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Abstract: Skeletal diseases and their surgical treatment induce severe pain. The innervation density

of bone potentially explains the severe pain reported. Animal studies concluded that sensory myelin-

ated A@-fibers and unmyelinated C-fibers are mainly responsible for conducting bone pain, and that

the innervation density of these nerve fibers was highest in periosteum. However, literature regard-

ing sensory innervation of human bone is scarce. This observational study aimed to quantify sensory

nerve fiber density in periosteum, cortical bone, and bone marrow of axial and appendicular human

bones using immunohistochemistry and confocal microscopy. Multivariate Poisson regression analy-

sis demonstrated that the total number of sensory and sympathetic nerve fibers was highest in peri-

osteum, followed by bone marrow, and cortical bone for all bones studied. Bone from thoracic

vertebral bodies contained most sensory nerve fibers, followed by the upper extremity, lower

extremity, and parietal neurocranium. The number of nerve fibers declined with age and did not dif-

fer between male and female specimens. Sensory nerve fibers were organized as a branched network

throughout the periosteum. The current results provide an explanation for the severe pain accompa-

nying skeletal disease, fracture, or surgery. Further, the results could provide more insight into mech-

anisms that generate and maintain skeletal pain and might aid in developing new treatment

strategies.

Perspective: This article presents the innervation of human bone and assesses the effect of age,

gender, bone compartment and type of bone on innervation density. The presented data provide an

explanation for the severity of bone pain arising from skeletal diseases and their surgical treatment.

© 2021 The Author(s). Published by Elsevier Inc. on behalf of United States Association for the Study of

Pain, Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)
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M
usculoskeletal diseases are highly prevalent in
the general population and are a leading cause
of disability among patients and medical costs

every year.5,21,32,34,44,58 Diseases affecting bone and their
(surgical) treatment can lead to considerable pain.18 Bone
pain negatively affects mobility, inhibits rehabilitation,
and can lead to long-term disabilities.12,13,42,50,53,62,63 The
complex underlying mechanisms and multiple possible eti-
ologies of bone pain, make this pain difficult to
attenuate.39,46,48

A deeper understanding of sensory innervation of
human bones could aid in improved treatment of bone
1385
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pain. Recent reports have shown innervation density to
correlate with the presence of pain, for example regard-
ing intervertebral disc innervation in low back pain.15,43

However, literature on human bone innervation is scarce.
Some early reports on human bone innervation exist, but
these studies did not yet have access to current advanced
imaging techniques.49,61 Previous studies in rodents dem-
onstrated that periosteum, cortical bone and bone mar-
row are all innervated with afferent sensory nerve fibers
and post-ganglionic sympathetic neurons.8,9,27,37,41,59

The main function of sensory nerve fibers is conduction
of sensory stimuli from the bone, however, together
with sympathetic fibers, they also play a role in bone
healing and remodeling.2,7,10,17,33,45,47,54 Several mam-
malian studies identified two important types of sensory
nerve fibers performing these functions: myelinated A@-
fibers and smaller diameter, unmyelinated C-
fibers.8,23,24,26,27,38 A@-fibers are mainly responsible for
conducting sharp, localized pain, while C-fibers transmit
dull, diffuse pain.40 Earlier mammalian studies concluded
that innervation density of sensory nerve fibers is highest
in the periosteum, followed by bone marrow and cortical
bone.8,37 The periosteum is therefore suggested to be a
major contributor to pain arising from musculoskeletal
diseases, but data in humans are lacking.
The aim of the present study was to quantitatively

explore the number and distribution of A@-fibers, C-
fibers, and sympathetic fibers in axial and appendicular
human bones using immunohistochemistry, and fluores-
cent and confocal microscopy. Furthermore, this study set
out to assess the distribution of nerve fibers between dif-
ferent bone-related compartments (ie periosteum, bone
marrow, and cortical bone), between different anatomi-
cal locations (ie neurocranium, thoracic spine, upper
extremity and lower extremity), and between genders.
Lastly, the effect of age on bone innervation in the
elderly population included in this study was determined.
Methods

Tissue Collection
In order to represent the human skeleton as

completely as possible, experiments were performed on
available anatomical specimens from parietal bones of
Figure 1. A cross-section of a radius stained with hematoxylin an
bone marrow/trabecular bone (A), cortical bone (B) and periosteum
poietic stem cells and adipose tissue (asterisk). In the cortical bon
bone as part of an osteon and contain blood vessels and/or nerve fib
that surrounds the outer surface of the cortical bone and consists of
the neurocranium, thoracic vertebral bodies, midshaft
humeri, midshaft radii, midshaft femora, and midshaft
tibiae. Of all bones, a cross-section containing perios-
teum, cortical bone and bone marrow was retrieved
(Fig. 1). To prevent interference of joint disease in inner-
vation density, midshaft portions of long bones were
used.6,28 No approval was needed from the medical
research ethics committee for this study. Tissues were
collected from bodies that entered the department of
anatomy of our institution through a donation pro-
gram. These persons provided written consent during
life, that allowed the use of their entire bodies for edu-
cational and research purposes and therefore, samples
were collected based on availability.

