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A B S T R A C T   

Abnormalities of the brain network organization in focal epilepsy have been extensively quantified. However, the 
extent and directionality of abnormalities are highly variable and subtype insensitive. We conducted meta- 
analyses to obtain a more accurate and epilepsy type-specific quantification of the interictal global brain 
network organization in focal epilepsy. By using random-effects models, we estimated differences in average 
clustering coefficient, average path length, and modularity between patients with focal epilepsy and controls, 
based on 45 studies with a total sample size of 1,468 patients and 1,021 controls. Structural networks had a 
significant lower level of integration in patients with epilepsy as compared to controls, with a standardized mean 
difference of -0.334 (95 % confidence interval − 0.631 to − 0.038; p-value 0.027). Functional networks did not 
differ between patients and controls, except for the beta band clustering coefficient. Our meta-analyses show that 
differences in the brain network organization are not as well defined as individual studies often propose. We 
discuss potential pitfalls and suggestions to enhance the yield and clinical value of network studies.   

1. Introduction 

A question that had received considerable attention is how and to 
what extent we can explain the detrimental consequences of epilepsy for 
normal brain functioning. These are illustrated by the high incidence of 
cognitive, neurodevelopmental, and psychiatric comorbidities in pa-
tients with epilepsy, even in those with seizures originating from a single 
epileptic focus (Kanner, 2016; Nickels et al., 2016). To this end, an 
increasing number of studies have been investigating global functional 
and structural brain integrity in patients with epilepsy. Particularly 
network analysis, a branch of graph theory, is used here and allows the 
schematic representation of the brain (Rubinov and Sporns, 2010; Stam, 
2014). Both functional and structural networks can be computed. 
Functional networks can be described as graphs composed of nodes, 
representing brain areas, that are linked by edges, denoting functional 
synchrony (i.e. temporal coherence in activity) between these areas. 
Structural networks are also composed of nodes and edges, with the 
edges here representing the physical connections between brain areas 
(Rubinov and Sporns, 2010). Functional data is usually derived from 
time series observations using functional MRI (fMRI) and neurophysio-
logical techniques, including electroencephalography (EEG) and 

magnetoencephalography (MEG) whereas structural data arises from 
structural MR imaging. Network quantification can be done using a 
variety of metrics, of which the path length, clustering coefficient, and 
modularity – indicators of a network’s level of integration, segregation, 
and hierarchy (Rubinov and Sporns, 2010) – are most commonly used 
(Table 1). Converging evidence suggests that the healthy brain is char-
acterized by a cost-efficient network configuration with a distinct bal-
ance of integration, segregation, and centrality (Fig. 1) (Rubinov and 
Sporns, 2010; Stam, 2014). 

Based on previous network studies we know that the interictal 
network configuration in epilepsy is altered (Engel et al., 2013; 
Richardson, 2012; van Mierlo et al., 2019). These alterations may 
contribute to the repertoire of clinical manifestations and (cognitive) 
impairments seen in both generalized and focal epilepsies (Yang et al., 
2018). Results are, however, contradictive regarding the extent and 
directionality of the network abnormalities, which hampers a clear un-
derstanding of the network nature of epilepsy. How this holds true for 
focal epilepsies specifically remains an open question, despite previous 
aggregation efforts (van Diessen et al., 2014; Yang et al., 2018). We 
therefore updated and extended a previous review on the brain network 
organization in focal epilepsy (van Diessen et al., 2014). Since its 
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publication, a considerable number of new studies have been published, 
also providing epilepsy type-specific brain network data. By combining 
all available quantitative whole-brain network data, we aim to provide a 
more accurate and focal epilepsy type-specific characterization of the 
functional and structural brain network organization. This could clarify 
the current understanding of the network nature of focal epilepsy and its 
comorbidities. 

