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Background and purpose — Advancements in software 
and hardware have enabled the rise of clinical prediction 
models based on machine learning (ML) in orthopedic sur-
gery. Given their growing popularity and their likely imple-
mentation in clinical practice we evaluated which outcomes 
these new models have focused on and what methodologies 
are being employed.

Material and methods — We performed a systematic 
search in PubMed, Embase, and Cochrane Library for studies 
published up to June 18, 2020. Studies reporting on non-ML 
prediction models or non-orthopedic outcomes were excluded. 
After screening 7,138 studies, 59 studies reporting on 77 pre-
diction models were included. We extracted data regarding 
outcome, study design, and reported performance metrics.

Results — Of the 77 identified ML prediction models 
the most commonly reported outcome domain was medi-
cal management (17/77). Spinal surgery was the most com-
monly involved orthopedic subspecialty (28/77). The most 
frequently employed algorithm was neural networks (42/77). 
Median size of datasets was 5,507 (IQR 635–26,364). The 
median area under the curve (AUC) was 0.80 (IQR 0.73–
0.86). Calibration was reported for 26 of the models and 14 
provided decision-curve analysis.

Interpretation — ML prediction models have been 
developed for a wide variety of topics in orthopedics. Topics 
regarding medical management were the most commonly 
studied. Heterogeneity between studies is based on study 
size, algorithm, and time-point of outcome. Calibration and 
decision-curve analysis were generally poorly reported.

Surgical decision-making in orthopedic surgery involves 
weighing the benefits of an intervention against its inherent 
risks. Prognostic scoring tools have been devised to indi-
vidualize risk prediction and thus improve surgical decision-
making (Janssen et al. 2015, Pereira et al. 2016, Shah et al. 
2018). Although clinical prediction models are not new, recent 
advancements in artificial intelligence have created a host of 
prediction models based on machine learning (ML) (Cabitza 
et al. 2018).

ML is a branch of artificial intelligence that enables computer 
algorithms to learn from experience from large datasets without 
explicit programming. Figure 1 shows 3 commonly employed 
algorithms. Existing reviews of machine learning studies have 
provided a broad overview of applications ranging from vision 
to natural language processing and predictive analytics (Cabitza 
et al. 2018). To our knowledge, there is no study that has criti-
cally assessed the body of studies focused on ML prediction 
models for surgical outcome in orthopedics. These types of 
prediction models are most likely the first branch of artificial 
intelligence to be employed in clinical practice (Staartjes et al. 
2020). Therefore, familiarizing practicing orthopedic surgeons 
with ML’s concepts and the topics these new methods have 
focused on can optimize their implementation in clinic.

As such, the purpose of this systematic review is to (1) eval-
uate which surgical outcomes orthopedic clinical prediction 
models have focused on, and (2) determine which techniques 
current prediction models use for development and validation. 

Material and methods
Systematic literature search
Adhering to the 2009 PRISMA guidelines a systematic search 
was performed in PubMed, Embase, and the Cochrane Library 
for articles published up to June 18, 2020. 2 different domains 
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of medical subject headings (MeSH) terms and keywords 
were combined with “AND” and within the 2 domains the 
terms were combined with “OR.” The 1st domain included 
words related to ML and the second domain related to pos-
sible orthopedic specialties (Appendix 1, see Supplementary 
data). Terms were restricted to MeSH, title, abstract, and key-
words. Two reviewers (PTO, OQG) independently screened 
all titles and abstracts for eligible articles based on predefined 
criteria. Eligible full-text articles were evaluated and cross-
referenced for potentially relevant articles not identified by the 
initial search (Figure 2). Discrepancies between the 2 review-
ers were adjudicated by the senior author (JHS). 

Eligibility criteria
Studies reporting on ML-based prediction models addressing 
orthopedic surgical outcomes were included, as were all intra-
operative and postoperative outcomes. The surgical orthope-
dic population was defined as disorders of the bones, joints, 
ligaments, tendons, or muscles treated by any type of opera-
tion. Excluded were studies (1) that did not include at least 1 
ML-based prediction models for surgical outcome (e.g., logis-
tic regression-based models), (2) non-English studies, (3) lack 
of full text, and (4) non-relevant study types such as animal 
studies, letters to the editors, and case reports. 

Assessment of methodological quality 
Quality assessment was performed based on a modified nine-
item Methodological Index for Non-Randomized Studies 
(MINORS) checklist (Slim et al. 2003). We made it applicable 
to our systematic review by including disclosure, study aim, 
input feature, output feature, validation method, dataset dis-

tribution, performance metric, and explanation of the used AI 
model (Langerhuizen et al. 2019). These 9 items were scored 
on a binary scale: 0 (not reported or unclear) and 1 (reported 
and adequate). 

Data extraction
Table 1 lists the data we extracted from each study. For this 
review, 6 main orthopedic surgical outcome domains were 
identified, consisting of (1) intraoperative complications (e.g., 
blood transfusion, prolonged operative time), (2) postoperative 
complications (e.g., venous thromboembolism), (3) survival, 
(4) patient reported outcome measures (PROMs), (5) medical 
management (e.g., hospitalization), and (6) other. For studies 
reporting the performance of multiple ML models, the best 
performing ML model was used. 13 studies provided multiple 
models for multiple surgical outcomes; these were extracted 
separately resulting in more ML models than studies. Only the 
2 performance measures AUC and accuracy were extracted as 
they were most the commonly reported results. 

Study characteristics
After screening of titles and abstracts, 758 full-text articles 
were assessed for eligibility and ultimately 59 articles were 
included reporting on 77 ML prediction models (Table 1). 
Median sample size was 5,818 (IQR 635–26,869). Using the 
MINORS criteria, all 59 articles were found to be of similar 
quality. All included a minimum of 8 out of 9 appraisal items 
(Appendix 2, see Supplementary data). 

Statistics
AUC scores and accuracies in tables are expressed as they 
were originally reported. For studies that reported multiple 
results within a single outcome domain (e.g., multiple differ-
ent postoperative PROMs, each with an independent AUC) 
averages were taken. The sizes of the training, validation, and 

Figure 1. (A) Decision trees are hierarchical structures in which each 
node performs a test on the input value with the subsequent branches 
representing the outcomes. Their graphical representation as seen 
here makes them easy to understand and interpret. However, they 
are prone to overfitting. (B) Neural networks are based on intercon-
nected nodes. The input features are represented by the first (blue) 
layer. The designated outcome is represented by the final (green) layer. 
The middle, hidden layers (blue and orange) base their output on the 
input they get from prior layers. Neural networks have been around for 
a long time and offer good discriminative abilities, but interpretation of 
the relationships between the different layers remains difficult. (C) Sup-
port vector machines (SVMs) perform classification by determining the 
optimal separating hyperplane between datapoints, which maximizes 
the distance between the 2 closest points of either group. They can 
be used for both linear and nonlinear relationships. While they remain 
effective in data with a great number of features, they do not work well 
in larger datasets. 