Bodies were previously fixated in 4% formaldehyde
for varying durations (6 mo − 4 y). Age and sex of the
bodies was known. From the long bones, 0.5 cm trans-
versal sections of the diaphysis were gently cut using a
saw (Dremel 3000, Racine, WI, USA), and from the tho-
racic vertebrae 0.5 cm sagittal sections of the vertebral
body. Sections measuring 1 £ 1 cm from the parietal
bone of the neurocranium were obtained using a saw.
The anatomical specimens were stored until further
processing in 4% buffered formaldehyde to preserve tis-
sue characteristics and prevent decay.
Tissue Processing
The collected anatomical specimens were decalcified

using 0.5 M ethylenediaminetetraacetic acid (EDTA). Every
seven days the decalcification progress was radiographi-
cally monitored using a m-CT scanner (PerkinElmer Quan-
tum FX, Waltham, MA, USA). After each cycle of seven
days, anatomical specimens were again fixated with 4%
formaldehyde overnight, and placed in fresh EDTA the
next day. Upon complete decalcification, anatomical speci-
mens were stored in 15% sucrose in 0.1M phosphate-buff-
ered saline (pH 7.4) at 4�C for further processing.

Anatomical specimens were dehydrated in graded
ethanol series, cleared in xylene and embedded in par-
affin. 5 mm thick sections were cut and mounted on
clean, positively charged microscopic slides (VWR Pre-
mium Printer Slides, Radnor, PA, USA). Cross-sections
were dried overnight at room temperature (RT), placed
for five hours on a 60�C plate, and subsequently
d eosin (H&E) displays the three bone-related compartments:
(C) (50x magnification). The bone marrow consists of hemato-

e, Haversian canals run parallel to the longitudinal axis of the
ers (arrow). The periosteum is a thin sheath of connective tissue
a cellular rich layer and a fibrous layer.
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incubated at 60°C overnight to improve microscopic
slide attachment.
Immunohistochemistry on Bone Cross-
Sections
With immunohistochemistry, distinctive molecular

markers can be used to label and visualize specific sen-
sory and sympathetic nerve fibers. A@-fibers were
labeled with anti-neurofilament 200 kD (NF-200) anti-
bodies (Developmental Studies Hybridoma Bank, Iowa
City, IA, USA). NF-200 is an intermediate filament part
of the cytoskeleton of A@-fibers.26,31 C-fibers express cal-
citonin gene-related peptide (CGRP), a neurotransmitter
involved in nociception and nerve injury, and were
labeled with anti-CGRP (Sigma-Aldrich, St. Louis, MO,
USA).11,26,56 Anti-tyrosine hydroxylase (TH) antibodies
(Pel-Freez, Rogers, AR, USA), an enzyme part of the cate-
cholamine synthesis, were used to label sympathetic
fibers.19 Anti-Protein gene product 9.5 (PGP9.5) (Dako,
Carpinteria, CA, USA) antibodies were used as a pan-
neuronal marker.14,36,60 As positive controls, a human
vagus nerve for NF-200, CGRP, PGP9.5 antibodies, and a
Table 1. Background Information on Primary and Se

PRIMARY/SECONDARY

ANTIBODY

IMMUNOGEN MANUFACTURER

RAISED IN, MONO/P

CATALOGUE AND L

PGP9.5 Purified PGP9.5 isolated

from bovine brain

Dako, rabbit, po

Cat# Z5116, Lo

20043529

NF-200 Semi-purified neurofila-

ment 200 kD from rat

brain homogenate

Developmental S

Hybridoma Ban

mouse, monoc

Cat# RT97

CGRP Purified rat a-CGRP pep-

tide. The epitope recog-

nized by the antibody

resides within the C-ter-

minal ten amino acids of

rat a-CGRP

Sigma-Aldrich, m

monoclonal, C

C7113, Lot#

106M4836V

TH SDS-denatured rat tyro-

sine hydroxylase purified

from

pheochromocytoma

Pel-Freez, rabbit

clonal, Cat# P4

Lot# AJO319O

BrightVision Poly-AP

Anti-rabbit

ImmunoLogic (V

goat, Cat#

VWRKDPVM11

Lot# 191217

BrightVision Poly-AP

Anti-mouse

ImmunoLogic (V

goat, Cat#

VWRKDPVR11

251018

Alexa Fluor 594 Goat

Anti-rabbit

Jackson Immuno

goat, polyclon

111-586-045,

112163
human sympathetic trunk for TH and PGP9.5 antibodies
were used. Primary antibodies were omitted in the
negative controls. Details of the primary antibodies,
including references to antibody characterization, are
presented in Table 1.
Bone cross-sections were deparaffinized in xylene