2. Methods 

2.1. Search strategy 

Studies were identified by searching the online PubMed (NCBI) 
database. We used terms related to epilepsy, neurophysiological and 
imaging techniques, and network analysis to build the search query. The 

last search was conducted on March 23rd, 2020. No limiting filters were 
applied. Details on the search strategy are presented in Supplementary 
Table 1. 

2.2. Selection criteria and definitions 

Studies were included if they compared interictal, resting-state 
global brain networks of focal epilepsy patients with control subjects 
using the average clustering coefficient, average path length, or modu-
larity (Table 1), irrespective of acquisition technique and network 
construction method. Focal epilepsy was defined as temporal, frontal, 
parietal, and occipital lobe epilepsy, benign epilepsy with cen-
trotemporal spikes, and any other unspecified focal epilepsy. All mea-
sures should be given as mean or median values with uncertainty 
estimates. Studies reporting data on epilepsy patients who underwent 
brain surgery before network construction were excluded, as were 
studies only reporting combined data on focal and generalized epilepsy 
types (Allen et al., 2019; Babajani-Feremi et al., 2018; Chiosa et al., 
2019; Garcia-Ramos et al., 2016a; Garcia-Ramos et al., 2017). 

2.3. Data extraction 

One of the authors [GS] performed the literature search and screened 
all titles and abstracts. From potentially eligible articles, full-text ver-
sions were reviewed for inclusion and cross-referenced. Data extraction 
was carried out by one author [GS] using a data collection form and 
checked at random by another author [WMO]. Disagreements were 
resolved by discussion with a third author [EvD]. 

When multiple studies used an identical patient population, we 
included the study reporting the most comprehensive data. If studies 
provided outcomes only as graphs, data were manually extracted from 
these using GraphClick. This approach has proven to be reliable and 
reproducible (Boyle et al., 2013; Flower et al., 2016). Corresponding 
authors were contacted in case of missing network data. The following 
data items were extracted from each study: 

2.3.1. General study information 
First author, journal, year of publication. 

2.3.2. Study population 
Group sizes, sex distribution, specific epilepsy diagnosis, age at data 

acquisition, age at epilepsy onset, duration of epilepsy, anti-epileptic 
drug usage. 

2.3.3. Acquisition technique 
Data acquisition modality, sampling frequency (for neurophysio-

logical studies), field strength (for imaging studies). 

2.3.4. Network properties 
Network size, binary or weighted network, presence or absence of 

metric normalization. 

2.3.5. Network metrics 
The mean and standard deviation (SD) of the average path length, 

average clustering coefficient, and modularity were extracted. If means 
and SDs were not provided, medians were interpreted as means, and 
standard errors (SE) and interquartile ranges (IQR) were converted into 
SDs using the following formulas:  

Standard error: SD = SE ∙ √ group size                                                    

Interquartile range: SD = IQR / 1.35                                                        

Since studies were allowed to differ in acquisition technique and 
network construction method, we predefined what metric data to 
extract. More exactly, if data was provided for a range of sparsity levels, 
thresholds, or densities, values corresponding to the highest sparsity or 

Table 1 
Definitions of network metrics.  

Metric Description 

Path length Measure of integration. The average shortest path length is 
defined as the average minimal number of edges between all 
possible pairs of nodes in a network. The average shortest path 
length is equal to the inverted global efficiency (Stam and 
Reijneveld, 2007). 

Clustering 
coefficient 

Measure of segregation. The average clustering coefficient is 
defined as the ratio of the number of existing edges between a 
node’s neighbors and the maximum possible number of edges 
between these neighbors, averaged for all nodes in a network. 
The average clustering coefficient reflects the average 
prevalence of clustered connections around individual nodes in 
a network (Stam and Reijneveld, 2007). 

Modularity Measure of segregation and hierarchy. The modularity is 
defined as the degree to which the brain is subdivided into 
modules: groups of nodes with a maximum possible number of 
within-group edges and a minimum possible number of 
between-group edges (Rubinov and Sporns, 2010). 

