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Objectives: This study aimed to provide detailed guidance on modeling approaches for implementing competing events in
discrete event simulations based on censored individual patient data (IPD).

Methods: The event-specific distributions (ESDs) approach sampled times from event-specific time-to-event distributions and
simulated the first event to occur. The unimodal distribution and regression approach sampled a time from a combined
unimodal time-to-event distribution, representing all events, and used a (multinomial) logistic regression model to select
the event to be simulated. A simulation study assessed performance in terms of relative absolute event incidence
difference and relative entropy of time-to-event distributions for different types and levels of right censoring, numbers of
events, distribution overlap, and sample sizes. Differences in cost-effectiveness estimates were illustrated in a colorectal
cancer case study.

Results: Increased levels of censoring negatively affected the modeling approaches’ performance. A lower number of
competing events and higher overlap of distributions improved performance. When IPD were censored at random times, ESD
performed best. When censoring occurred owing to a maximum follow-up time for 2 events, ESD performed better for a low
level of censoring (ie, 10%). For 3 or 4 competing events, ESD better represented the probabilities of events, whereas unimodal
distribution and regression better represented the time to events. Differences in cost-effectiveness estimates, both compared
with no censoring and between approaches, increased with increasing censoring levels.

Conclusions:Modelers should be aware of the different modeling approaches available and that selection between approaches
may be informed by data characteristics. Performing and reporting extensive validation efforts remains essential to ensure
IPD are appropriately represented.
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Introduction

Decision analytic modelers increasingly use alternatives to the
commonly used cohort-level state-transition modeling (STM)
technique to reflect the complex dynamics of clinical pathways.1-3

Modeling techniques, such as discrete-time agent-based modeling
and continuous-time discrete event simulation (DES), are able to
incorporate patient-level characteristics and clinical histories,
multiple timescales, competing resources, and interactions among
different actors, such as physicians and patients. Nevertheless,
these techniques are more demanding than cohort-level STM,
mainly in terms of computational complexity and required
analytical skills to implement them.4,5 Therefore, evidence-based
methodological guidance is essential to inform the design
choices that need to be made and reported on when applying
15 - see front matter Copyright ª 2021, International Society for Pharmacoec
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses
these techniques to support the development of high-quality
models.

DES is a useful alternative to STM and can be used to model
personalized treatment processes because of its ability to reflect
dynamic pathways based on patient-level histories and charac-
teristics.6,7 Although aggregated data can be used to develop DES
models, individual patient data (IPD) are the preferred source of
evidence to account for stochastic uncertainty and patient het-
erogeneity. An important design choice in developing DES models
based on IPD is how competing events are implemented.8

Competing events are those that prevent other events of interest
from occurring or change the probability of their occurrence.9 Four
strategies have been identified to implement competing events in
DES models: (1) sampling times for all competing events and
selecting the event that is the first to occur, (2) sampling the event
onomics and Outcomes Research, Inc. Published by Elsevier Inc. This is an open
/by-nc-nd/4.0/).
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to occur first and sampling the corresponding time-to-event sec-
ond, (3) sampling the time-to-event first and sampling the cor-
responding event second, and (4) using discretized cyclic
probabilities to resemble discrete-time STM.10

Modeling approaches corresponding to these strategies have
been proposed and compared when informed by “uncensored”
IPD generated according to mixtures of event-specific distribu-
tions (ESDs).11 A general recommendationwas made to sample the
time to event based on a multimodal time-to-event distribution
and then to determine the corresponding event second. An
approach that first selects the event to occur and then the corre-
sponding time to event also showed good performance with an
easier implementation. Unfortunately, this guidance cannot be
generalized to DES models informed by “censored” IPD. For “un-
censored” IPD, it is known which competing event occurred for
each patient, allowing the data to be analyzed conditional on
which competing event occurred. For “censored” IPD, there are
patients for whom it is unknown which event would eventually
occur and extrapolation is required. Methods for extrapolation
differ between modeling approaches, and hence, performance of
the approaches may differ between uncensored and censored
data. It is important to appropriately account for censoring in
analyses involving competing events, because neglecting to do so
may affect model outcomes.12 Hence, there is a need for guidance
on how to implement competing events in DES models informed
by censored IPD.

This study aims to describe, illustrate, and compare modeling
approaches for implementing competing events in DES models
informed by censored IPD. Modeling approaches are compared in
a simulation study, and potential differences in terms of health
economic outcomes are analyzed for a case study in colorectal
cancer.
Methods

Censoring can be classified as informative or noninformative
and according to whether individuals are interval, left, or right
censored.13 Here, focus is on noninformative, right-censored data,
because this type of censoring is most common in a clinical and
health economic context. Two modeling approaches for imple-
menting competing events in DES models informed by censored
IPD were defined: (1) using event-specific time-to-event distri-
butions (ESD) and (2) using a unimodal time-to-event distribution
and regression (UDR) model. The approaches are defined using
statistical notation in Supplemental Material 1 found at https://
doi.org/10.1016/j.jval.2021.07.016. The code for implementation
in R14 is provided online: https://personex.nl/research/competing-
risks/. Modeling approaches using event-specific probabilities and
distributions (ESPD) or a multimodal distribution and regression
model (MDR), which have been recommended for uncensored
IPD,11 are not presented here because their implementation was
considered too cumbersome for censored IPD (see Discussion for a
more detailed discussion).