(3 £ 5 min), stepwise hydrated in an ethanol gradient
(3 £ 5 min in 100% and in 96%, 3 min in 80%, 70%, and
50%), and subsequently washed in de-ionized water.
For antigen retrieval, cross-sections were incubated in
0.01M citrate buffer (pH 6.0) for five minutes at RT. Sam-
ples were then transferred to an 80�C citrate buffer for
40 minutes, and subsequently cooled down to RT. Bone
cross-sections were rinsed with wash buffer (0.05 M tris-
buffered saline (TBS) (pH 7.6) and 0.05% Tween), and
blocked with 5% normal human serum (Jackson
Immuno Research, West Grove, PA, USA) in 0.05 M TBS
(pH 7.6) for ten minutes at RT. The blocking buffer was
removed, and primary antibodies were added in TBS
with 3% bovine serum albumin (BSA) (GERBU Biotech-
nik GmbH, Heidelberg, BW, DE), and incubated over-
night at 4�C, except for the PGP9.5 antibodies, which
were applied for 48 hours.
condary Antibodies

, SPECIES

OLYCLONAL,

OT NUMBER

DILUTION REFERENCE

lyclonal,

t#

Cross-sections: 1:2000

Whole-mount: 1:100

Manufacturer’s informa-

tion (Bernal Sierra et al.,

2017)3

(Cleypool et al., 2020)12

(Rots et al., 2019)51

tudies

k (DSHB),

lonal,

Cross-sections: 1:1000 Manufacturer’s informa-

tion (Haskins et al.,

2017)20 (Lawson et al.,

1993)30

(Vieh€ofer et al., 2015)62

ouse,

at#

Cross-sections: 1:500 Manufacturer’s informa-

tion (Yen et al., 2006)65

, poly-

0101,

Cross-sections: 1:500

Whole-mount: 1:100

Manufacturer’s informa-

tion

(Cleypool et al., 2020)12

(Rots et al., 2019)51

WR),

0AP,

Used for cross-sections

WR),

0AP, Lot#

Used for cross-sections

Research,

al, Cat#

Lot#

Whole-mount: 1:200
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After incubation in primary antiserum, bone cross-sec-
tions were washed with wash buffer, followed by incu-
bation in secondary antibodies for 30 minutes at RT.
BrightVision Poly AP-anti-Rabbit (ImmunoLogic VWR,
Amsterdam, NH, NL) was used for TH and PGP 9.5 anti-
bodies, and Poly AP-anti-Mouse for NF-200 and CGRP
antibodies. Bone cross-sections were then rinsed with
wash buffer, followed by 10 minutes incubation in Liq-
uid Permanent Red (LPR) (Dako, Carpinteria, CA, USA).
LPR was washed away with TBS and de-ionized water.
To obtain sufficient contrast for tissue examinations,
bone cross-sections were counterstained with hematox-
ylin. Finally, a cover slip with Entellan (Merck KGaA,
Darmstadt, HE, DE) was applied, and bone cross-sections
were air dried for 12 hours at RT before imaging.
Immunohistochemistry on Whole-Mount
Preparations of Periosteum
Whole-mount preparations of periosteum were har-

vested from midshaft radii. Excess muscle was removed
using a carbon steel surgical blade No. 20 (Swan-Mor-
ton, Sheffield, YSS, ENG). Sharpey’s fibers were gently
cut, and periosteum was taken off the bone by careful
elevation. The periosteum was constantly irrigated
with TBS during dissection to prevent tissue dehydra-
tion. Whole-mount samples were then frozen and
thawed twice in TBS, and washed in whole-mount
wash buffer (0.05 M TBS (pH 7.6) and 0.1% Saponin).
Subsequently, whole-mount samples were incubated
for 90 minutes at 37�C in blocking solution containing
5% normal human serum and whole-mount wash
buffer. Primary antibodies TH and PGP9.5 were
applied for 12 hours and 48 hours, respectively, in
whole-mount wash buffer with 3% BSA at RT. Primary
antiserum was aspirated and whole-mount samples
were rinsed with whole-mount wash buffer. Alexa
Fluor 594 goat anti-rabbit secondary antibodies (Jack-
son ImmunoResearch, West Grove, PA, USA) were
applied for 30 minutes at RT in whole-mount wash
buffer. BSA (3%) was added to minimize non-specific
binding. Finally, samples were washed with whole-
mount wash buffer, covered with FluorSave (Sigma-
Aldrich, St. Louis, MO, USA), and dried for 12 hours at
RT before imaging.
Microscopy and Nerve Fiber
Quantification
High-power field (HPF, 400x magnification) images of

