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Abstract

Objective: To provide approximations to recover the full regression equation across different scenarios of incompletely reported
prediction models that were developed from binary logistic regression.

Study design and setting: In a case study, we considered four common scenarios and illustrated their corresponding approximations:
(A) Missing: the intercept, Available: the regression coefficients of predictors, overall frequency of the outcome and descriptive

statistics of the predictors;
(B) Missing: regression coefficients and the intercept, Available: a simplified score;
(C) Missing: regression coefficients and the intercept, Available: a nomogram;
(D) Missing: regression coefficients and the intercept, Available: a web calculator.
Results: In the scenario A, a simplified approach based on the predicted probability corresponding to the average linear predictor

was inaccurate. An approximation based on the overall outcome frequency and an approximation of the linear predictor distribution
was more accurate, however, the appropriateness of the underlying assumptions cannot be verified in practice. In the scenario B, the
recovered equation was inaccurate due to rounding and categorization of risk scores. In the scenarios C and D, the full regression
equation could be recovered with minimal error.

Conclusion: The accuracy of the approximations in recovering the regression equation varied depending on the available information.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/)
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What is new?

• In reports where the intercept is not reported,
the recovered intercept could be accurate; how-
ever, the appropriateness of underlying assump-
tions cannot be verified.
• In reports where only a simplified score is re-

ported, the recovered prediction model equation
is likely to be inaccurate as information is lost
due to rounding and categorization that cannot
be retrieved.
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• With full knowledge of functional form of each
predictor and interaction terms, it is possible
to accurately recover the unreported regression
equation in scenarios where tools are presented
that can be used to estimate a probability (e.g.,
a nomogram or a web calculator).
• We propose approximations and guidance how

to recover the logistic regression equation that
is incompletely reported for various scenarios.

1. Introduction

Clinical prediction models can support decision-making
by informing physicians, patients and their families on the
probability of a health outcome [1–3]. Although prediction
models can be derived by fitting machine learning tech-
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niques [4], when the outcome is binary, logistic regression
modeling is most commonly used because of its ease of
interpretation [5]. In a logistic regression based prediction
model, an individual’s risk of the outcome can be calcu-
lated using the individual’s observed predictor values and
the model’s intercept and regression coefficients with the
following equation:

LP = log

(
p

1 − p

)
= a + β1X1 + β2X2 + . . . βkXk

p =
exp(LP )

1 + exp(LP )
or p =

1
1 + exp(−LP )

where LP is the linear predictor; p is the predicted prob-
ability; a is the intercept; βi is the regression coeffi-
cient of the predictor i; Xi is the observed value for
the predictor i; k is the number of predictors in the
model.

The Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis or Diagnosis (TRI-
POD) statement for prediction models clearly states that a
prediction model’s full regression equation should be re-
ported (item 15a) [5,6]. However, incomplete reporting of
prediction models is not uncommon, with some reviews
showing incomplete reporting in about half of studies de-
veloping a prediction model [7–9]. The full equation of
a prediction model is necessary when healthcare profes-
sionals use the model in practice or researchers evalu-
ate the performance of the model as its original form
in a different dataset (external validation) [10,11]. Some-
times, tools which can be used to estimate a probability
for an individual (e.g., a nomogram or a web calcula-
tor) are reported, but the original regression equation is
not available. In such situations, the model can be used
for each individual, however, this process of manually
entering data becomes too cumbersome when evaluating
a large number of patients as in an external validation
study.

Of course, the most obvious solution for an unreported
full regression equation is to contact the authors of the
paper and request the information. Our starting point is
that this request was not successful. We aimed to pro-
vide approximations on how to recover the full regres-
sion equation in papers where the full regression equa-
tion is partially or completely missing. Such an attempt
has been referred to as reverse engineering [12]. We
considered scenarios which varied in (i) which compo-
nent of the equation was missing and (ii) which other
relevant pieces of information were available. For each
scenario, we indicate a potential approximation to re-
cover the missing information, and discuss its accuracy
and limitations. We use a case study predicting the risk
of having to undergo an operative delivery in laboring
women.
2. Methods

2.1. Scenarios and approximations

We considered the following four common scenarios
(Table 1).