Event-Specific Time-to-Event Distributions

The ESD modeling approach uses event-specific time-to-event
distributions to sample a time-to-event for each competing event
and subsequently selects the first event to occur to be simulated.
See Box 1 for a pseudoalgorithm.

The ESD are estimated according to a cause-specific hazards
model, which assumes that the risk set only includes individuals
who are event free at the respective point in time.15 When fitting
the ESDs, both censored individuals and individuals who experi-
enced a competing event are considered to be censored. This is a
strong assumption that was believed to negatively affect the
performance of the ESD approach for uncensored IPD,11 given that
it is unlikely that censoring that arises from an occurring
competing event would be noninformative.

In a simulation according to the ESD approach, a time for each
competing event needs to be sampled from each corresponding
time-to-event distribution. Subsequently, the event that is the first
to occur, that is, the event corresponding to the lowest sampled
time to event, is selected and will be simulated.

Unimodal Joint Time-to-Event Distribution and
Regression Model

The UDR modeling approach samples the time at which an
event will occur using a single time-to-event distribution that
represents the minimum of all competing time to events, that is,
the time-to-event for the event that is observed. A regression
model is subsequently used to predict to which event the selected
time corresponds. See Box 2 for a pseudoalgorithm.

Here, we assume that the single time-to-event distribution is
unimodal. In theory, this distribution could also be multimodal,
such as a mixture or flexible parametric distribution, but estima-
tion of such distributions may prove challenging for censored IPD
(see Discussion). Because the time-to-event distribution repre-
sents all competing events, only 1 hazard function needs to be
modeled. In doing so, all competing events are treated as 1 event,
and consequently, an individual is either censored or experienced
any type of event that is not censored.

The event corresponding to a time to event is modeled using a
(multinomial) logistic regression model. A logistic regression
model can be used to model binary data, that is, 2 competing
events, whereas a multinomial logistic regression model is
required to model more than 2 competing events. The time to
event is included as a predictor variable in this regression, which
may involve the use of transformations or splines to accurately
model the relation between the time to event and type of event
(response variable). Transformations of the time to event were not
considered in the current simulation or case study, because this
process is hard to automate (see Simulation Study).

A simulation according to the UDR approach is performed by
first sampling a time from the time-to-event distribution and
subsequently an event using the (multimodal) logistic regression
model conditional on the sampled time.

Simulation Study to Compare the Performance of the
Approaches

To compare the modeling approaches’ performance for
different data and disease pathway characteristics, different hy-
pothetical datasets were simulated by first sampling which event
would occur based on event-specific probabilities and then
conditionally on the sampled event, sampling a time from the
corresponding event-specific time-to-event distribution (see
Supplemental Material 2 found at https://doi.org/10.1016/j.jval.2
021.07.016 for the ESPD parameters). The conceptual model
structure used for this simulation study is presented in Appendix
Figure 1 (see Supplemental Material 3 found at https://doi.org/1
0.1016/j.jval.2021.07.016). As illustrated in Figure 1, simulations
were performed for scenarios including different numbers of
competing events nevent (nevent ¼ 2; 3; 4), level of overlap of the
corresponding competing time-to-event distributions poverlap
(poverlapz10%; 50%; 90%, ie low, medium, or high; see
Supplemental Material 4 found at https://doi.org/10.1016/j.jval.2
021.07.016), sample sizes nsample (nsample ¼ 50; 150; 500), and
levels of censoring pcensoring (pcensoringz0%; 10%; 30%; 60%). Two
types of noninformative right censoring were considered: random
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BOX 1. Pseudoalgorithm for the ESD approach to model the time to event T for k mutually exclusive competing events.

Data Analysis:
� For each competing event j; j ¼ 1;.; k, fit a time-to-event distribution Dj:

B For each individual i; i ¼ 1;.; n, define observed censoring indicator cij that indicates whether individual i experienced
event j ðcij ¼ 1Þ or not ðcij ¼ 0Þ.

B Parameterize cause-specific likelihood function Ljðt1; .; tn
��4jÞ according to a specific distribution type.

B Estimate parameters 4j that define distribution Dj by maximum likelihood.
Simulation:
� Obtain time to events for each competing event:

B Draw a time tj for each competing event j; j ¼ 1;.; k by performing a random draw from the corresponding distribution Dj.
� Select the competing event to occur:

B Select event j with the lowest time to event (ie, the first event to occur).
� Simulate the selected event j at the corresponding time tj.