Records identified through:
–  PUBMED 6,036
– Embase 2,819
– Cochrane 315

Records after duplicates removed
n = 7,138

Full-text articles assessed for eligibility
n = 758

Studies included in qualitative synthesis
n = 63

Records excluded after 
screening of title and abstract

n = 6,380

Excluded (n = 695):
– no prediction model, 225
– no surgical outcome, 470

Figure 2. Flowchart of study inclusions and exclusions.
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test sets are reported as percentages of the total dataset. No 
meta-analysis was performed because of obvious heteroge-
neity between studies and in orthopedic applications. How-
ever, to summarize the findings in some quantitative form, 
the median AUC and accuracy of the prediction performance 
were calculated for all studies. 

We used Microsoft Excel (Version 16.31; Microsoft Inc, 
Redmond, WA, USA) for standardized forms for data extrac-
tion and quality assessment, and Mendeley as reference man-
agement software.

Ethics, funding, and potential conflicts of interests
Institutional review board approval was not required for this 
systematic review. No external funding was received. The 
authors have no conflicts of interest to declare.

Results
Study design
Table 2 lists the characteristics of all included studies. More 
than half of the 77 models were developed with data from 
national databases or registries (42) (Table 3). The median 
number of predictor variables used in the ML model was 10 
(IQR 8–15). Models using national data did not include more 
variables: 10 (IQR 8–13). 68 of the models had a binary dis-
tribution of the outcome variable. Most frequently employed 
algorithms were neural networks (42) and random forests (30). 
36 of the neural networks were single-layer, 5 deep learning, 
and 1 convolutional. The median number of patients used was 
5,507 (IQR 635–26,364). Median AUC was 0.80 (IQR 0.73–
0.86) and median accuracy was 79% (IQR 75–88). Calibra-
tion was reported for 26 of the models and 23 provided Brier 
scores. Decision-curve analysis was employed in 14 studies. 
18 provided a digital application for their prediction model.

Outcome
The most commonly reported outcome domains were medi-
cal management (17) and survival (16). Medical management 
mostly focused on discharge destination (7) and hospitaliza-
tion (4). The studies on survival all addressed patient sur-
vival. 6 survival studies were in orthopedic oncology and 5 
in orthopedic trauma. Both medical management and survival 
had a higher median AUC (0.82 and 0.84 than overall median 
AUC). Spinal surgery was the most commonly involved sub-
specialty (28). 

Table 1. Data extracted from each study

  1	 Year of publication
  2	 First author
  3	 Disease condition
  4	 Type of surgery
  5	 Input feature
  6	 Number of features in final model
  7	 Type of outcome
  8	 Time points of outcome
  9	 Number of output classes
10	 ML algorithm used
11	 Number of patients
12	 Distribution between training, validation, and test set
13	 Validation method
14	 AUC and accuracy of model
15	 Reporting of calibration and Brier score
16	 Decision-curve analysis
17	 Digital application of the model

Table 3. Characteristics of studies (n = 77). Values are count (%) 
unless otherwise specified
	
 	
Sample size, median (IQR)	 5,818 (635–26,364)
Predictors included in final model, median (IQR) a	 10 (8–15)
Outcome domain	
	 Medical management	 17 (22)
	 Survival	 16 (21)
	 Complication	 15 (19)
	 PROMs	 12 (16)
	 Intraoperative complication	 3 (3.9)
	 Other	 14 (18)
Orthopedic subspecialty	
	 Spine	 28 (36)
	 Arthroplasty	 21 (27)
	 Trauma	 13 (17)
	 Oncology	 6 (7.8)
	 Other	 9 (12)
National/Registry database b	 42 (55)
Split sample	
	 70:30	 22 (29)
	 80:20	 19 (25)
	 Other	 36 (46)
ML algorithm c	
	 Neural network	 42 (55)
	 Single layer	 36 (47)
	 Deep learning	 6 (8)
	 Convolutional	 1 (1)
	 Random forest	 30 (39)
	 Support vector machine	 19 (25)
	 Naive Bayes	 11 (14)
	 Stochastic gradient boosting	 10 (13)
Performance metric c	
	 AUC	 74 (96)
	 Accuracy	 39 (51)
	 Brier score	 23 (30)
	 Calibration	 26 (34)
Model explanation	
	 Global	 34 (44)
	 Local	 17 (22)
	 Decision curve analysis	 14 (18)
	 Digital application available	 18 (23)

AUC = area under the curve, IQR = interquartile range, ML = 
machine learning, PROM = patient reported outcome measure.
a Amount of predictors that were included in the final, best perform-

ing machine learning algorithm. In 16% (13/81) this could not be 
extracted from the study or was unclear.

b This includes databases such as Surveillance, Epidemiology, and 
End Results (SEER) or American College of Surgeons National 
Surgical Quality Improvement Program (ACS NSQIP).

c Not mutually exclusive.	  
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Discussion

Recent years have seen an increasing interest in artificial intel-
ligence and ML in orthopedics (Bini 2018, Jayakumar et al. 
2019). With this systematic review we aimed to provide an 
introduction to the main concepts of developing ML models 
for orthopedic surgeons and analyze the current application 
and design of these models in orthopedic surgery. We found a 
wide range of potential applications ranging from predicting 
survival in spinal metastases, clinical outcome after shoulder 
arthroplasty, and hospitalization after hip fracture surgery. 

This systematic review has a number of limitations. 1st, due 
to the relative novelty of this field of research in orthopedic 
surgery, the variety in study designs renders comparisons and 
comprehensive quantitative analysis difficult. We therefore 
opted to perform a qualitative analysis of the current publica-
tions. Hopefully, the increasing familiarity with these types of 
studies will lead to better reporting and open up the possibility 
to perform quantitative analyses. 2nd, this review is likely influ-
enced by publication bias. ML prediction models with good 
performance are more likely to be published than models with 
mediocre or poor performance. This positive publication bias 
has been shown both in medicine and computational sciences 
(Boulesteix et al. 2015). The performance measures presented 
here were therefore likely to be more favorable than those of all 
developed models. 3rd, despite our efforts to perform a search 
across multiple online libraries, we have missed a number of 
studies reporting ML prediction models. Whilst unfortunate, 
we do no not think these omissions will significantly alter our 
findings on research topics or most utilized methodology as 
this review included nearly 60 studies. 	