Scenario (A)
It is common that the coefficient (or the odds ratio,

where log(odds ratio) = coefficient) for each predictor is
reported, but the intercept is not. In this scenario, regres-
sion coefficients, the overall frequency of the outcome, and
descriptive statistics of each predictor can be used to re-
cover the intercept. We consider two types of the approx-
imation below.

Approximation of the intercept based on an estimated
average linear predictor and the overall outcome frequency

A simple idea is to ignore the logistic link function
and to assume that the mean of all model-based outcome
probability predictions for individual patients corresponds
to the risk of an “average individual” (i.e., a hypothetical
individual who has the mean value for continuous vari-
ables and the proportions for categorical variables). This
“average individual” can be achieved based on information
that is usually available in a table of participant character-
istics showing the frequency of categorical predictors as
percentages and measures of central tendency (e.g., mean)
and spread for continuous predictors (e.g., standard devia-
tion) (Table 2).

Using this information, the intercept can be estimated
as follows:

log
(

p̂

1 − p̂

)
≈ a + β1 X̄1 + β2 X̄2 + . . . βkX̄k

a ≈ log
(

p̂

1 − p̂

)
−−

(
β1X̄1 + β 2X̄2 + . . . βkX̄k

)
where p̂ is the overall frequency of the outcome; a is the
intercept; βi is the regression coefficient of the predictor
i; X̄i is the mean/proportion value for the predictor i; and
k is the number of predictors in the model.

While such an approximation would work in a linear
model, it is generally flawed in other generalized linear
models such as logistic regression. This is because they
contain nonlinear link functions (e.g., the logit function for
logistic regression). These nonlinear transformations cause
the average of all individual risks to be generally unequal
to the risk corresponding to the average linear predictor.
Also, as a table of participant characteristics usually shows
those descriptive statistics only for each original variable,
this approximation is not applicable when the model in-
cludes non-linear or interaction terms. Further information
on this approximation is available in the Supplementary
material 1.

Approximation of the intercept based on the overall out-
come frequency and an approximation of the linear pre-
dictor distribution

To improve upon the “average individual” approach,
the idea is to approximate the covariate contributions and
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Table 1. Missing and available information in each scenario

Scenario Missing information Available information

A Intercept Regression coefficients, overall outcome
frequency and
descriptive statistics of predictors

B Intercept, regression coefficients Simplified score

C Intercept, regression coefficients Nomogram

D Intercept, regression coefficients Web calculator

Table 2. Participant characteristics in the case study

Spontaneous delivery Operative delivery Overall

n = 4077 (71.9%) n = 1590 (28.1%) n = 5667

Maternal age, years, mean ± SD 32.0 ± 4.8 32.3 ± 4.7 32.0 ± 4.8

Gestational age, weeks, mean ± SD 40.1 ± 1.5 40.5 ± 1.4 40.2 ± 1.4

Birthweight, 100 g increments, mean ± SD 35.1 ± 5.1 36.2 ± 5.3 35.4 ± 5.2

Previous delivery, n (%)

No 1990 (48.8) 1246 (78.4) 3236 (57.1)

Yes, but not by caesarean section 1596 (39.1) 119 (7.5) 1715 (30.3)

Yes, by caesarean section 491 (12.0) 225 (14.2) 716 (12.6)

Neonatal female gender, n (%) 1977 (48.5) 691 (43.5) 2668 (47.1)

Maternal diabetes, n (%) 120 (2.9) 49 (3.1) 169 (3.0)

SD = standard deviation
thereby provide information on the variability of the linear
predictor. For simplicity, we assume a multivariate nor-
mal (MVN) distribution of the predictor distribution based
on means and variances available in a table of participant
characteristics. The remaining assumption is with respect
to the correlation structure, for which we assume com-
pound symmetry with an off-diagonal correlation ρ. The
size of ρ needs to be chosen by the researcher. Based on
this multivariate normal model, the estimated variance of
the linear predictor σ̂2 then becomes

σ̂2 = β̂Sβ̂T

where β̂ is a vector of the reported regression coefficients;
and the S is the compound symmetric covariance matrix.
The mean of the estimated linear predictor μ̂lp is