Note. ESD indicates event-specific distribution.
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censoring and follow-up censoring. In the “random censoring”
approach, individuals were censored at a random point before
their event would have happened. In the follow-up “censoring”
approach, individuals were censored if their time to event
exceeded a certain threshold, representing the scenario in which
there is a maximum follow-up time per individual. For the follow-
up censoring approach, pcensoringz60% could not be applied,
because that would censor all observations of some events.
Similarly, pcensoringz30% could not be applied for poverlapz 90%
because of convergence issues.

For each unique combination of the censoring approach, nevent ,
poverlap, nsample, and pcensoring , a total of 10 000 simulation runs were
performed. In each simulation run, an uncensored sample
suncensored of corresponding sample size nsample was sampled based
on ESPD parameters. This sample suncensored was right censored to
censoring level pcensoring according to the censoring approach to
obtain censored sample scensored. Next, both modeling approaches
were applied to analyze sample scensored and, subsequently, to
simulate event incidences and time to events for 100 000 new
individuals to obtain a simulation sample ssimulation for each
BOX 2. Pseudoalgorithm for the UDR approach to model the time

Data Analysis:
� For all competing events combined, fit a single unimodal time-to

B For each individual i; i ¼ 1;.;n, define observed censoring
is censored ðci ¼ 0Þ.

B Parameterize likelihood function Lðt1; .; tnj4Þ according t
B Estimate parameters 4 that define distribution D by maxim

� Fit a (multinomial) logistic regression model to predict the comp
B Fit (multinomial) logistic regression model rðtÞ that pre

j ¼ 1;.; k to occur (dependent variable) based on time t (
Simulation:
� Obtain a time to event for an event to occur:

B Draw a time t for the event to occur by performing a rand
� Select the competing event to occur:

B Obtain probabilities PðCj ¼ 1
��T ¼ tÞ for each competing e

(multinomial) logistic regression model rðtÞ.
B Draw a random number from a Uniform distribution U½0;1
B Select event j to occur using event probabilities PðCj ¼ 1

��T
� Simulate selected event j at time t.

Note. UDR indicates unimodal distribution and regression.
modeling approach. Finally, the modeling approaches’ perfor-
mance was assessed by comparing event incidences and time-to-
event distributions in these newly simulated samples ssimulation

with those in the corresponding uncensored sample suncensored.
Bias in terms of relative absolute incidence difference (RAID)

was used as performance measure for the event incidence:

RAID¼ jIncidencesimulated2Incidenceobservedj
Incidenceobserved

3100% (1)

The bias with regard to simulated time-to-event distributions was
based on the relative entropy, that is, the Kullback–Leibler diver-
gence (KLD), which is a measure of the difference between
probability distribution f ðtÞ and gðtÞ, for which lower values
indicate a better performance16:

KLDðf jgÞ¼
ZN

0

f ðtÞlog f ðtÞ
gðtÞ dt¼

ZN

0

f ðtÞ3 ðlogðf ðtÞÞ2 logðgðtÞÞÞdt

(2)
to event T for k mutually exclusive competing events.

-event distribution D:
indicator ci so that individual i experienced any event ðci ¼ 1Þ or

o a specific unimodal distribution type.
um likelihood.
eting event to occur:
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�.
¼ tÞ and the random number.



Figure 1. Overview of the simulation study. *Not all levels of censoring were applied for censoring occurring because of a maximum
follow-up time (see Methods).
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ESD indicates event-specific distribution; UDR, unimodal distribution and regression.
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Figure 2. Boxplots summarizing the bias of the modeling approaches (lower is better) for the different censoring mechanisms (random
vs follow-up) in the simulation study with regard to (A) the RAID and (B) the relative entropy in terms of the KLD. For each boxplot, the
data points are the mean outcomes of the 10000 simulation runs for the applicable scenarios. For example, in the upper left panel
(number of competing events), the left, gray boxplot is generated based on the bias of ESD under follow-up censoring in all scenarios in
which the number of events was 2.

ESD indicates event-specific distribution; KLD, Kullback–Leibler divergence; RAID, relative absolute incidence difference; UDR, unimodal distribution and
regression.
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Both RAID and KLD were calculated separately for each competing
event. To summarize the RAID and KLD across competing events
per scenario, event-specific performance outcomes were weighted
according to theoretical event incidences (see Supplemental
Material 2 found at https://doi.org/10.1016/j.jval.2021.07.016).