This systematic review shows that ML models have been 
developed for a wide variety of topics across all subspecial-
ties within orthopedics. Perhaps surprisingly, medical man-
agement was the most studied domain with the majority of 
models focusing on readmissions and discharge placement. 
Both readmissions and discharge delays impose a heavy 
burden on healthcare costs (Wan et al. 2016). Healthcare 
expenditure has risen steadily throughout the developed 
world in recent decades (OECD 2019). While there is enor-
mous variation in healthcare systems, government institutions 
in virtually all countries have looked at improving medical 
management to help curb costs (Schwierz 2016). Papanicolas 
et al. (2018) found activities relating to planning, regulating, 
and managing health services was a major factor in the dif-
ference in healthcare expenditure between the United States 
and 10 other high-income countries. Shrank et al. (2019) con-
cluded failure of care coordination, leading to unnecessary 
readmissions among other things, amounts to $78 billion of 
waste in the United States. To address this problem the Cen-
ters for Medicare and Medicaid Services started the Hospi-
tal Readmissions Reduction Program in 2012, incentivizing 
hospitals to lower readmission rates. Knowing in advance 

which patients are at risk of being readmitted within 30 days 
after discharge is crucial, which is a possible explanation as to 
why so many prediction models focus on this topic. Similarly, 
knowing in advance where patients are likely to be discharged 
to makes preventing delayed discharge a lot easier than the 
other interventions tried over the years (Bryan 2010, Ou et al. 
2011). Furthermore, the databases available in the studies on 
medical management appear to be larger, enabling researchers 
to include more variables and create better performing predic-
tion models. These models are more likely to be published as 
evidenced by the higher AUC for medical management com-
pared to overall AUC. 

Survival was the other commonly studied outcome domain. 
Accurately estimating remaining life-expectancy is an impor-
tant feature in medical decision-making in orthopedic oncol-
ogy (Pereira et al. 2016). In a patient group with only limited 
life-span remaining, the aim of treatment is to preserve qual-
ity of life. Accurate survival estimations can guide decision-
making on whether or not to perform surgery and if so, which 
operative treatment should be opted for (Quinn et al. 2014). 
With an ageing population and cancer patients surviving 
longer, the incidence of bone metastases will continue to rise 
and prediction models will likely play an increasing role in 
this field (Quinn et al. 2014).

The AAOS Census 2018 showed only 8.3% of orthopedic 
surgeons’ primary specialty area was the spine, while one-
third of the prediction models were linked to spinal surgery 
(AAOS Department of Clinical Quality and Value 2019). Cost 
reduction may also be the driving factor in the overrepresenta-
tion of spinal surgery prediction models; the economic cost of 
spinal surgery is large and growing with spinal fusions alone 
costing $30 billion annually in the United States (Johnson and 
Seifi 2018). Prediction models could play a role in curbing 
costs by improving patient selection and surgical decision-
making, although this could be said for all other subspecial-
ties. Another possible explanation for the disproportionate 
number is the overlap with neurosurgery. The neurosurgical 
field was relatively quicker to use ML to develop prediction 
models and had developed several models in spinal surgery 
earlier on (Senders et al. 2018). Finally, the field of prediction 
models is expanding but still small. A significant proportion of 
the prediction models are developed by a few research groups 
that happen to focus on spine surgery. With the field expand-
ing as fast as it is with new prediction models being published 
every month, we expect the overrepresentation of spine sur-
gery to be temporary in a field in its infancy.  

While there is wide variation in study design, certain study 
design elements are fairly similar across most studies. The most 
common designs comprise binary outcomes; either a 70:30 or 
80:20 split between training and test set; and 10-FCV as method 
of internal validation. Wide variety exists in study size, time-
point of outcome, and choice of ML algorithms. Study size 
is mostly defined by whether a national database or registry 
was used for model development. These quality improvement 
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databases offer a large number of datapoints with a variety of 
variables of a diverse group of hospitals, enabling the creation 
of prediction models. However, these databases are sometimes 
flawed by errors and their generalizability is also yet to be 
assessed (Rolston et al. 2017). External validation remains cru-
cial considering generalizability outside the geographical origin 
of the database is not ensured (Janssen et al. 2018). Institu-
tional databases offer the advantage of more veracious data, for 
instance including PROM data, which can extend over longer 
periods of time, but often lack adequate size. 

Which ML algorithm is chosen seems highly random. 
While studies do list the pros and cons of certain algorithms, 
no study elaborates on why those algorithms were specifi-
cally chosen. A potential reason neural networks and random 
forests are selected so often is the familiarity of these algo-
rithms. Neural networks have been around for decades, but 
were limited by lagging computational power (Hopfield 
1988). The increase in computational power has led to a sig-
nificant expansion of what neural networks can process and 
scientists have been able to build on the work of previous 
decades (Schmidhuber 2015). Future research should report 
on multiple ML algorithms and provide the performance 
measures of all models, thus enabling comparison between 
different approaches. 

Despite the importance of performance metrics, a mere one-
third of prediction models included information on calibration, 
similar to prior studies assessing prediction models in mul-
tiple medical domains (Bouwmeester et al. 2012, Heus et al. 
2018). Calibration is important to evaluate wehther the model 
is under- or overestimating the risk regardless of the discrimi-
native abilities. Systematically underestimating risk can lead 
to undertreatment, while overestimating risk can cause over-
treatment (Van Calster and Vickers 2015, Van Calster et al. 
2019). To improve the quality of reporting of clinical predic-
tion models, Collins et al. (2015) published the Transparent 
Reporting of a multivariable prediction model for Individual 
Prognosis or Diagnosis (TRIPOD) statement. While not tai-
lored for ML prediction models this guideline can provide a 
framework for researchers to use during development. Hope-
fully, a more widespread adaptation of the TRIPOD statement 
can lead to less variation in study designs and better reporting 
of performance metrics. 

Only one-fifth of prediction models have a digital applica-
tion available. The purpose of prediction models is to aid clini-
cians and patients in decision-making, which can be achieved 
only if the models are available for use. Otherwise, predictive 
analytics based on ML will remain a mere theoretical exer-
cise. Furthermore, researchers should be encouraged to not 
only provide a digital application of their prediction model, 
but share their code as well. With a field in its infancy, provid-
ing code of more experienced researchers can guide begin-
ning research groups in their endeavors. Additionally, this can 
greatly increase the small number of external validation stud-
ies being performed. 