μ̂lp = μ̂β̂

where μ̂ is the vector containing the mean estimates for
each predictor. Then using

Pr (Y = 1) =
1

1 + e−a−μ̂β̂−σZ

where a is the intercept, and Z is a standard normally dis-
tributed random variable, the event rate or expected prob-
ability of Pr(Y = 1) equals

E(PR(Y = 1|X))

=
∫ +∞

−∞

(
1√
2π

e−
z2
2

1
1 + e−a−μ̂lp−σz

)
dz

=
1√
2π

∫ +∞

−∞

(
e−

z2
2

1 + e−a−μ̂lp−σz

)
dz
This can be solved numerically for a if the overall out-
come frequency is given.

The accuracy of the approximated intercept depends on
the correct specification of the MVN approximation of the
predictor distribution and the chosen value of ρ, which
cannot be verified in practice. Nonetheless, the impact of
the value of ρ could be examined by varying its value
over a sensible range. The range of approximated inter-
cepts across these sensitivity analyses then has to lie within
reasonable bounds for the problem at hand. The R code
for this approximation is available in the supplementary
material 2.

Scenario (B)
In this scenario, neither the regression coefficients nor

the intercept is reported, but a simplified score, for example
Table 3, is available.

While there are various ways to derive a simplified
score, it is often done by converting the coefficients for
each predictor to integers (e.g., dividing all regression co-
efficients by the smallest regression coefficient and round-
ing to the whole number) [5]. This is common, but there
have been better approaches for deriving a simplified score
[13,14]. Continuous variables are often categorized into
two or more groups resulting in a loss of precision. The
total sum of all the predictor integers for an individual,
referred to as the score, can then categorized into risk
groups together with their group’s corresponding observed
outcome frequencies and/or the model’s mean predicted
probabilities [15]. Although a simplified score is easy to
use, it loses predictive information due to rounding and
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Fig. 1. Nomogram developed for the case study.

Table 3. Simplified score developed for the case study

Variable Score

Maternal age 1

Gestational age 4

Previous delivery (Reference: None)

Not by caesarean section -60

By caesarean section -12

Neonatal female gender -5

Birthweight, 100 g increments1

Maternal diabetes 14

Score Mid-point∗Mean predicted probability

129-204 166.5 8%

204-224 214 30%

224-264 244 46%

∗ A mid-point is the average of the lower and upper ranges in each
score group. Although it is not usually shown in the scoring system,
it is calculated here to use in the approximation for recovering the
regression equation.
categorization. One can try to estimate the regression co-
efficients and the intercept using the limited information
available from a reported simplified score as follows:

T ≈ (β1X1 + β2X2 + . . . βkXk)
w

β1X1 + β2X2 + . . . βkXk ≈ wT

log
(

p′

1 − p′

)
≈ a + wT

where T is the total score; βi is the regression coefficient of
the predictor i; Xi is the observed value for the predictor i;
k is the number of predictors in the model; w is the value
used to divide each regression coefficient (i.e., min (β1,
β2, β3,..βk); p′ is the mean predicted probability for each
value of T or categorizations of T; and a is the intercept.

When the total score T has been categorized, the cor-
responding score for an individual who has the mean pre-
dicted probability in each score group is rarely available.
The alternative is to use the mean score in each score
group. However, this is also not commonly reported. In-
stead, one can calculate the mid-point in each score group
(i.e., the average of the lower and upper ranges in each
score group), but it is worth noting that the difference be-
tween the mid-point and the score corresponding to the
mean predicted probability in each score group is unlikely
to be aligned. The available data then consists of rows for
each score group stating the mid-point and the correspond-
ing mean predicted probability (p′). The relation between
these quantities can be written as a logistic model (see
equation above), which can then be used to estimate w
and a. Each coefficient is approximated using w and the
score assigned to each predictor (sj) as below.

βj ≈ wsj

Scenario (C)
In this scenario, no information on the regression equa-

tion is reported, but a nomogram (Fig. 1) has been avail-
able.