bone cross-sections were captured with a Leica DM6 B
(Wetzlar, HE, DE) fluorescent microscope using LAS X
imaging software. A 400x magnification (311 £ 233 mm
in dimension) was used to distinguish between individ-
ual axons. The I3 filter cube (excitation range: blue, exci-
tation filter: BP 450 - 490 nm, dichromatic mirror:
510 nm, and suppression filter: LP 515 nm) was set.
Three HPFs were obtained per bone compartment per
histology slide. The imaging location was chosen so that
each set of three HPFs would adequately resemble the
overall bone-related compartment. Fluorescent images
of bone cross-sections were analyzed, and nerve fibers
were quantified manually in ImageJ (NIH, Bethesda,
MD, USA) by two observers (J.S. and D.O.). A fiber was
counted if it was identifiable as a vividly fluorescent
solid, solitary, round (in case of transverse cross-section)
or elongated (in case of longitudinal cross-section) struc-
ture. No minimal dimensions were pre-specified. In case
one fiber yielded more than one cross-section due to a
sinuous course, this was counted as a single fiber. Mean
fiber count of the three HPFs and of both observations
was used for analysis. Brightness and contrast were
adjusted to enhance image quality, no other image cor-
rections or filters were used.

For whole-mount preparations of periosteum, images
were captured with a ZEISS LSM 800 (Oberkochen, BW,
DE) laser confocal microscope using a 5x objective, a 180
mm pinhole and ZEN imaging software. A 594 nm excita-
tion beam was used, and emission was detected using a
620 nm emission filter. Z-stacks were generated to allow
for three-dimensional assessment of nerve fiber distri-
bution through the full-thickness periosteum using a 25
mm step size. Acquired images of whole-mount prepara-
tions were displayed as a maximal intensity projection in
ImageJ. Background was subtracted using the Subtract
Background function in ImageJ, and brightness and
contrast were adjusted in Adobe Photoshop (Adobe Sys-
tems Incorporated, San Jose, CA, USA).
Statistical Analysis
Data was subsequently analyzed in RStudio version

1.2.5033 (RStudio Inc., Boston, MA, USA). Data distribu-
tion was checked for normality graphically, using Q-Q
plots, and confirmed using Shapiro-Wilk testing.
Spearman’s Rho and an Intra-Class Correlation coeffi-
cient for absolute agreement were calculated to assess
inter-observer variation. Comparisons were performed
using a Kruskal-Wallis test and a post hoc Wilcoxon
rank-sum test. P-values were corrected for multiple
testing with a Bonferroni correction. A multivariate
regression was performed using a generalized linear
model with Poisson residuals and a log link function
allowing for identification of interaction effects
between variables. Residuals were checked for normal-
ity using Q-Q plots. If interaction effects were statisti-
cally significant, the effect was embedded into the
generalized linear model. Variables studied were age,
gender, bone-related compartment (ie periosteum,
bone marrow, and cortical bone), immunohistochemi-
cal staining, anatomical location, and nerve fiber
count. As nerve fiber count functioned as the outcome
variable, ten unique interaction effects were possible
and thus analyzed. Data were presented as median
number of nerve fibers with interquartile range (IQR).
Results from the multivariate regression were reported
as incident rate ratios (IRR) calculated from Poisson
coefficients (ePoisson coefficient), and represent a multipli-
cative factor. In addition, estimated marginal means
(EMM) with standard error (SE) were presented. The
level of significance was set at P < .05.
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Results

Demographics of Collected Tissue
A total of 54 anatomical specimens were harvested

from 29 human fixated cadavers. Four parietal bones
(7%), six thoracic vertebrae (11%), five midshaft humeri
(9%), seven midshaft radii (13%), 17 midshaft femora
(32%), and 15 midshaft tibiae (28%) were available and
studied after harvesting. Sixteen (55%) cadavers were
female, and overall mean age was 84.0§ 8.2 years (range
66−99). Anatomical specimen characteristics are dis-
played in Table 2. Complete decalcification of anatomical
specimens was achieved after a maximum of 23 days. A
total of 3 NF-200, 5 CGRP, 4 TH, and 1 PGP9.5-stained
bone cross-sections failed during the immunohistochemi-
cal staining process and were thus discarded, despite pro-
tocol changes to improve microscopic slide attachment.
Figure 2. Fluorescent images showing NF-200-positive myelin-
ated A@-fibers (A, A1-A3), CGRP-positive unmyelinated C-fibers
(B, B1-B3), TH-positive sympathetic nerve fibers (C, C1-C3), and
PGP9.5-positive nerve fibers (D, D1-D3) in red. In periosteum
and bone marrow, sensory nerve fibers were organized in large
Innervation of the Periosteum, Cortical
Bone, and Bone Marrow
Overall, periosteum containedmost nerve fibers, as com-