In conclusion, ML prediction models have been developed 
for a wide variety of topics in orthopedic surgery. Topics 
regarding medical management and survival were the most 
commonly studied and spine surgery was the most involved 
subspecialty. Heterogeneity between studies is mostly based 
on study size, choice of ML algorithm, and time-point of out-
come. Most published prediction models showed fair to good 
discriminative abilities, while calibration was poorly reported. 
Future studies should preferably include more multi-institu-
tional, prospective databases and develop multiple models 
enabling comparison between different ML approaches. Also, 
important performance measures such as calibration should be 
reported to evaluate the prediction model accurately. 

Supplementary data
Table 2 and appendices 1 and 2 are available as supplemen-
tary data in the online version of this article, http://dx.doi.org/
10.1080/17453674.2021.1932928
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APPENDIX 1: Search syntaxes for the PubMed, 
Embase, and Cochrane databases

PubMed: June 18, 2020—6,036 hits
((“Foot”[Mesh] OR “Ankle”[Mesh] OR “Knee Joint”[Mesh] 
OR “Knee”[Mesh] OR “Ankle Joint”[Mesh] OR “Hip”[Mesh] 
OR “Hip Joint”[Mesh] OR “Hip Prosthesis”[Mesh] OR 
“Hip Fractures”[Mesh] OR “Shoulder Joint”[Mesh] 
OR “Shoulder”[Mesh] OR “Shoulder Fractures”[Mesh] 
OR “Shoulder Dislocation”[Mesh] OR “Elbow”[Mesh] 
OR “Elbow Joint”[Mesh] OR “Wrist Joint”[Mesh] OR 
“Spine”[Mesh] OR “Intervertebral Disc Degeneration”[Mesh] 
OR “Bone Neoplasms”[Mesh] OR “Arthroplasty”[Mesh] 
OR “Fractures, Bone”[Mesh] OR “Orthopedics”[Mesh] OR 
“Foot”[Tiab] OR “Ankle”[Tiab] OR Knee[Tiab] OR Hip[Tiab] 
OR “Shoulder”[Tiab] OR Elbow[Tiab] OR Wrist[Tiab] OR 
Spina*[Tiab] OR Spine*[tiab] OR “degenerative disc”[Tiab] 
OR “Bone Neoplasms”[Tiab] OR Arthroplast*[Tiab] OR 
Fractur*[Tiab] OR Orthop*[Tiab])) AND (“Artificial 
Intelligence”[Mesh] OR “Machine Learning”[Mesh] OR 
“Supervised Machine Learning”[Mesh] OR “Neural Net-
works Computer”[Mesh] OR “Deep Learning”[Mesh] OR 
“support vector machine”[MeSH Terms] OR “support vector 
machine”[All Fields] OR “Support Vector Machine”[Mesh] 
OR naive bayes[tiab] OR “bayesian learning”[tiab] OR 
neural network*[tiab] OR “support vector”[tiab] OR sup-
port vectors[tiab] OR random forest[tiab] OR “deep 
learning”[tiab] OR “machine prediction”[tiab] OR “machine 
intelligence”[tiab] OR “computational intelligence”[tiab] 
OR “computational learning”[tiab] OR “computer 
reasoning”[tiab] OR “machine learning”[tiab] OR convolu-
tional network*[tiab] OR “artificial intelligence”[tiab])

Embase: June 18, 2020—2,819 hits 
(‘foot’/exp/mj OR ‘ankle’/exp/mj OR ‘knee’/exp/mj OR 
‘hip’/exp/mj OR ‘hip prosthesis’/exp/mj OR ‘hip fracture’/
exp/mj OR ‘shoulder’/exp/mj OR ‘shoulder fracture’/exp/
mj OR ‘shoulder dislocation’/exp/mj OR ‘elbow’/exp/mj OR 
‘wrist’/exp/mj OR ‘spine’/exp/mj OR ‘intervertebral disk 
disease’/exp/mj OR ‘bone tumor’/exp/mj OR ‘arthroplasty’/
exp/mj OR ‘fracture’/exp/mj OR ‘orthopedic surgery’/exp/
mj OR foot:ab,ti OR ankle:ab,ti OR knee:ab,ti OR hip:ab,ti 

OR shoulder:ab,ti OR spine:ab,ti OR ‘degenerative disc’:ab,ti 
OR elbow:ab,ti OR wrist:ab,ti OR ‘bone tumor’:ab,ti OR 
arthroplasty:ab,ti OR fractur:ab,ti OR orthop:ab,ti) AND 
(‘artificial intelligence’/exp/mj OR ‘machine learning’/exp/
mj OR ‘supervised machine learning’/exp/mj OR ‘artifi-
cial neural network’/exp/mj OR ‘deep learning’/exp/mj OR 
‘support vector machine’/exp/mj OR ‘bayesian learning’/
exp/mj OR ‘neural network’:ab,ti OR ‘naive bayes’:ab,ti 
OR ‘beyesian learning’:ab,ti OR ‘support vector’:ab,ti OR 
‘support vectorts’:ab,ti OR ‘random forest’:ab,ti OR ‘deep 
learning’:ab,ti OR ‘machine prediction’:ab,ti OR ‘machine 
intelligence’:ab,ti OR ‘computational intelligence’:ab,ti OR 
‘computer learning’:ab,ti OR ‘computer reasoning’:ab,ti OR 
‘machine learning’:ab,ti OR ‘convolutional network’:ab,ti OR 
‘artificial intelligence’:ab,ti)

Cochrane: June 18, 2020—315 hits 
([mh Foot] OR [mh Knee] OR [mh “Knee Joint”] OR [mh 
“Ankle Joint”] OR [mh Hip] OR [mh “Hip Joint”] OR [mh 
“Hip Prosthesis”] OR [mh “Hip Fractures”] OR [mh “Shoul-
der Dislocation”] OR [mh Elbow] OR [mh “Elbow Joint”] OR 
[mh “Wrist Joint”] OR [mh Spine] OR [mh “Intervertebral 
Disk Degeneration”] OR [mh “Bone Neoplasms”] OR [mh 
Arthroplasty] OR [mh “Fractures, Bone”] OR [mh Orthope-
dics] OR ((Foot OR Ankle OR Knee OR Hip OR Shoulder 
OR Elbow OR Wrist OR Spine OR Spina* OR “degenerative 
disk” OR “Bone Neoplasms” OR Arthroplast* OR Fractur* 
OR Orthop*):ti,ab,kw)) AND (([mh “Artificial Intelligence”] 
OR [mh “Machine Learning”] OR [mh “Supervised Machine 
Learning”] OR [mh “Neural Networks (Computer)”] OR 
[mh “Deep Learning”] OR [mh “Support Vector Machine”] 
OR ((“naive bayes” OR “bayesian learning” OR “neural 
network*” OR “support vector” OR “support vectors” OR 
“random forest” OR “deep learning” OR “machine predic-
tion” OR “machine intelligence” OR “computational intelli-
gence” OR “computational learning” OR “computer reason-
ing” OR “machine learning” OR “convolutional network*” 
OR “artificial intelligence”):ti,ab,kw)))
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Appendix 2. Critical appraisal of included studies