A nomogram is a graphical presentation of a prediction
model, which enables estimation of a predicted probability
for an individual without a calculator [16]. In Fig. 1, the
top bar shows how many points a certain value of each
predictor (in the bars below) corresponds to. Summing the
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Fig. 2. Image of the web calculator developed for the case study
The web calculator is available from https://pred-model.shinyapps.io/
reverse_engineering/.
individual points for each predictor, results in a total points
score. The bottom two bars show total points and corre-
sponding predicted probabilities.

Under certain conditions, it is possible to reconstruct the
original equation if a nomogram is provided. These con-
ditions include knowledge of (i) functional form of each
predictor (e.g., categorical, continuous linear or restricted
cubic spline function for non-linear terms), and (ii) interac-
tion terms (i.e., which and how predictors were included in
interaction terms). The details of the process are explained
in the supplementary material 3. For example, in a simple
model which does not include any non-linear or interac-
tion terms, first, measure the length of the bar for “total
points”. For precise measurement, we recommend to use
a software which enables digitizing the nomogram. Then,
calculate the distance for 1 point. Second, transform the
probability on the bar “Probability” into linear predictors,
by logit transformation. Again, measure the length of the
bar “Probability”, and calculate the distance for 1 in the
linear predictor. Then, the total points score which corre-
sponds to 1 in the linear predictor can be calculated. Third,
measure the length of the bar for each predictor. Then, the
coefficient can be calculated as how much linear predictor
increases when one-unit changes in each predictor. Finally,
the intercept can be estimated by calculating a predicted
probability for a certain individual using the coefficients
calculated through the above process using the equation
below.

a = log
(

p

1 − p

)
− (β1X1 + β2X2 + . . . βkXk)

where a is the intercept; p is a predicted probability for
a certain individual; βi is the predictor weight or regres-
sion coefficient of the predictor i; Xi is the value of a
certain individual for the predictor i; and k is the number
of predictors in the model.

Scenario (D)
In this scenario, the regression equation has not been

reported, but a link to a web calculator is available
(Fig. 2).

To use the model in new individuals, users can enter the
values of the predictors on the website, and the web calcu-
lator produces an estimate of the predicted probability for
that individual. Similar to the scenario (C), it is possible
to reconstruct the original equation from a web calculator
if full information about functional form of each predic-
tor and interaction terms is available. When non-linear or
interaction terms are not used in a model, reverse engi-
neering starts by first entering values of the predictors for
a particular individual (individual 1) into the web calcu-
lator to obtain his/her predicted outcome probability (p1).
In this step, the values of the predictors can be arbitrar-
ily chosen. For the next individual, change the value of
one predictor (Xi), while leaving the remaining predictor
values fixed (individual 2), and obtain the predicted proba-
bility for individual 2 (p2). The coefficient βi for Xi can be
calculated as the difference of linear predictors in patient
1 and 2 divided by the change in Xi (Xdiff) as following:

LP1 − LP2
Xdiff

=
log

(
p1

1−p1

)
− log

(
p2

1−p2

)
Xdiff

= βi

where LP1 and LP2 are the linear predictor in individual
1 and 2, respectively; Xdiff is the change in Xi; p1 and p2
are the predicted probability in individual 1 and 2, respec-
tively; βi is the predictor weight or regression coefficient
of the predictor i.

https://pred-model.shinyapps.io/reverse_engineering/
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Preferably, the difference in Xi between individuals one
and two is taken to be large to avoid imprecision due to
rounding errors of the provided predicted probabilities. By
repeating this process for each predictor, the predictor co-
efficients (β1, β2, β3… βk) can be calculated. Finally, the
intercept (a) can be obtained by using these recovered pre-
dictor coefficients and arbitrary values for each predictor
as follows:

LP1 = log
(

p1
1 − p1

)
= a + β1X1 + β2X2 + . . . βkXk

a = log
(

p1
1 − p1

)
− (β1X1 + β2X2 + . . . βkXk)