pared to bone marrow, and cortical bone (Fig 2). The
amount of A@-fibers was largest in the periosteum (median
7 (IQR 4−12) fibers/HPF; P < .001 versus cortical bone, P <
.001 versus bone marrow), followed by bone marrow (2 (1
−4) fibers/HPF; P < .001 vs cortical bone), and cortical bone
(0 (0−1) fibers/HPF) (Fig2A1-A3, E). The number of C-fibers
in periosteum was higher (6 (3−10) fibers/HPF; P < .001 vs
cortical bone, P = .075 vs bone marrow), compared with
bone marrow (5 (2.75−8) fibers/HPF; P < .001 vs cortical
bone), and cortical bone (1 (1−2) fibers/HPF) (Fig 2B1-
B3,2E). The number of sympathetic nerve fibers was great-
est in periosteum (9 (6−13) fibers/HPF; P < .001 vs cortical
bone, P < .001 vs bonemarrow), followed by bonemarrow
(5 (3−9) fibers/HPF; P < .001 vs cortical bone), and cortical
bone (2 (1−4) fibers/HPF) (Fig 2C1-C3, E). PGP9.5-positive
nerve fibers were mostly present in periosteum (9 (6−16.2)
fibers/HPF; P < .001 vs cortical bone, P < .001 vs bone mar-
row), followed by bone marrow (3 (2−5.75) fibers/HPF; P <
.001 vs cortical bone), and cortical bone (1 (1−3) fibers/
HPF) (Fig 2D1-D3, 2E). Spearman’s Rho was 0.890 and the
intra-class correlation coefficient for absolute agreement
was 0.851 (0.751−0.904), indicating good to excellent
agreement between observers.29,55
Table 2. Bone Sample Characteristics

CHARACTERISTICS VALUE

Gender, n (%)

Female 16 (55%)

Male 13 (45%)

Age, mean (SD) (years) 84.0 (§8.2)

Bones, n (%) N = 54

Neurocranium 4 (7%)

Thoracic vertebra 6 (11%)

Midshaft humerus 5 (9%)

Midshaft radius 7 (13%)

Midshaft femur 17 (32%)

Midshaft tibia 15 (28%)

bundles (A1, A3, B1, B3), or were branched off as single nerve
fibers (A3, D1). TH-positive sympathetic nerve fibers were co-
localized with blood vessels (C1, C3). Cortical bone only con-
tained sensory and sympathetic nerve fibers in Haversian canals
(C2, D2), but not every canal was innervated (A2). Immunohis-
tochemical stainings were quantified and presented as median
(IQR) number of nerve fibers per HPF for periosteum (light
blue), cortical bone (marine blue), and bone marrow (dark
blue) (E). Fiber counts from all locations were combined. For
every immunohistochemical staining, periosteum contained
most nerve fibers, followed by the bone marrow, and cortical
bone (color version of figure is available online.)
Nerve Fiber Distribution in Bone-Related
Compartments
The periosteum and bone marrow cavity were inner-

vated with large bundles of multiple sensory nerve



Figure 3. Confocal images of whole-mount preparations of periosteum from a radius (female, 83 ) demonstrating PGP9.5-positive
nerve fibers (A-B), and TH-positive sympathetic nerve fibers (C) in white. PGP9.5-positive nerve fibers were organized in a branched
network throughout the periosteum. TH-positive sympathetic nerve fibers were co-localized with blood vessels, which indirectly
showed the abundancy of blood vessels in the periosteum.
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fibers, while in the cortical bone only single fibers con-
fined to Haversian canals were observed (Fig 2A1, A3,
B1, D2 and 3A-3B). Sympathetic fibers were also present
in all three bone-related compartments, but always co-
localized with blood vessels (Fig 2C1-C3). Confocal
images of periosteal whole-mount samples were pre-
pared to allow assessment of coherence between nerve
fibers, and illustrated that PGP9.5-positive nerve fibers
(pan-neuronal marker) formed a branched network
throughout the periosteum (Fig 3A-3B). Periosteal
whole-mount preparations confirmed the co-localiza-
tion of sympathetic fibers and blood vessels, and indi-
rectly illustrated the abundancy of blood vessels in the
periosteum (Fig 3C).
Differences between A@-fibers, C-fibers, and sympa-