			   Study	 Input	 Output	 Validation	 Dataset	 Performance	 AI
Author, year	 Disclosure	 aim	 feature	 feature	 method	 distribution	 metric	 model

Anderson, 2020	 1	 1	 1	 1	 1	 1	 1	 1
Arvind, 2018	 1	 1	 1	 1	 1	 1	 1	 1
Azimi, 2014	 1	 1	 1	 1	 1	 1	 1	 1
Azimi, 2015	 1	 1	 1	 1	 1	 1	 1	 1
Bevevino, 2014	 1	 1	 1	 1	 1	 1	 1	 1
Chen, 2020	 1	 1	 1	 1	 1	 1	 1	 1
Durand, 2018	 1	 1	 1	 1	 1	 1	 1	 1
Fatima, 2020	 1	 1	 1	 1	 1	 1	 1	 1
Fontana, 2018	 1	 1	 1	 1	 1	 1	 1	 1
Forsberg, 2011	 1	 1	 1	 1	 1	 1	 1	 1
Gabriel, 2019	 1	 1	 1	 1	 1	 1	 1	 1
Gowd, 2019	 1	 1	 1	 1	 1	 1	 1	 1
Goyal, 2019	 1	 1	 1	 1	 1	 1	 1	 1
Han, 2019	 1	 1	 1	 1	 1	 1	 1	 1
Harris, 2018	 1	 1	 1	 1	 1	 1	 1	 1
Harris, 2019	 1	 1	 1	 1	 1	 1	 1	 1
Hopkins, 2020a	 0	 1	 1	 1	 1	 1	 1	 1
Hopkins, 2020b	 1	 1	 1	 1	 1	 1	 1	 1
Huang, 2018	 1	 1	 1	 0	 1	 1	 1	 1
Huber, 2018	 1	 1	 0	 1	 1	 1	 1	 1
Kalagara, 2018	 0	 1	 1	 1	 1	 1	 1	 1
Karhade, 2018a	 1	 1	 1	 1	 1	 1	 1	 1
Karhade, 2018b	 1	 1	 1	 1	 1	 1	 1	 1
Karhade, 2018c	 1	 1	 1	 1	 1	 1	 1	 1
Karhade, 2019a	 1	 1	 1	 1	 1	 1	 1	 1
Karhade, 2019b	 1	 1	 1	 1	 1	 1	 1	 1
Karhade, 2019c	 1	 1	 1	 1	 1	 1	 1	 1
Karhade, 2019d	 1	 1	 1	 1	 1	 1	 1	 1
Karhade, 2020a	 1	 1	 1	 1	 1	 1	 1	 1
Karhade, 2020b	 1	 1	 1	 1	 1	 1	 1	 1
Karnuta, 2019	 1	 1	 1	 1	 1	 1	 1	 1
Karnuta, 2020	 1	 1	 1	 1	 1	 1	 1	 1
Katakam, 2020	 1	 1	 1	 1	 1	 1	 1	 1
Khan,2019	 1	 1	 1	 1	 1	 1	 1	 1
Kim, 2018a	 1	 1	 1	 1	 1	 1	 1	 1
Kim, 2018b	 1	 1	 1	 1	 1	 1	 1	 1
Kukar, 1996	 0	 1	 1	 1	 1	 1	 1	 1
Kumar, 2020	 1	 1	 1	 1	 0	 1	 1	 1
Kunze, 2020	 1	 1	 1	 1	 1	 1	 1	 1
Lin, 2010	 1	 1	 1	 1	 1	 1	 1	 1
Lungu, 2015	 1	 1	 1	 1	 1	 1	 1	 1
Martini, 2020	 1	 1	 1	 1	 1	 1	 1	 1
Merali, 2019	 1	 1	 1	 1	 1	 1	 1	 1
Merrill, 2018	 1	 1	 1	 1	 1	 1	 1	 1
Nwachukwu, 2020	 1	 1	 1	 1	 1	 1	 1	 1
Ogink, 2019a	 1	 1	 1	 1	 1	 1	 1	 1
Ogink, 2019b	 1	 1	 1	 1	 1	 1	 1	 1
Ottenbacher, 2004	 1	 1	 1	 1	 1	 1	 1	 1
Paulino Pereira, 2016	 1	 1	 1	 1	 1	 1	 1	 1
Pua, 2019	 1	 1	 1	 1	 1	 1	 1	 1
Ramkumar, 2019	 1	 1	 1	 1	 1	 1	 1	 1
Scheer, 2017	 1	 1	 1	 1	 1	 1	 1	 1
Schwartz, 1997	 0	 1	 1	 1	 1	 1	 1	 1
Shi, 2013	 1	 1	 1	 1	 0	 1	 1	 1
Siccoli, 2019	 1	 1	 1	 1	 1	 1	 1	 1
Thio, 2020	 1	 1	 1	 1	 1	 1	 1	 1
Wu, 2016	 1	 1	 1	 1	 1	 1	 1	 1
Zhang, 2020a	 1	 1	 1	 1	 0	 1	 1	 1
Zhang, 2020b	 1	 1	 1	 1	 1	 1	 1	 1



Acta Orthopaedica 2021; 92 (DOI: 10.1080/17453674.2021.1932928)	 Supplementary data (3/7) 

