsalva

maneuver, while the muscle is elongating, we observe

that deformation is occurring in all three z, x and y direc-

tions. In this volunteer, in the x-direction, one arm of the

muscle is manifesting more displacement than the other.

In the y-direction, we observe that the muscle has moved

toward the transducer. Because we studied the Valsalva

maneuver in only one volunteer, these observations can-

not be generalized. The presence of these trends needs to

be investigated in a large sample size.

The PRM is almost uniformly strained (Fig. 6a�c,

first row), indicating contraction, whereas it manifests non-

uniform strain when it returns to rest after contraction. A

possible explanation might be that in the case of an overac-

tive PF, different parts of the muscle take longer to return

to zero strain. As the sample size was small in this study, it

should be extended in future studies to investigate whether

this trend is present in a large group of women.
Also, there is a large variation between the strain

(%) values obtained during contraction from the four

volunteers in contraction, as illustrated in Table 2. A

possible reason could be that different women have dif-

ferent levels of control over their PRMs during contrac-

tion. Additionally, deformation of the muscle during

contraction might also vary per woman. Larger sample

sizes in future studies could provide a range of strain

from minimum to maximum for undamaged PRM.

We can observe the directions of the principal

strains in Figures 7 and 8d�f, second row. It can be

observed that the strains are in the direction of muscle

fiber orientation.

Clinical significance

First, knowledge of the exact length by which the

muscle has moved and deformed is beneficial in that we

can assess numerically how far the woman can move her

muscle voluntarily. Thereafter, we can compare how

much movement is expected in a normal undamaged

muscle compared with a damaged muscle. Moreover, it



Fig. 9. Deformation of the puborectalis muscle (PRM) at contracted state (red) when compared with the rest state (blue)
for volunteer 1. (a) The undeformed PRM at rest state in the ultrasound grid. (b) Deformation of the puborectalis muscle
in the z-y plane. (c) Deformation of puborectalis muscle in the y-x plane. (d) Deformation of the puborectalis muscle in

the z-x plane. US = ultrasound.
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would provide clinicians and pelvic physiotherapists

with a quantitative tool to follow patients’ improvements

during treatment (e.g., PF muscle training).

Second, when the muscle is observed in the image

displayed in the US machine, it is difficult to assess

quantitatively which part of the muscle is displaced

more and which is displaced less. As illustrated in the

results, for undamaged muscles, it is possible to know

which part of the muscle is displaced more from the
different colors of the displacement estimates in the fig-

ures. For example, in the case of displacement estimates

in the z-direction, for volunteer 1 (Fig. 5e), the “sling” of

the PRM moved more than the two ends that are attached

to the bone PS. In the results for volunteer 4 (Fig. 6), in

the Valsalva maneuver, we observe that different parts

of the PRM move dissimilarly in all three z, x and y

directions. These observations of the figures can give us

an idea about how the undamaged muscle moves.



Fig. 10. Deformation of the puborectalis muscle (PRM) at Valsalva maneuver state (green) compared with the rest state
(blue) for volunteer 4. (a) The undeformed PRM in the rest state in the ultrasound (US) grid. (b) Deformation of PRM in

the z-y plane. (c) Deformation of PRM in the y-x plane. (d) Deformation of PRM in the z-x plane.

Table 2. Mean principal strain values of the four volunteers included in the study

Time point Mean principal strain (%)

Volunteer 1
(contraction)

Volunteer 2
(contraction)

Volunteer 3
(contraction)

Volunteer 4
(contraction)

Volunteer 4
(Valsalva maneuver)

Rest �0.9 �1.6 �2.0 �1.1 3.1
Maximum contraction/
Valsalva maneuver

�8.9 �13.7 �33.4 �41.5 38.6

Rest post-contraction �5.2 �7.5 �28.8 �21.8 —
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Thereafter, a comparison can be made with damaged

muscle movement.

Lastly is the exact time point, or more specifically

the volume, at which the muscle, for certain data at max-

imum contraction/Valsalva maneuver, can be deter-

mined. It can be useful in TPUS as a means of

automatically arriving at the specific volume for maxi-

mum contraction/Valsalva maneuver, thus reducing a

source of variability in TPUS assessments.

In this study, the primary reason for calculating

strain induced in the PRM was to quantify the deforma-

tion and strain in undamaged PRM. When there is dam-

age or scar tissue formation in the muscle, it might be of

clinical significance to assess the exact position of the

damage through the different strain (%) values in differ-

ent parts of the muscle along with the directions of the

strain values. Thereafter, it might also be possible to

quantify in three dimensions which part of the muscle is

damaged.

To further investigate PF muscles through 3D

strain, future studies should include larger sample sizes

for both undamaged PRM and complex PRM patholo-

gies. Other LAMs should also be investigated to learn

how the muscles behave in relation to each other.
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