thetic nerve fibers within bone-related compartments
were analyzed. See previous section and Fig 2E for
median nerve fiber count. In periosteum, no difference
between the number of A@-fibers and C-fibers was
observed (P = .71). However, the number of C-fibers was
significantly higher compared to the amount of A@-
fibers in cortical bone, and bone marrow (both P <
.001). Nerve fiber count for sympathetic nerve fibers
was significantly higher compared with C-fibers in peri-
osteum (P < .001). This difference was not observed in
bone marrow or cortical bone (P = 1.000 and P = .59,
respectively). The number of sympathetic nerve fibers
was significantly higher compared with A@-fibers in cor-
tical bone (P < .001), bone marrow (P < .001), and in
periosteum (P = .043). These results indicate that in
bone marrow and cortical bone, C-fibers are slightly
more abundant than A@-fibers, while in periosteum
both C-fibers and A@-fibers are present to the same
extent. In addition, sympathetic fibers are large in num-
ber in every bone-related compartment.
Multivariate Regression
Possible effects of bone-related compartment, gen-

der, age, anatomical location, and immunohistochemi-
cal staining on nerve fiber count were analyzed using a
Poisson multivariate regression with interaction effects.
Interaction tables and estimated marginal means (EMM)
are provided in the supplementary information. The
multivariate regression model was based on 1836 indi-
vidual nerve fiber counts. In the elderly individuals stud-
ied (age range 66−99 years), the number of nerve fibers
significantly declined per year of age (IRR = 0.985, P <
.001), especially in the periosteum (Table 3, S1). No over-
all effect of sex on innervation density was present
(male N = 738 counts, female N = 1098 counts,
IRR = 1.016, P = .881), however the interaction effect
between gender and anatomical location demonstrated
higher nerve fiber counts for lower extremity bones of
females (Table 3, S3, S8). The overall number of C-fibers
was significantly lower compared to PGP9.5-positive
nerve fibers (IRR = 0.650, P = .003) (Table 3, S2). No dif-
ferences were observed in the number of A@-fibers
(IRR = 1.225, P = .132) and sympathetic nerve fibers
(IRR = 1.052, P = .704) compared to PGP9.5-positive
nerve fibers (Table 3). The thoracic spine (IRR = 2.513, P
< .001), upper extremity (IRR = 1.595, P < .001), and
lower extremity (IRR = 1.540, P < .001) contained signifi-
cantly more nerve fibers compared to neurocranium
(Table 3, S5, S8, Fig 4). Nerve fiber count was significantly
lower for bone marrow compared to periosteum
(IRR = 0.189, P < .001), and lowest for cortical bone com-
pared to periosteum (IRR = 0.094, P < .001). The low num-
ber of nerve fibers in cortical bone was mainly visible in
female bones and lower extremity (Table S4, S7, S8).
Discussion
The present study set out to study the sensory innerva-

tion of human bone. The results demonstrate that the
highest sensory innervation density can be found in the
periosteum, followed by bone marrow and cortical
bone. Of the locations studied, the thoracic vertebra
received most sensory innervation. The neurocranium
received the least sensory innervation. Innervation den-
sity decreased with age. In the present study, relative
differences in innervation between periosteum, cortical
bone and bone marrow were smaller compared to ear-
lier mammalian studies.8,37 One study reported a ratio
of summed A@-fibers and C-fibers between periosteum,
bone marrow and cortical bone of 100:2:0.1, while in
the current study a ratio of 100:54:8 was found.8 The
use of a different species and calculations based on
medians instead of means might partially account for
these differences. Remarkably, not all osteons were
innervated, which partially explained the low number
of both sensory and sympathetic nerve fibers in cortical
bone as presented in section 3.3 (Fig 2A2). The number



Table 3. Multivariate Regression Analyzing Factors that Influence Nerve Fiber Count Per High
Power Field

FIBER COUNT N=1836 GLM POISSON LOGLINK WITH INTERACTIONS GLM POISSON LOGLINK WITHOUT INTERACTIONS

IRR EMM*,y EMM SE P-VALUE IRR EMM*,y EMM SE P-VALUE

Intercept 25.153 4.32 0.080 <.001 23.871 4.42 0.073 <.001

Age Per year 0.985 4.32 0.080 <.001 0.987 4.42 0.072 <.001

Gender Male Reference 4.32 0.114 N/A Reference 3.97 0.084 N/A

Female 1.016 4.33 0.112 .881 1.240 4.92 0.094 <.001

Staining PGP9.5 Reference 4.88 0.151 N/A Reference 5.47 0.118 N/A

NF-200 1.225 2.78 0.125 .132 0.635 3.48 0.089 <.001

CGRP 0.650 4.22 0.149 .003 0.706 3.86 0.097 <.001

TH 1.052 6.11 0.181 .704 0.950 5.20 0.116 <.001

Location Neurocranium Reference 3.32 0.184 N/A Reference 3.06 0.145 N/A

Thoracic spine 2.513 5.73 0.191 <.001 2.057 6.28 0.163 <.001

Upper extremity 1.595 4.83 0.123 <.