Table 2. Studies evaluating ML models for orthopedic surgical outcome prediction

A	 B	 C	 D	 E	 F	 G	 H	 I	 J	 K	 L	 M	 N	 O	 P

Intraoperative complications									       
	 Durand, 2018	 SpD	 NOS	 C, S, H 	 4	 Intraop.	 3 d	 2	 RF, DT	 1,029	 80	 10-FCV	 20	 0.85	
	 Huang, 2018	 NA	 THA, TKA	 C, S	 7	 Intraop.	 NA	 2	 RF, LR	 15,187	 100	 5-FCV	 NA	 0.84	
	 Siccoli, 2019	 SpS	 Decomp.	 C	 15	 Intraop.	 45 min	2	 RF, XGB, BDT, 	 635	 70	 NA	 30	 0.54	 78
									         KNN, ANN, GLM, 
									         BGLM
Postoperative complications									       
	 Arvind, 2018	 NA	 ACDF	 C		  Compl.	 NA	 2	 ANN, SVM, RF	 20,879	 70	 5-FCV	 30	 0.65	
	 Fatima, 2020	 Degen. SO	 NOS	 C, S	 10	 Compl.	 1 m	 2	 LR, LASSO	 80,610	 70	 10-FCV	 30	 0.70	
	 Gowd, 2019	 Shoulder	 TSA	 C, S		  Compl.	 1 m	 2	 LR, GBM, RF, 	 17,119	 80	 CV (nos)	 20	 0.71	 95
		  arthritis							       KNN, DT, NB
	 Han, 2019	 SpP	 Sp surg.	 C, S	 274	 Compl.	 1 m	 2	 LR, LASSO	 11,04233	 70	 10-FCV	 30	 0.70	
	 Harris, 2018	 OA	 THA, TKA	 C, S	 13	 Compl.	 1 m	 2	 BR, LASSO	 70,569	 100	 10-FCV	 NA	 0.70	
	 Harris, 2019	 Nonemergent	 THA, TKA	 C		  Compl.	 1 m	 2	 LASSO	 10,7792	 100	 10-FCV	 NA	 0.64	
		  primary
	 Hopkins, 	 SpP	 Posterior	 C, S, H 		  Compl.	 NA		  NN	 4,046	 75	 CV (nos)	 25	 0.79	
	   2020a		  fusion	
	 Karhade, 	 SpP 	 ALIF	 C, S	 6	 Compl.	 intra-		  EPLR, SGB, 	 1,035	 75	 CV (nos)	 25	 0.73	
	   2020a						      op.		  RF, SVM, NN
	 Kim, 2018a	 SpD	 NOS	 C	 12	 Compl.	 NA	 2	 ANN, LR	 5,818	 70	 5-FCV	 30	 0.64	
	 Kim, 2018b	 Degen. SpP	 PLIF	 C	 12	 Compl.	 NA	 2	 ANN, LR	 22,629	 70	 NA	 30	 0.63	
	 Kukar, 1996	 Femur fracture	 NOS	 C	 17	 Compl.	 24 m	 2	 Backpropagation	 151	 70	 10-FCV	 30		  71
									         ANN, NB, KNN, 
									         LFC, DT
 					    17			   5	 Semi NB, ANN, 	 151	 70	 10-FCV	 30		  67
								         	 NB, KNN, LFC, DT
	 Pua, 2019	 Knee OA	 TKA	 C		  Compl.	 6 m	 2	 LR, RF, GBM	 4,026	 70	 ICVL	 30	 0.75	
	 Scheer, 2017	 Adult SpD	 NOS	 C, S, R 	 20	 Compl.	 1.5 m	 2	 RT	 557	 70	 NA	 30	 0.89	 88
	 Wu, 2016	 Lower extrem-	 NOS (inclu-	 C, S	 9	 Compl.	 NA	 2	 SVM, LR	 195	 75	 CV (nos)	 25	 0.93	 88
		  ities (NOS)	 ding PCEA)
Medical management									       
	 Gabriel, 2019	 OA	 THA	 C	 9	 Hosp.	 ≤ 3 d	 2	 RR, LASSO, 	 960	 67	 NA	 33	 0.76
									         RF, MLR	
	 Goyal, 2019	 SpP	 Spinal	 C		  Non-HD	 1 m	 2	 GLM, NB, ANN, 	 59,145	 100	 10-FCV	 NA	 0.87	 79
			   fusion						      RF, GBM, LDA
	 Gowd, 2019	 Shoulder	 TSA	 C, S		  Extended	 1 m	 2	 GBM, RF, KNN, 	 17,119	 80	 CV (nos)	 20	 0.68	 82
		  arthritis				    LOS			   DT, NB, LR
	 Karhade, 	 LDDD	 NOS	 C	 10	 Non-HD	 NA	 2	 NN, BPM, 	 26,364	 80	 10-FCV	 20	 0.82	
	   2018b								        BDT, SVM
	 Karnuta, 2019	 Hip fracture	 NOS	 C	 7	 Hosp.	 NA	 4	 NB	 98,562	 90	 10-FCV	 10	 0.88	 77
 			  NOS	 C	 7	 Cost	 NA	 3	 NB	 98,562	 90	 10-FCV	 10	 0.89	 79
	 Karnuta, 2020	 SpP	 Sp. fusionl	 C	 8	 Cost	 NA	 3	 NB	 38,070	 100	 10-FCV	 NA	 0.88	 80
 			  Sp. fusionl	 C	 8	 LOS	 NA	 3	 NB	 38,070	 100	 10-FCV	 NA	 0.94	 87
 			  Sp. fusionl	 C	 8	 Non-HD	 NA	 3	 NB	 38,070	 100	 10-FCV	 NA	 0.91	 88
	 Merrill, 2018	 Ankle fracture	 ORIF	 C	 9	 Hosp.	 3 d	 2	 Bo, LR	 16,501	 70	 CV (nos)	 30	 0.76	 72
	 Ogink, 2019b	 SpS	 Surgery	 C	 10	 Non-HD	 NA	 2	 ANN, SVM,	 28,600	 80	 10-FCV	 20	 0.74	
									         BPM, BDT		
	 Ogink, 2019a	 Degen. SO	 Surgery	 C	 10	 Non-HD	 NA	 2	 BPM, ANN, 	 9,338	 80	 10-FCV	 20	 0.75	
									         SVM, BDT
	 Ottenbacher, 	 Hip fracture	 NOS	 C, R	 6	 Non-HD	 80 d	 2	 ANN, LR	 3,708	 67	 3-FCV	 33	 0.73	
	   2004
	 Ramkumar, 	 OA	 THA	 C, H	 15	 LOS	 NA	 2	 ANN	 78,335	 100	 10-FCV		  0.82	 75
 	2019		  THA	 C, H	 15	 Charges	 NA	 2	 ANN	 78,335	 100	 10-FCV		  0.83	 76
 			  THA	 C, H	 15	 Non-HD	 NA	 2	 ANN	 78,335	 100	 10-FCV		  0.79	 72
	 Siccoli, 2019	 SpS	 Decomp.	 C	 15	 Hosp.	 28 h	 2	 XGB, RF, BDT	 635	 70	 NA	 30	 0.58	 77
			    						      KNN, ANN, 
									         GLM, BGLM	
PROMs									       
	 Azimi, 2014	 Lumbar SpS	 NOS	 C	 7	 PROM	 24 m	 2	 ANN, LR	 168	 50	 25	 25	 0.80	 97
	 Fontana, 2018	 OA	 THA, TKA	 C, S, H 		  PROM	 24 m	 2	 LASSO, RF,	 13,719	 80	 5-FCV	 20	 0.80	
									         SVM	
	 Huber, 2018	 OA	 THA, TKA	 C		  PROM	 NA	 2	 XGB, ANN,  	 66,356	 97	 5-FCV	 3	 0.81	 75
									         KNN, NB , RF, 
									         MSAENET, LM, LB	
	 Khan, 2019	 DCM	 NOS	 C	 28	 PROM	 12 m	 2	 MARS, CT, SVM, 	 193	 75	 10-FCV	 25	 0.78	 71
									         PLS, GBoM,  
									         GAM, RF, LR
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A	 B	 C	 D	 E	 F	 G	 H	 I	 J	 K	 L	 M	 N	 O	 P