The simulation study was performed in R version 3.4.1.14 Time-
to-event data were simulated and analyzed using Weibull distri-
butions to rule out potential bias because of mismatching distri-
butions. Weibull distributions were selected because these
distributions are commonly used in survival analysis and showed
to accurately represent the distribution of the time-to-event data
in the case study (see Case Study). The nnet package was used to
estimate (multinomial) logistic regression models17 and the flex-
mix package to calculate KLD.18-20

Case Study to Illustrate the Potential Impact on Health
Economic Outcomes

A case study based on data from the randomized phase III
CAIRO3 study of the Dutch Colorectal Cancer Group
(NCT00442637) was performed to illustrate the potential impact
of the different modeling approaches on health economic out-
comes in a real-world scenario. The CAIRO3 study randomized 558
metastatic colorectal cancer patients with stable disease or better
after 6 cycles of capecitabine, oxaliplatin, and bevacizumab in-
duction therapy to either capecitabine and bevacizumab mainte-
nance treatment (intervention) or observation (control) until
progression of disease.21 For both the maintenance and observa-
tion strategy, capecitabine, oxaliplatin, and bevacizumab treat-
ment was to be reintroduced upon progression and continued
until second progression, which was the primary endpoint of the
study. For the case study, we adapted a DES that was previously
developed for comparison with a discrete-time cohort STM in a
health economic evaluation of the CAIRO3,5 to allow for simula-
tions according to the 2 modeling approaches. The DES model was
structured according to the treatment stages used in the CAIRO3
study: postinduction, reintroduction, salvage, and death (see
Appendix Fig. 1 in Supplemental Material 3 found at https://doi.
org/10.1016/j.jval.2021.07.016).

In addition to an analysis based on the complete CAIRO3
patient cohort, clinically relevant subgroup analyses were per-
formed to illustrate potential sample size impact on modeling
outcomes. A total of 8 subgroups with sample sizes ranging
from 50 to 410 were defined according to patient characteris-
tics that were found relevant in the evaluation of the CAIRO3
study,21 that is, treatment response (stable disease vs complete
or partial response) and stage of disease (synchronous vs
metachronous). See Supplemental Material 5 found at https://
doi.org/10.1016/j.jval.2021.07.016 for an overview of these sub-
groups and their event incidences. Different levels of censoring
pcensoring (pcensoringz0%; 10%; 30%; 60%) were applied for each
subgroup analysis to assess the impact of this data character-
istic on the modeling approaches’ performance and health
economic outcomes. Censoring was performed according to the
2 censoring approaches as for the simulation study, with
pcensoringz60% not considered for follow-up censoring (dis-
cussed earlier). For each subgroup, censoring approach, and
pcensoring combination, a probabilistic analysis was performed
based on 5000 runs of 10 000 patients per treatment strategy
in each run. Uncertainty in time-to-event parameters was re-
flected using a nonparametric bootstrap approach,22 and un-
certainty in other parameters was reflected using standard
parametric distributions according standard practice, for
example, beta distributions for health utility values (see Deg-
eling et al5 for details).
Results

The results of the simulation study are summarized in Figure 2,
which visualizes trends in the bias of the modeling approaches
according to the data characteristics. Results for selected scenarios
are presented in Table 1 and Figure 3, whereas results for all
scenarios of the simulation study are presented in Supplemental
Material 6 found at https://doi.org/10.1016/j.jval.2021.07.016. For
the case study, cost-effectiveness outcomes are presented for
selected subgroup analyses in Figure 4 and for all subgroup ana-
lyses in Supplemental Materials 7 and 8 found at https://doi.org/1
0.1016/j.jval.2021.07.016. In summarizing these results, the
following section refers to censoring levels of 10%, 30%, and 60% as
low, moderate, and high, respectively.

Bias of the ESD and UDR Approaches in the Simulation
Study

A higher number of competing events resulted in worsened (ie,
higher) RAID of 8.4%, 13.9%, and 17.1% on average over all other
scenariovariables for 2, 3, and4 events, respectively. Higher overlap
between time-to-event distributions resulted in improved (ie,
lower) RAID of 18.6%, 12.7%, and 7.5% on average for 10%, 50%, and
90% overlap, respectively. Although the impact was lower than the
other scenario variables, higher sample sizes resulted in improved
RAID of 14.5%, 12.6%, and 11.7% on average for a sample size of 50,
150, and 500 individuals, respectively. Higher levels of censoring
resulted inworsenedRAIDof 7.0%,11.5%,16.9%, and21.2%onaverage
for levels of 0%, 10%, 30%, and 60% censoring, respectively.

On average, the ESD modeling approach (9.8%) performed
better in terms of RAID than the UDR approach (16.1%). Never-
theless, this was mainly because of a substantial difference in
performance under random censoring (ESD 8.6%, UDR 18.8%),
whereas under follow-up censoring the difference was limited
(ESD 11.6%, UDR 11.9%). In the scenarios including random
censoring, the ESD approach clearly performed better, with
significantly better performance in many experiments. Under
follow-up censoring, the ESD approach performed better for low
censoring and the UDR approach for moderate censoring, unless
when overlap was high.