001

1.567 4.79 0.103 <.001

Lower extremity 1.540 3.81 0.072 <.001 1.359 4.15 0.065 <.001

Compartment Periosteum Reference 9.30 0.188 N/A Reference 9.90 0.166 N/A

Cortical bone 0.094 1.76 0.078 <.001 0.183 1.81 0.057 <.001

Bone marrow 0.189 4.95 0.131 <.001 0.486 4.81 0.101 <.001

NOTE. All significant P-values are reported in bold.
*Results are averaged over the levels of other categorical variables. Estimated Marginal Means (EMM) represent the mean fiber count for each factor, adjusted for any
other variables in the model. In the GLM Poisson LogLink without interactions, multiplying the factor’s reference EMM (eg male in Gender) by the incident rate ratio
(IRR) of non-reference categories gives the EMM for the non-reference category. Due to the involvement in interactions, this multiplication does not work in the GLM
Poisson LogLink with interactions.
yResults may be misleading due to involvement in interactions
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and distribution of sensory nerve fibers varied between
different anatomical locations (ie neurocranium, tho-
racic spine, upper, and lower extremity). Possibly, skele-
tal injury in more densely innervated locations is more
painful than in locations receiving less sensory innerva-
tion. Previous reports have shown correlations between
innervation of the intervertebral disc and severity of
low back pain. However, a causal relationship between
innervation density and pain severity cannot be estab-
lished, as tissue injury (inflicting pain) and the subse-
quent inflammatory processes have been shown to lead
to hyperinnervation.1 Gerbershagen et al. studied pain
scores on the first postoperative day for any type of sur-
gery. The top ten of most painful interventions included
seven skeletal surgeries, of which three were in the spi-
nal column.18 Although pain is a multidimensional phe-
nomenon and not necessarily equal to sensory
innervation density, the high nerve fiber count in tho-
racic spine as demonstrated in the current study reflects
these clinical findings, supporting a correlation between
innervation density and pain severity.
We demonstrated that sensory nerve fibers in perios-

teum were organized in a network of large bundles or
were branched off as single nerve fibers forming a net-
like structure. The typical symptom of a bone fracture is
acute, stabbing pain localized near or at the fracture
site.52 Mechanical distortion of the periosteum might
help explain the severe pain experienced by these
patients. In addition, skeletal pain can be caused by
pathology in the bone marrow (eg in bone tumors), and
is typically described as a dull and aching pain.22,35,45,46 In
the present study we demonstrated that the number of
C-fibers was slightly higher compared to the number of
A@-fibers in bone marrow. This finding is in line with the
clinical picture of patients experiencing different types
of pain in different types of pathology. The here pre-
sented data may provide new treatment targets for these
various types of pain arising from skeletal pathology.
A strength of this study was the use of four immuno-

histochemical stains to visualize A@-fibers, C-fibers, and
sympathetic fibers. Subsequently, we were able to draw
conclusions about their relative number in different
bone-related compartments. It should be noted that the
total volume of bone marrow is greater than cortical
bone and periosteum.37 Therefore, the absolute num-
ber of sensory and sympathetic nerve fibers might be
higher in bone marrow. Use of multivariate regression
enabled us to draw conclusions on the complete data
set. For example, to analyze the effect of gender on
bone innervation, all 1836 observations were taken into
account. Another strong element of the present study
was the use of bones from multiple anatomical loca-
tions, to adequately represent human axial and appen-
dicular innervation. The use of bones from both men
and women of ages ranging from 66 to 99 were used to
account for potential differences in bone innervation
based on sex or age. Our findings demonstrated no
overall differences in innervation between female and
male bones. Collecting all four bone sites studied from
the same individual would have provided paired sam-
ples and thus might have further strengthened our con-
clusions, but was not possible due to incompleteness of
the skeletal material available. Furthermore, experi-
ments were performed on macroscopically healthy
bones, making the results relevant to the general popu-
lation. As mentioned, average donor age was relatively
high (84 § 8.2 y) and ranged from 66 until 99 years. We
found that the number of sensory and sympathetic