Nodes reflect the different brain regions and edges reflect the functional or 
structural connections between nodes. 

Fig. 1. Healthy brain network organization. 
The healthy brain network is characterized by a balance of (1) path length (red) 
and clustering coefficient (orange) resulting in a normal order network (hori-
zontal axis) and (2) varying levels of connectedness (vertical axis). This balance 
gives rise to a hierarchical modular network, in which each module (blue) is 
composed of smaller components and simultaneously is part of a larger 
component (diagonal axis). This figure is partly based on Fig. 1 of Stam (2014). 
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threshold and the lowest density were used. From studies reporting data 
on both binary and weighted networks, we only extracted weighted 
data. Only normalized data were used if normalized and non-normalized 
data were provided (van Wijk et al., 2010; Zalesky et al., 2010). If 
studies reported data on different network sizes, we extracted data for 
the largest network. Network metrics reported for subgroups only were 
combined into a single value by weighted mean calculation. The average 
path length was defined as the reciprocal of the global efficiency if only 
the latter was reported. We did not take into account minor differences 
in the definitions of the network metrics of interest, such as the differ-
ence between the average clustering coefficient calculated as the global 
clustering coefficient or the local averaged clustering coefficient, as it 
will not influence the eventual results from the meta-analyses. For the 
neurophysiological studies we were primarily interested in theta fre-
quency band as it is the most consistently reported frequency band 
altered in focal epilepsy (Bartolomei et al., 2006; Horstmann et al., 
2010; van Dellen et al., 2012; van Diessen et al., 2013b). To explore 
possible differences in the other frequency bands, we extended the main 
meta-analyses (i.e. including all patients) to the delta, alpha, and beta 
frequency band. We did not include the gamma frequency band as 
converging evidence suggest that neurophysiological surface recordings 
above 20 Hz are contaminated by myogenic artifacts (Whitham et al., 
2007). To support future updates of our study, all included studies’ 
characteristics and network data are available via the Open Science 
Framework: https://osf.io/q7ad4/ (DOI: 10.17605/OSF.IO/Q7AD4). 

2.4. Quality assessment 

Study quality was assessed using an adapted Newcastle-Ottawa Scale 
(Stang, 2010; Wells et al., 2013). This scale is developed for the evalu-
ation of non-randomized studies and includes the following domains: 
patient and control selection, comparability of the study groups, and the 
ascertainment for the exposure of interest, interpreted as the assessment 
of the brain network organization for our review. The scale uses a star 
system, wherein higher-quality studies get more stars, with a maximum 
of eight (Supplementary Table 2). 

2.5. Methods of analysis 

Meta-analyses were performed in R statistical software using the 
metaphor package (Viechtbauer, 2010). Effect sizes, expressed as stan-
dardized mean differences (SMD), for the average path length, average 
clustering coefficient, and modularity were estimated by applying 
random-effects models using restricted maximum likelihood estimation 
to the data (DerSimonian and Kacker, 2007). We used random-effects 
models since these tend to yield more conservative results by taking 
into account both intra-study and inter-study variability (DerSimonian 
and Kacker, 2007). The SMD was used as a summary statistic as we 
expected scale variability of the metrics between studies due to meth-
odological differences. The SMD has the advantage of estimating effect 
sizes in a scale-free way (Cummings, 2011). The contribution of each 
study to the pooled SMD was given by its weight, based on the inverse 
variance of the study’s effect estimate. 