Trends in performance for KLD were in line with those for
RAID. A higher number of competing events resulted in worsened
(ie, higher) KLD of 0.117, 0.300, and 0.371 on average over all other
scenario variables for 2, 3, and 4 events, respectively. Higher
overlap between time-to-event distributions resulted in improved
(ie, lower) KLD of 0.443, 0.251, and 0.078 on average for 10%, 50%,
and 90% overlap, respectively. Although the impact was lower
than the other scenario variables, higher sample sizes resulted in
improved KLD of 0.288, 0.247, and 0.237 on average for a sample
size of 50, 150, and 500 individuals, respectively. Higher levels of
censoring resulted in worsened KLD of 0.189, 0.255, 0.279, and
0.360 on average for levels of 0%, 10%, 30%, and 60% censoring,
respectively.

On average, the UDR modeling approach (0.238) performed
better in terms of KLD than the ESD approach (0.277). Neverthe-
less, this was mainly because of a substantial difference in per-
formance under follow-up censoring (UDR 0.179, ESD 0.274),
whereas under random censoring the difference was limited (UDR
0.277, ESD 0.278). Under follow-up censoring, the UDR approach
overall performed better, with significantly better performance in
one-third of the experiments. In the scenarios including random
censoring, the UDR approach performed better than the ESD
approach when there was no censoring. The ESD approach per-
formed better in scenarios including moderate or high levels of
random censoring. For low levels of random censoring, the ESD

https://doi.org/10.1016/j.jval.2021.07.016
https://doi.org/10.1016/j.jval.2021.07.016
https://doi.org/10.1016/j.jval.2021.07.016
https://doi.org/10.1016/j.jval.2021.07.016
https://doi.org/10.1016/j.jval.2021.07.016
https://doi.org/10.1016/j.jval.2021.07.016
https://doi.org/10.1016/j.jval.2021.07.016
https://doi.org/10.1016/j.jval.2021.07.016


Table 1. Mean weighted bias (95% CI) of the modeling approaches for selected scenarios in the simulation study (lower is better).

Number
of events

Distribution
overlap (%)

Censored
proportion (%)

Sample
size

Relative absolute incidence difference
(%)

Random censoring

ESD UDR

2 10 10 50 6.3 (0.3, 16.3) 17.8 (5.7, 28.3)

2 10 10 500 5.0 (1.9, 8.3)* 17.3 (13.7, 20.7)

2 10 30 50 7.9 (0.3, 22.1)* 28.9 (11.7, 46.9)

2 10 30 500 2.5 (0.1, 7.0)* 28.4 (22.9, 33.8)

2 10 60 50 17.1 (0.7, 44.9) 31.1 (6.6, 58.5)

2 10 60 500 12.2 (1.7, 23.0)* 30.4 (22.9, 38.4)

2 90 10 50 3.9 (0.2, 10.0) 5.8 (0.3, 14.9)

2 90 10 500 1.2 (0.0, 3.4)* 4.6 (1.4, 7.8)

2 90 30 50 7.5 (0.3, 20.8) 9.8 (0.4, 25.8)

2 90 30 500 2.4 (0.1, 6.7)* 8.0 (2.6, 13.3)

2 90 60 50 14.5 (0.5, 40.0) 14.6 (0.6, 38.2)

2 90 60 500 4.8 (0.2, 13.3)* 12.3 (4.8, 20.0)

4 10 10 50 13.3 (7.9, 19.9) 31.9 (13.2, 51.4)

4 10 10 500 11.0 (9.4, 12.7)* 27.9 (21.7, 34.4)

4 10 30 50 16.8 (5.9, 30.6)* 43.3 (22.6, 73.2)

4 10 30 500 11.2 (7.0, 16.4)* 36.6 (29.5, 44.7)

4 10 60 50 27.2 (7.4, 52.8) 48.4 (25.3, 84.3)

4 10 60 500 17.6 (8.1, 27.1)* 40.2 (32.8, 48.8)

4 90 10 50 7.6 (2.1, 14.9) 16.5 (7.3, 27.5)

4 90 10 500 3.3 (1.4, 5.6)* 13.3 (10.4, 16.5)

4 90 30 50 13.2 (3.7, 25.6) 25.5 (11.0, 44.6)

4 90 30 500 4.4 (1.3, 8.5)* 20.4 (15.7, 25.4)

4 90 60 50 24.2 (6.6, 47.6) 34.4 (15.0, 62.4)

4 90 60 500 8.2 (2.4, 16.6)* 28.5 (21.6, 36.3)

CI indicates confidence interval; ESD, event-specific distribution; UDR, unimodal distribution and regression.
*Results for the modeling approach that performed best with regard to that respective outcome (ie, lower bias) if the corresponding mean bias was outside the CI of the
other approach. continued on next page
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approach overall performed better for scenarios including 2
competing events, whereas for 3 or 4 events no overall best-
performing approach could be identified.