Figure 4. The median number (IQR) of CGRP-positive unmyelinated C-fibers, NF-200-positive myelinated A@-fibers, TH-positive
sympathetic nerve fibers, and PGP9.5-positive nerve fibers separately displayed for the neurocranium, thoracic vertebra, upper
extremity, and lower extremity. Compared to the neurocranium, the number of nerve fibers was higher in all three anatomical loca-
tions, especially in the thoracic vertebra. Skeleton adjusted from sciepro/shutterstock.com, used under license of Shutterstock.com.
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nerve fibers declined with age, which is consistent with
a previous animal study.9 Nevertheless, a wider age
range of subjects is necessary to determine whether our
findings are applicable for a younger population. A
drawback of using anonymous human cadavers, is that
the cause of death and its possible effects on bone
innervation remains unknown. Previous studies on
human innervation have reported on the effects of
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osteoarthritis and degenerative disc disease on bone
innervation. To avoid influence of joint diseases on
nerve fiber density, we collected samples from midshaft
regions of bone only.6,28 CGRP-positive fibers have been
reported to have a punctuated morphology, while the
NF200 signal has a continuous morphology. To avoid
overestimation of CGRP-positive fibers due to their mor-
phology, bone cross-sections were used for nerve fiber
quantification. As nerve fibers run parallel to the longi-
tudinal axis of long bones, risks of overcounting are
minimized. Another possible limitation is the increased
EDTA bone decalcification time when compared to pre-
viously conducted mammalian studies (>3 wk vs 2
wk).8,9,37 The extended decalcification was necessary to
demineralize cortical bone, which is thicker in humans
than in rodents. Literature described that EDTA nega-
tively affects the antigenicity of A@-fibers, C-fibers, and
sympathetic fibers.9,37 This might have resulted in a
lower nerve fiber count in the present study and thus
underestimation of overall innervation density,
although this is expected to equally affect all bone com-
partments and thus does not necessarily impact the
here presented ratios. Contradictory reports on the
effect of formaldehyde on immunoreactivity of tissue
exist.3,57 The specimens have been fixated in formalde-
hyde for various amounts of time, which might have led
to variation in immunoreactivity. Our and others’
experience is that no large differences regarding immu-
noreactivity between fresh-frozen samples and formal-
dehyde-fixated samples were present.57 Fourth, since
PGP9.5 is a pan-neuronal marker, the number of
PGP9.5-positive nerve fibers should theoretically equal
the sum of A@-fibers, C-fibers, and sympathetic fibers.
However, in the present study we found that the sum of
A@-fibers, C-fibers, and sympathetic fibers was approxi-
mately 4 times the number of PGP9.5-positive nerve
fibers in bone marrow. For periosteum and cortical
bone, similar computations resulted in a factorial differ-
ence of about 2.4 and 3, respectively. This finding was
remarkable as previous studies reported adequate speci-
ficity of the immunohistochemical markers used, and
showed a lack of other sensory nerve fibers innervating
the bone such as Ab-fibers.4,20,24,30,51,64 Although CGRP
has been used as a marker for non-myelinated fibers in
similar experiments,16,37 other studies have shown CGRP
to be expressed by A@-fibers.25 Further, calculations
with median nerve fiber counts and usage of separate
microscopic slides for each neuronal marker might have
contributed to this discrepancy. These factors might
explain the observation that the sum of A@-fibers, C-
fibers, and sympathetic fibers exceeded PGP9.5 fiber
count and highlights the need for a more specific C-fiber
marker. However, as these limitations were present in
all bones and bone compartments, the authors suggest
that these phenomena do not affect the overall trends
observed in this study nor the final conclusions.
Conclusion
To our knowledge, the present study is the first to

demonstrate the sensory innervation in the human axial
and appendicular skeleton. The current results provide
an explanation for the severe pain experienced by
patients suffering from musculoskeletal diseases or fol-
lowing skeletal surgery. The number of sensory and
sympathetic nerve fibers was highest in periosteum, fol-
lowed by bone marrow and cortical bone. Of all loca-
tions studied, bone from thoracic vertebral bodies was
most densely innervated. In the periosteum, sensory
nerve fibers were organized in a net-like structure that
may allow for detection of mechanical distortion such
as experienced during traumatic events. The number of
nerve fibers declined with age. Since the periosteum is
the most densely innervated bone-related compartment
in human bones, treatment strategies that locally target
the periosteum might aid in attenuating pain after skel-
etal surgery. Future studies are needed to understand
how bone diseases affect density, sensitivity, and mor-
phology of sensory and sympathetic nerve fibers.
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