2.2. Case study

To illustrate the scenarios and the corresponding ap-
proximations, we used an existing dataset comprising
5667 laboring women with a singleton term pregnancy in
cephalic presentation, previously used to develop a multi-
nomial model to predict the mode of delivery [17]. For
illustrative purposes, the categorical outcome of the orig-
inal publication was dichotomized as operative delivery
(i.e., instrumental vaginal delivery or caesarean section) vs.
spontaneous vaginal delivery. Here, we focused on six an-
tepartum predictors being maternal age (years), gestational
age (weeks), birthweight (100g increments), previous de-
livery (0 = none, 1 = yes, but not by caesarean section,
2 = yes, by caesarean section), neonatal gender (0 = male,
1 = female), and maternal diabetes (0 = no, 1 = yes). To
illustrate all of the approximations above, all continuous
variables were modeled linearly and no interaction term
was included. In the current analysis, we used one of the
imputed datasets used in the original analysis.

2.3. Comparison between the original and the recovered
regression equation in each scenario

The original logistic regression model equation was
taken to represent the reference model. The recovered re-
gression equation in each scenario was compared to that of
the reference model. To assess the impact of the recovered
equation on predicted probabilities, a predicted probability
was estimated using the recovered equation in individuals
with 10th, 50th, and 90th percentile predicted probabilities
estimated by the reference model (i.e., low, medium, and
high risk, respectively).

All analyses were performed using R 3.6.1. [18].

3. Results

3.1. Case study

Participant characteristics are shown in Table 2. Among
5667 laboring women, 1590 (28.1%) underwent an oper-
ative delivery. The reference values of the intercept, co-
efficients for each predictor, and the model performance
measures are shown in Table 4.

Scenario (A)
Approximation of the intercept based on an estimated

average linear predictor and the overall outcome frequency
To recover the intercept, we assumed that the predicted

probability for the patient who had the mean/proportion
value of each predictor (“average individual”) would be
close to the observed proportion of the outcome of 28.1%.
By using the mean/proportion value of each predictor in
Table 2 and the value of coefficients in Table 4, the fol-
lowing equation was obtained.

log
(

0.281
1 − 0.281

)
≈ a + βmatageX̄matage

+ βges_age

+ X̄ges_age + βweightX̄weight

+βno_CSX̄no_CS + βCSX̄CS + βgenX̄gen

+ . . . βdiabeX̄diabe

≈ a + 0.048 × 32.0 + 0.157 × 40.2 + (−2.323)
× 0.303 + (−0.473) × 0.126
+ (−0.186) × 0.471 + 0.039 × 35.4 + 0.555 × 0.03

where a is the intercept; each βi represents the pre-
dictor weight or regression coefficient; each X̄i is the
mean/proportion value of each predictor; mat_age stands
for maternal age, ges_age for gestational age, weight for
birthweight, no CS for previous delivery not by caesarean
section, CS for previous delivery by caesarean section, gen
for neonatal female gender, and diabe for maternal dia-
betes.

Then, the intercept was calculated as -9.333, while the
reference value was -9.563. The estimated predicted prob-
abilities based on the reference model and the recovered
equation were 0.054 vs. 0.068, 0.309 vs. 0.366, and 0.484
vs. 0.549 for low, medium and high-risk patients, respec-
tively.

Approximation of the intercept based on the overall out-
come frequency and an approximation of the linear pre-
dictor distribution

When we set the off-diagonal correlation ρ as 0.3 (i.e.,
the assumed correlation between all predictors), the esti-
mated intercept was -9.525, while the reference value was
-9.563. The estimated predicted probabilities based on the
reference model and the recovered equation were 0.054 vs.
0.057, 0.309 vs. 0.323, and 0.484 vs. 0.501, respectively.
When the value of ρ was changed between 0 and 1, the
recovered intercept ranged from -9.573 to -9.400.