Impact of Health Economic Outcomes in the Case Study

The case study demonstrated that censoring had an impact on
cost-effectiveness point estimates (Fig. 4 and Supplemental
Material 7 and 8 found at https://doi.org/10.1016/j.jval.2021.07.
016). For example, for the full cohort (n = 558), the net mone-
tary benefit at a willingness to pay of V20 000 per quality-
adjusted life-year gained changed from 2V22665 and 2V22130
without censoring to 2V22246 and 2V27078 at 60% random
censoring, for ESD and UDR, respectively. This impact overall was
larger for clinical subgroups with smaller sample sizes. No
consistent direction in the bias introduced by increased censoring
could be identified. High levels of censoring consistently resulted
in increased uncertainty surrounding cost-effectiveness point es-
timates. For most clinical subgroups, the impact of censoring was
comparable between modeling approaches.
Discussion

It is widely known that censoring needs to be accounted for in
health economic analyses, and our results substantiate this for DES
models including competing events. Previous research on
modeling approaches for implementing competing events in DES
models argued a limited generalizability of recommendations for
scenarios “without censoring” to those “with censoring” because
of anticipated differences in performance following different
implementations of the modeling approaches.11 Our study indeed
demonstrates that increased levels of censoring affected the per-
formance of modeling approaches in the simulation study and
cost-effectiveness outcomes in the case study. Additionally,
moderate (30%) or higher levels of censoring inflated uncertainty
in cost-effectiveness estimates and, hence, the presence of
censoring may affect decision uncertainty and the value of col-
lecting further information.

Which modeling approach is preferable based on the simula-
tion study results depends on the type of noninformative right
censoring and whether accuracy in event incidences or time-to-
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Table 1. Continued

Relative absolute incidence
difference (%)

Relative entropy (Kullback-Leibler divergence)

Censoring owing to maximum
follow-up

Random censoring Censoring owing to maximum follow-up

ESD UDR ESD UDR ESD UDR

10.3 (5.6, 17.4)* 15.8 (12.0, 21.2) 0.231 (0.126, 0.371) 0.257 (0.126, 0.424) 0.226 (0.118, 0.367) 0.190 (0.085, 0.336)

9.7 (8.0, 11.9)* 15.5 (13.7, 17.5) 0.208 (0.173, 0.245) 0.237 (0.196, 0.282) 0.206 (0.171, 0.244) 0.173 (0.137, 0.213)

25.1 (9.4, 53.5) 14.7 (2.1, 25.3) 0.245 (0.135, 0.389)* 0.419 (0.268, 0.613) 0.404 (0.143, 1.266) 0.201 (0.054, 0.454)

26.6 (19.1, 37.1) 14.1 (9.7, 17.7)* 0.214 (0.180, 0.252)* 0.395 (0.348, 0.446) 0.245 (0.181, 0.416) 0.140 (0.081, 0.211)*

- - 0.315 (0.169, 0.539)* 0.553 (0.378, 0.763) - -

- - 0.247 (0.208, 0.288)* 0.515 (0.463, 0.568) - -

5.3 (0.2, 14.5) 4.3 (0.2, 12.3) 0.054 (0.020, 0.120) 0.058 (0.022, 0.126) 0.050 (0.015, 0.121) 0.047 (0.015, 0.113)

3.0 (0.2, 6.6) 1.4 (0.1, 4.0) 0.012 (0.005, 0.023) 0.016 (0.008, 0.027) 0.013 (0.005, 0.026) 0.011 (0.004, 0.021)

11.6 (0.5, 30.9) 10.4 (0.4, 29.4) 0.067 (0.022, 0.151) 0.074 (0.025, 0.160) 0.074 (0.015, 0.214) 0.065 (0.017, 0.173)

6.1 (0.3, 14.0) 7.9 (2.2, 14.1) 0.016 (0.008, 0.028) 0.024 (0.013, 0.039) 0.017 (0.005, 0.038) 0.014 (0.006, 0.031)

- - 0.127 (0.034, 0.318) 0.118 (0.036, 0.262) - -

- - 0.042 (0.022, 0.067) 0.050 (0.028, 0.077) - -

15.4 (10.8, 18.3) 18.4 (14.5, 24.5) 0.654 (0.508, 0.830) 0.587 (0.415, 0.795) 0.651 (0.498, 0.864) 0.645 (0.499, 0.823)

17.0 (11.4, 19.4)* 19.2 (17.1, 20.7) 0.622 (0.579, 0.667) 0.550 (0.500, 0.602)* 0.667 (0.585, 0.773) 0.601 (0.552, 0.660)