	 Kumar, 2020	 Shoulder	 aTSA	 C, S	 291	 PROM	 1 y, 	 2	 NN, LM, DT	 4,782	 67	 NA	 33	 0.86	 91
		  pathology					     2–3, 3–5, >  5 y
 			   rTSA	 C, S	 291	 PROM	 1 y, 	 2	 NN, LM, DT	 4,782	 67	 NA	 33	 0.88	 94
							       2–3, 3–5, > 5 y
	 Kunze, 2020	 OA	 THA	 C	 8	 PROM	 24 m		  RF, SGB, SVM 	 616	 80	 CV (nos)	 20	 0.97	
									         NN, EPLR 
	 Lungu, 2015	 OA	 THA	 C	 6	 PROM	 12 m, 	 2	 RF	 265	 100	 bootstrap	 NA		  89
							       24 m					     resamping
	 Merali, 2019	 DCM	 Decomp.	 C, S	 5	 PROM	 6 m, 	 2	 RF	 605	 70	 10-FCV	 30	 0.72	 71
							       12, 24 m
	 Nwachukwu, 	 FAI	 Hip	 C	 5	 PROM	 24 m	 2	 LR	 1,103	 100	 10-FCV	 NA	 0.86	
	   2020		  arthroscopy
	 Siccoli, 2019	 SpS	 Decomp.	 C	 15	 PROM	 1.5 m, 	 2	 BDT, RF, XGB, 	 635	 70	 NA	 30	 0.86	 76
							       3 m		  KNN, ANN, GLM, 
									         BGLM
	 Schwartz, 	 OA	 THA	 C	 14	 PROM	 12 m	 2	 ANN, LR	 221	 95	 LOOCV	 5	 0.79	
 	1997				  
Survival									       
	 Arvind, 2018	 NA	 ACDF	 C		  Survival	 NA	 2	 ANN, SVM, RF	 20,879	 70	 5-FCV	 30	 0.98	
	 Chen, 2020	 Hip fracture	 Nos	 C, H	 11	 Survival	 NA	 2	 ANN	 10,534	 70	 15	 15	 0.93	 93
	 Forsberg, 	 Bone	 Nos	 C		  Survival	 3 m, 	 2	 BNN	 189	 90	 10-FCV	 10	 0.84	
	   2011	 metastases					     12 m
	 Harris, 2018	 OA	 THA, TKA	 C, S	 13	 Survival	 1 m	 2	 BR, LASSO	 70,569	 100	 10-FCV	 NA	 0.73	
	 Harris, 2019	 Elective PA	 THA, TKA	 C		  Survival	 1 m	 2	 LASSO	 10,7792	 100	 10-FCV	 NA	 0.73	
	 Karhade, 	 Spine	 NOS	 C	 7	 Survival	 1 m	 2	 BPM, NN, 	 1,790	 80	 10-FCV	 20	 0.78	
	   2018c	 metastasis							       DT, SVM
	 Karhade, 	 Spinal	 NOS	 C, S	 5	 Survival	 60 m	 2	 BPM, BDT, 	 265	 100	 10-FCV	 0	 0.80	
	   2018a	 chordoma							       SVM, ANN
	 Karhade, 	 Spine	 NOS	 C	 17	 Survival	 3 m, 	 2	 SGB, PLR, 	 732	 80	 10-FCV	 20	 0.86	
	   2019d	 metastasis					     12 m		  RF, NN, SVM
	 Kim, 2018a	 SpD	 NOS	 C	 12	 Survival	 NA	 2	 ANN, LR	 5,818	 70	 5-FCV	 30	 0.84	 69
	 Kim, 2018b	 Various degen.	 PLIF	 C	 12	 Survival	 NA	 2	 ANN, LR	 22,629	 70	 NA	 30	 0.70	 60
		  diseases
	 Lin, 2010	 Femur fracture	 Various	 C, R	 11	 Survival	 12 m	 2	 ANN	 286	 70	 NA	 30	 0.95	 96
	 Merrill, 2018	 Ankle fracture	 ORIF	 C	 9	 Survival	 NA	 2	 Bo, LR	 16,501	 70	 CV (nos)	 30	 0.74	 85
	 Paulino	 Spine	 Various	 C	 9	 Survival	 1 m, 	 2	 Nomogram, Bo	 649	 80	 5-FCV	 20	 0.74	 75
	 Pereira, 2016	 metastasis					     3, 12 m
	 Shi, 2013	 Femur fracture	 DHS	 C	 9	 Survival	 12 m	 2	 ANN, LR	 2,150	 67	 NA	 33	 0.87	 86
	 Thio, 2020	 Extremity	 NOS	 C	 15	 Survival	 3 m, 	 2	 SGB, RF,SVN, 	 1,090	 80	 10-FCV	 20	 0.86	
		  metastatsis					     12 m		  NN, PLR						    
	 Zhang, 	 Pertrochan-	 PFNA	 C, H	 14	 Survival	 12 m	 2	 BNN	 448	 100	 10-FCV	 NA	 0.85	
	   2020b	 teric fracture
Other									       
	 Anderson, 	 ACL rupture	 ACL recon-	 C		  Sustained	 3 m	 2	 GBM, LR, 	 10,919	 80	 CV (nos)	 20	 0.77	
	   2020		  struction			   opioid use			   BNN, RF
	 Azimi, 2015	 LDH	 MicroDE	 C	 14	 Recurrence	NA	 2	 ANN, LR	 402	 50	 NA	 25	 0.83	 94
	 Bevevino, 	 Calcaneus	 Limb	 C, R	 8	 Amputation	 NA	 2	 ANN, LR	 155	 100	 10-FCV	 NA	 0.80	 79
	   2014	 fracture	 salvage
	 Hopkins, 	 SpP	 Posterior	 C, S, H	 177	 Read-	 1 m	 2	 ANN	 23,264	 75	 Cv (nos)	 25	 0.81	 79
	   2020b		  fusion			   mission
	 Kalagara, 	 NA	 Lumbar	 C, S, H	 13	 Read-	 1 m	 2	 GBM	 26,869	 85	 10-FCV	 15	 0.81	 95
	   2018		  laminectomy		 mission
	 Karhade, 	 Cervical	 ACDF	 C, S	 10	 Sustained	 3m	 2	 SGB, RF, NN, 	 2,737	 80	 10-FCV	 20	 0.81	
	   2019a	 pathology				    opioid use			   SVM, EPLR							     
	 Karhade, 	 Hip arthritis	 THA	 C	 7	 Sustained	 3 m	 2	 EPLR, SGB, 	 5,507	 80	 10-FCV	 20	 0.77	
	   2019b					     opioid use			   RF, SVM, ANN
	 Karhade, 	 LDH	 NOS	 C	 9	 Sustained	 6 m	 2	 EPLR, RF, 	 5,413	 80	 10-FCV	 20	 0.81	
	   2019c					     opioid use			   SGB, ANN, SVM	
	 Karhade, 	 LDH, SpS,	 Decomp.	 C, S	 6	 Sustained	 3 m	 2	 EPLR, SGB, 	 8,435	 80	 10-FCV	 20	 0.70	
	   2020b	 SO	 and/or fusion		  opioid use 			   RF, SVM, ANN
	 Katakam, 	 Knee OA	 TKA	 C	 9	 Sustained	 6 m	 2	 SGB, RF, 	 12,542	 80	 CV (nos)	 20	 0.76	
	   2020					     opioid use			   SVM, ANN, EPLR	
	 Martini, 2020	 Degen. SpP	 NOS	 C, S	 30	 Readm.	 1 m	 2	 RF	 11,150	 75	 5-FCV	 25	 0.75	
	 Merrill, 2018	 Ankle fracture	 ORIF	 C	 9	 Readm.	 1 m	 2	 Bo, LR	 33,504	 70	 CV (nos)	 30	 0.70	 85
	 Siccoli, 2019	 SpS	 Decomp.	 C	 15	 Reope-	 NA	 2	 XGB, RF, BDT, 	 635	 70	 NA	 30	 0.66	 69
						      rations			   KNN, ANN, GLM, BGLM	
	 Zhang, 	 Low back and	 Thoracic or	 C, S	 9	 Sustained	 12 m	 2	 LR, RF, SGB, 	 19,317	 80	 NA	 20	 0.85
	   2020a	 lower extrem-	 lumbar			   opioid use			   SVM, NN	
		  ity pain	 surgery
	