Scenario (B)
A simplified score derived from the prediction model

is shown in Table 3. The score for each predictor was
derived by dividing each coefficient by the smallest one
for birthweight (0.039) and rounded to an integer. In this
example, we made the score with three groups categorized
based on tertiles of the total score and their corresponding
mean predicted probabilities. Based on the mid-point and
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Table 4. Reference and recovered values in each scenario of the regression formula and estimated probabilities

Scenario (A) Missing intercept Scenario (B)
Simplified score

Scenario (C)
Nomogram

Scenario (D)
Web calculator

Reference values Approximation 1∗ Approximation 2†

Regression formula

Intercept -9.563 -9.333 -9.525 -7.098 -9.580 -9.552

Maternal age 0.048 NA NA 0.029 0.048 0.048

Gestational age 0.157 NA NA 0.116 0.157 0.156

Previous delivery (Reference: None)

Not by caesarean section -2.323 NA NA -1.740 -2.326 -2.318

By caesarean section -0.473 NA NA -0.348 -0.473 -0.468

Neonatal female gender -0.186 NA NA -0.145 -0.185 -0.184

Birthweight, 100 g increments 0.039 NA NA 0.029 0.039 0.039

Maternal diabetes 0.555 NA NA 0.406 0.559 0.553

Estimated probability

Probability for a low risk patient 0.054 0.068 0.057 0.129 0.054 0.054

Probability for a medium risk patient 0.309 0.366 0.323 0.310 0.311 0.308

Probability for a high risk patient 0.484 0.549 0.501 0.380 0.487 0.482

∗ Approximation 1 is based on an estimated average linear predictor and the overall outcome frequency.
† Approximation 2 is based on the overall outcome frequency and an approximation of the linear predictor distribution.

Fig. 3. Recommendation when having a published prediction model in which the regression equation is incompletely reported.
mean predicted probability, the following equations could
be derived for each group:

log
(

0.08
1 − 0.08

)
≈ a + 166.5 × w

log
(

0.3
1 − 0.3

)
≈ a + 214 × w
log
(

0.46
1 − 0.46

)
≈ a + 244 × w

where a = intercept, w = the value which was used to
divide each coefficient.
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These equations can be simultaneously solved for a and
w using logistic regression modelling, resulting in the val-
ues of -7.098 and 0.029, respectively. Then, each regres-
sion coefficient was estimated using w and the score as-
signed to each predictor. For instance, the coefficient for
gestational age was calculated as follows:

4 × 0.029 = 0.116

As shown in Table 4, the recovered equation and the
estimated predicted probabilities were very different from
the reference values.

Scenario (C)
The nomogram derived from this case study is shown in

Fig. 1. The detail of the procedure to recover the regression
equation in this scenario is explained in supplementary ma-
terial 3. As shown in Table 4, the recovered coefficients
and intercept were precisely estimated. Accordingly, the
predicted probability in low, medium, and high-risk pa-
tients were also correctly estimated.

Scenario (D)
A web calculator for the developed prediction model

is available at https://pred-model.shinyapps.io/reverse_
engineering/. The coefficient for each predictor was ob-
tained as the difference in linear predictors divided by the
change in a certain predictor (while keeping the values
of the other predictors constant). For example, the web
calculator showed the predicted probability of 1.2% for an
individual with maternal age of 25, gestational week of 37,
birthweight of 3000, experience of previous delivery with
and without C-section, neonatal female gender, and no ma-
ternal diabetes. When changing the maternal age from 25
to 60, the predicted probability increased to 6.2%. Then,
the following equations were derived to determine the re-
gression coefficient of maternal age (βmat_age).

log
(

0.012
1 − 0.012

)
= a + 25 × βmat_age + 37 × βges_age

+ 30 × β weight + 1 × β no_CS

+ 1 × β CS + 1 × βgen + 0 × βdiabe

log
(

0.062
1 − 0.062

)
= a + 60 × β mat_age + 37 × βges_age

+ 30 × βweight + 1 × βno_CS

+ 1 × βCS + 1 × βgen + 0 × βdiabe

Then,

log
(

0.062
1 − 0.062

)
− log

(
0.012

1 − 0.012

)
= 35 × βmat_age

and βmat_age was calculated as 0.048, which was identi-
cal to that of the reference model. The coefficients for
the other predictors were estimated in the same way. Fi-
nally, with the estimated coefficients, the intercept could
be obtained by calculating the predicted probability in a
certain individual. Similar to the scenario (C), the regres-
sion equation and the predicted probability were accurately
estimated.
4. Discussion

We discussed and illustrated the accuracy of various ap-
proximations for recovering the full regression equation for
incompletely reported prediction models developed with
logistic regression.