- - 0.646 (0.501, 0.830) 0.682 (0.525, 0.875) - -

- - 0.605 (0.559, 0.652) 0.649 (0.600, 0.699) - -

- - 0.670 (0.518, 0.868) 0.742 (0.583, 0.938) - -

- - 0.609 (0.563, 0.656)* 0.715 (0.658, 0.773) - -

10.9 (4.0, 18.4) 11.4 (3.7, 22.5) 0.156 (0.062, 0.322) 0.205 (0.090, 0.415) 0.176 (0.065, 0.394) 0.139 (0.054, 0.286)

9.7 (6.9, 12.7) 7.8 (4.7, 10.9) 0.089 (0.057, 0.124)* 0.127 (0.094, 0.165) 0.100 (0.064, 0.145) 0.067 (0.041, 0.100)

- - 0.179 (0.074, 0.358) 0.245 (0.115, 0.455) - -

- - 0.095 (0.062, 0.132)* 0.161 (0.122, 0.206) - -

- - 0.269 (0.113, 0.544) 0.296 (0.144, 0.502) - -

- - 0.130 (0.090, 0.175)* 0.201 (0.153, 0.252) - -
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event distributions is considered more important. Guidance for
selecting a modeling approach for uncensored IPD based on
Degeling et al11 and for censored IPD based on the current study is
presented in Figure 5. It is important to realize that this summary
cannot possibly capture all nuances, such as the interaction be-
tween the overlap of competing time-to-event distributions and
level of censoring, but it may serve as a general guide for identi-
fying an appropriate modeling approach. As can be seen from the
provided R code, both approaches are straightforward to imple-
ment, although the ESD may be considered slightly more practical
because it only involves time-to-event modeling, whereas the
UDR approach also involves (multinomial) logistic regression
modeling conditional on the time to event. Importantly, modelers
should be aware of the different approaches that are available and
perform extensive internal validation to inform which approach
will be used or, at least, verify that the chosen approach extrap-
olates the event incidences and time-to-events appropriately.

These findings are partly in line with the Professional Society
for Health Economics and Outcomes Research and Society for
Medical Decision Making modeling good research practices
guidelines23 to first sample the time to event from a joint time-to-
event distribution and then sample the corresponding event,
which corresponds to the UDR approach. Nevertheless, it is
important to realize this recommendation did not discuss the
impact of using censored IPD. Furthermore, the performance of
this strategy heavily depends on the absence of multimodality in
the combined time-to-event distribution, which is why mixture
distributions were used in the study providing guidance for un-
censored IPD.11 Because it uses event-specific time-to-event dis-
tributions, the ESD approach is better able to represent
distributions with low overlap.

The results of the simulation study demonstrate that decision
analytic modelers should be aware of the alternative modeling
approaches available and that these might result in different levels
of performance and health economic outcomes. Extensive
(reporting of) validation efforts is essential to assess whether IPD
are appropriately represented. Nevertheless, we acknowledge that
validation in the presence of censoring can be challenging,
because commonmeasures to assess performance of the modeling
approaches, such as the RAID and KLD, cannot be used for
censored data. Nevertheless, these measures could be used in this
study, because the simulated event incidences and time-to-event
distributions could be compared with the “uncensored truth”
(Fig. 1), which will not be available for studies using censored data



Figure 3. Bar charts of the bias of the modeling approaches (lower is better) for the different censoring mechanisms (random vs follow-
up) for selected scenarios of the simulation study with regard to (A) the RAID and (B) the relative entropy in terms of the KLD. The height
of the bar charts indicates the mean bias (RAID or KLD) for that specific scenario over the 10000 simulation runs, and the error bars show
the 95% confidence interval around that mean bias.

ESD indicates event-specific distribution; KLD, Kullback–Leibler divergence; RAID, relative absolute incidence difference; UDR, unimodal distribution and
regression.
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Figure 4. Incremental cost-effectiveness planes for selected levels of censoring and clinical subgroups of the case study and different
censoring mechanisms (ie, random censoring and follow-up censoring). The ellipses represent the multivariate 95% confidence intervals
around the cost-effectiveness point estimates, which are represented by the different point shapes (ie, small open circle and triangle).
The different colors distinguish between different levels of censoring, whereas the different point shapes (ie, small open circle or triangle)
and line types (ie, solid of dashed) distinguish between the different modeling approaches. Note that a level of 60% censoring is not
included in the bottom graphs because this level of censoring could not be achieved for the follow-up censoring mechanism (see
Methods).