Acta Orthopaedica 2021; 92 (DOI: 10.1080/17453674.2021.1932928)	 Supplementary data (5/7) 

NA = not available
NOS = not otherwise specified 
A.	Output category
B. First author, year of publication
C. Disease/condition
	 DCM = degenerative cervical myelopathy
	 FAI = femoroacetabular impingement
	 LDDD = lumbar degenerative disc disease
	 LDH = lumbar disc herniation
	 SO = spondylolisthesis
	 SpD = spinal deformity
	 SpP = spinal patholgy
	 SpS = spinal stenosis
D. Operation
	 ACDF = anterior cervical discectomy and fusion
	 ALIF = anterior lumbar spine fusion
	 Decomp. = decompression
	 DHS = dynamic hip screws
	 MicroDE = microdiscectomy
	 ORIF = open reduction and internal fixation
	 PA = primary arthroplasty
	 PCEA = patient-controlled epidural analgesia
	 PLIF = posterior lumbar spine fusion
	 PFNA = proximal femoral nail antirotation
	 THA = total hip arthroplasty
	 TKA = total knee arthroplasty
	 TSA = total shoulder arthroplasty (a = anatomic, r = reverse)
E.	Input features
	 C = clinical
	 H = hospital-related factors (surgeon volume, hospital volume)
	 S = surgical
F. Number of features
G. Output
	 Hosp. = hospitalization
	 LOS = length of stay
	 Non-HD = Non-home discharge
	 Readm. = readmission
H. Output: time points
I. 	Number of classes
J.	 Machine learning model. Best performing ML model is in bold.
	 ANN = artificial neural network 
	 BDT = boosted decision tree 
	 BGLM = Batesian generalized linear models 
	 BNN = Bayesian belief network 

	 Bo = boosting 
	 BPM = Bayes point machine 
	 BR = boosting regression 
	 CHAID = chi-square automatic interaction dector 
	 CT = classification tree 
	 DT = decision tree 
	 EPLR = elastic-net penalized logistic regression 
	 FCM = fuzzy C-means 
	 FIS = fuzzy inference system 
	 GAM = generalized additive models 
	 GBM = gradient boosting machine 
	 GboM = generalized boosted models 
	 GLM = generalized linear models 
	 KNN = K-nearest neighbors 
	 LASSO = least absolute shrinkage and selection operator 
	 LB = logistic boost 
	 LDA = linear discriminant analysis 
	 LFC = lookahead feature construction 
	 LM = linear model 
	 LR = logistic regression 
	 MARS = multivariable adaptive regression splines 
	 MLR = multivariable logistic regression 
	 MSAENET = multi-step elastic-net 
	 NB = naive Bayes 
	 PCA = principal component analysis 
	 PLR = penalized logistic regression 
	 PLS = partial least squares 
	 RF = random forests 
	 RT = random trees 
	 RR = ridge regression 
	 SGB = stochastic gradient boosting 
	 SVM = support vector model 
	 SVR = support vector regression 
	 XGB = extreme gradient boosting 
K.	Number of patients
L. Size training set (%)
M. Validation method/size
	 CV (nos) = cross-validation not otherwise specified
	 FCV = fold cross validation
	 ICVL = Inner cross-validation loop
	 LOOCV = leave-one-out cross validation,
N.	Size test set (%)
O. Area under the curve (AUC)
P. Accuracy
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