In the most common situation where the coeffi-
cient/odds ratios for each predictor is reported, but the
intercept is not (scenario (A)) [19], external validation of
the prediction model in its original form is impossible. If
a separate dataset of new individuals from the target popu-
lation is available, the intercept can be re-estimated (recal-
ibration in the large) by fitting a logistic regression model
using the linear predictor calculated from the available co-
efficients/odd ratios without the intercept as an offset (i.e.,
coefficient fixed as 1). However, the estimated intercept
is then tailored to the validation dataset and is likely to
be different from the (unreported) intercept of the origi-
nal prediction model. Obviously, this approach is possible
only when there is available dataset that is sufficiently large
[20]. When the model is intended to be used for predic-
tion of the outcome in an individual, it is impossible to use
the model without the intercept. In this scenario, we sug-
gested two types of the approximation which can be used
when the model does not include non-linear or interaction
terms. In the simplified approach based on the “average
individual”, the intercept was not recovered accurately due
to substantial bias caused by clear invalidity of assump-
tions. On the other hand, the approximation based on the
overall outcome frequency and an approximation of the
linear predictor distribution showed good accuracy of the
recovered intercept. This approximation assumed a MVN
distribution of the predictors with a compound symmetric
correlation structure. Sensitivity analyses with respect to
the assumed correlation structure can easily be performed
and provide information on the robustness of the approxi-
mated intercept. Nonetheless, sensitivity to deviations from
multivariate normality is hard to assess. Thus, this approx-
imation should be used only when the readers are aware
of its limitations and the potential risk of bias.

When a simplified score is presented without the orig-
inal regression equation (scenario (B)), we found that it
is impossible to recover the precise regression equation
due to the lost information by rounding and categoriza-
tion. The risk of inaccurate approximation increases with
fewer/broader risk categories. Also, dissociation between
the mid-point and the corresponding mean predicted prob-
ability in that score group is often problematic. In gen-
eral, we do not recommend this approximation. Although
a simplified score is commonly presented for the sake of
ease of use, researchers should always present the origi-
nal regression equation as well to allow others to properly
validate and update (if needed) the underlying prediction
model [13].

In the scenarios where a web calculator or a nomogram
are presented, the full regression equation can be accu-

https://pred-model.shinyapps.io/reverse_engineering/


T. Takada et al. / Journal of Clinical Epidemiology 143 (2022) 81–90 89
rately recovered even when non-linear and/or interaction
terms are included as long as full knowledge of functional
form of each predictor and interaction terms is available.
Yet, it is not very likely that such detailed information is
available when the full regression equation is not prop-
erly reported. The approximations can be imprecise when
reading values from the nomogram is difficult.

Possible explanations for the incomplete reporting of
model’s regression equation may be that researchers are
just unaware of its importance, or that one intentionally
hides the equation to protect intellectual property or charge
royalty for the use of a prediction model. After the in-
troduction of the TRIPOD statement in 2015, informa-
tion necessary for individual risk prediction was more fre-
quently reported in studies published in high-impact jour-
nals, but still not sufficient (42% between 2016 and 2017
vs. 27% between 2012 and 2014) [21]. In addition, Pre-
diction model Risk of Bias Assessment Tool (PROBAST)
has been published in 2019 [22,23]. In this risk of bias
assessment tool for prediction model studies, it is clearly
stated that the full regression equation of the developed
model should be fully reported to allow others to correctly
apply the model to other individuals. It is expected that
full regression equations will be reported more frequently
by disseminating these guidelines. However, the experience
with other reporting guidelines is that improving adherence
is a slow process requiring continuous attention and efforts
[24,25].

To summarize, we propose the following guidance when
faced with validating or implementing a published logis-
tic prediction model in which the regression equation is
incompletely reported (Fig. 3). First, evaluate whether the
model is valid and valuable enough to make efforts to re-
cover the full regression equation. The risk of bias and
its applicability to one’s clinical question can be assessed
by using PROBAST. Second, before trying to recover the
regression equation, one should first ask the authors to pro-
vide their missing information. If this fails, one can start
the process of recovering the regression equation based on
the information and warnings provided in this paper.
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