ESD indicates event-specific distribution; UDR, unimodal distribution and regression.
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in practice. Although less straightforward to interpret and chal-
lenging to combine into 1 performance measure for modeling
approaches as a whole, alternative measures are available to
assess discrimination and calibration of single survival models,
while accounting for censoring.24 An example is Demler et al’s
Greenwood-Nam-D’Agostino statistic,25 which is a modification of
Hosmer-Lemeshow’s statistic by Nam and D’Agostino.26

Another point of consideration is whether multivariable
models are being developed to reflect patient heterogeneity, so
that patient characteristics or treatment histories influence the
occurrence and timing of events. Multivariable models are most
easily implemented for the UDR approach, especially for scenarios
including more than 2 competing events, because the variable
selection procedures, for example, only need to be performed for 1
survival model and 1 (multinomial) logistic regression model.
Nevertheless, further research is needed to assess potential dif-
ferences between approaches when used to reflect such
heterogeneity.

In this article, we did not include an ESPD modeling approach
based on the strategy of sampling an event first and the corre-
sponding time-to-event second, nor did we include a MDR
modeling approach based on the same strategy as UDR. Although
both approaches were included in the study considering uncen-
sored IPD11 and we have successfully implemented them for
censored IPD, we found their implementation unproportionally
cumbersome for censored IPD without clear benefits in terms of
performance compared with ESD and UDR. The ESPD approach
requires event-specific probabilities and time-to-event distribu-
tions to be estimated, for which there is no support in standard
statistical software packages, requiring modelers to define and
optimize custom likelihood functions themselves, preferably for
different parametric distribution types. Although mixture distri-
butions can theoretically be used to implement the multimodal
time-to-event distribution in an MDR approach,27,28 we believe
this approach will unlikely be convenient in practice. It required
the ESPD approach to be applied to generate start values to in-
crease the probability of convergence in the maximum likelihood
estimation. We found convergence and performance were poor
compared with the other modeling approaches. Another approach
that could be explored in further research is to use flexible para-
metric survival distributions, such as survival splines,29 to model
multimodal time-to-event distributions.

This study has certain limitations. First, we did not consider
transformations of time in the (multinomial) logistic regression
model for the UDR approach, which may have negatively affected
its performance with regard to RAID because a linear relation does
not necessarily best describe the relation between the time to
event and event probabilities. Second, only noninformative and
right-censored data were considered. Hence, results and recom-
mendations cannot be generalized to scenarios involving infor-
mative, interval-, or left-censored data. Third, generalizability is
also limited by the deliberate decision to use Weibull distributions
in the simulation study. Although this allowed for an unbiased
comparison of the modeling approaches, underlying distributions
are unknown in practice and performance of the approaches may
vary depending on the flexibility of selected distributions to
describe the data. Finally, we generated datasets by first sampling
an event based on event-specific probabilities and conditionally
sampling times from event-specific time-to-event distributions,
which may have benefited one of the approaches. Alternatively,



Figure 5. Flowchart summarizing the high-level guidance for selecting a modeling approach based on the type and level of censoring,
number of competing events, and importance of time-to-event predictions versus event incidences. Note that the guidance for
uncensored data is based on Degeling et al,11 which found that the ESPD and MDR approaches were preferable over the ESD and UDR
approaches, and that this summary figure does not capture all nuances, such as the overlap between competing time-to-event
distributions. *The ESPD and MDR were found to have similar performance and both were recommended for use, but the ESPD
approach was considered more straightforward to implement.

Is there censoring in the data
based on which the competing

events are modelled?

Yes
(censoring)

No
(no censoring)

MDR* ESPD*

ESD

ESD

UDR UDR

UDR

ESD

Follow-up
censoring Is the censoring believed to occur at

random points in time or due to a
fixed duration of follow-up?

Random
censoring

No (2 events) Are there more than two
competing events?

Yes (3 or 4 events)

Low (10%) Low (10%)
Moderate (30%)
or high (60%)

Moderate (30%)
or high (60%)What is the level of

censoring?
What is the level of

censoring?

Event
incidences Is the emphasis on accurately

representing the time-to-event
or event incidences?

Time-to-event

ESD indicates event-specific distribution; ESPD, event-specific probabilities and distributions; MDR, multimodal distribution and regression; UDR, unimodal
distribution and regression.
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datasets can be generated according mechanisms that are
consistent with the ESD or UDR approach. Further research is
warranted into all these aspects.
Conclusions

Censoring has an impact on the performance of modeling
approaches to implement competing events in DES models and,
thereby, affects cost-effectiveness point estimates. When IPD are
censored at random times, the ESD modeling approach per-
formed best in the simulation study. When censoring occurs
because of a maximum follow-up time for 2 competing events,
the ESD approach performed best for low levels of censoring (ie,
10%) and the UDR approach for moderate levels of censoring (ie,
30%). For scenarios including 3 or 4 competing events and
follow-up censoring, the UDR approach represented the time-
to-event distributions more accurately, whereas the ESD
approach performed better in terms of the event incidences.
Nevertheless, substantial differences in performance between
the modeling approaches for different scenarios highlighted the
need for extensive validation efforts by modelers to assure IPD
are appropriately represented.
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