Based on previously reported inconsistencies between different 
recording modalities, we analyzed structural and functional data sepa-
rately (Garcia-Ramos et al., 2016b; Jiang et al., 2017). As functional MRI 
data and neurophysiological data (EEG/MEG) have distinct temporal 
and spatial properties from which connectivity measures are inferred 
(Bullmore and Sporns, 2009), we ran combined and separate analyses on 
these two data types. We estimated metric effect sizes for all focal epi-
lepsies as one group, and for temporal lobe epilepsy (TLE) and benign 
epilepsy with centrotemporal spikes (BECTS) separately as these groups 
were large enough to perform sub-analyses on. For an overview of all 
different analyses performed, see Supplementary Fig. 1. All primary 
analyses included all eligible studies, irrespective of the year of publi-
cation. We ran separate meta-analyses for studies published after 2013 

that were not included in our previous meta-analysis (van Diessen et al., 
2014). For each analysis, we detected, discussed, and removed outliers 
using funnel plots and the influence diagnostics of the R metaphor 
package (Viechtbauer and Cheung, 2010). 

Heterogeneity between studies was assessed using the I2 statistic. In 
contrast to Cochran’s Q, the I2 statistic does not directly depend on the 
number of studies included and thus might overcome excessive test 
power in large meta-analyses (Deeks et al., 2020; Higgins et al., 2003). I2 

describes the percentage of variation across studies due to heterogeneity 
rather than chance, with heterogeneity being quantified as ‘low’, 
‘moderate’, or ‘high’, with I2 around 25 %, 50 %, and 75 %, respectively 
(Higgins et al., 2003; Melsen et al., 2014). Effect size estimates were 
considered significant at a p-value < 0.05. 

2.6. Meta-regression 

Meta-regression was performed to explore sources of heterogeneity 
in the SMD estimates of the functional and structural average clustering 
coefficient, average path length, and modularity. We regressed the in-
dividual study SMDs against the (1) mean duration of epilepsy, (2) 
percentage of patients (in a study) with a structural brain lesion causing 
epilepsy, and (3) percentage of patients using anti-epileptic drugs, 
irrespective of the number of drugs. These factors were previously 
identified as potential modifiers of brain networks; see for an overview 
(van Diessen et al., 2013a). Regressions were performed if data from at 
least five studies were available. 

3. Results 

3.1. Study selection and quality 

We identified 2,992 articles with our search. From 153 articles full 
text was screened and reference lists were inspected. Fifty-seven studies 
met the inclusion criteria for our review. Twelve of seventeen contacted 
corresponding authors did not provide us the requested additional data; 
their studies were therefore not eligible for inclusion. Eventually, 45 
studies were included in our meta-analysis (Fig. 2). These studies 
together included 966 patients and 962 controls for the functional an-
alyses and 502 patients and 400 controls for the structural analyses. 
Information on the study population and technical characteristics of the 
included studies are shown in Tables 2 and 3. Data from 26 studies were 
extracted using GraphClick. 

The quality of the included studies was variable with a range in 
Newcastle-Ottawa scores between three and eight stars (Supplementary 
Table 2). Lower scores were mainly the result of incomplete reporting. 
Based on the funnel plots (Supplementary Figs. 2–4) and influence di-
agnostics (not shown) we excluded outliers from the final analyses. 
Excluded articles are noted in the forest plots’ legends. 

3.2. Meta-analyses 

3.2.1. Average clustering coefficient 
Functional average network clustering coefficient summary esti-

mates were based on data from fifteen functional MRI studies (Besseling 
et al., 2014; Chiang et al., 2014; Doucet et al., 2015; Garcia-Ramos et al., 
2016b; Haneef et al., 2015; Ji et al., 2017; Jiang et al., 2017; Liao et al., 
2010; Liu et al., 2019; Pedersen et al., 2015; Songjiang et al., 2020; 
Vaessen et al., 2013; Výtvarová et al., 2017; Wang et al., 2014; Xiao 
et al., 2015) and twelve neurophysiological studies (Adebimpe et al., 
2016, 2015; Bartolomei et al., 2006; Bosma et al., 2009; Choi et al., 
2019; Horstmann et al., 2010; Li Hegner et al., 2018; Mazzucchi et al., 
2017; Quraan et al., 2013; van Dellen et al., 2012; van Diessen et al., 
2016, 2013c). Twelve studies reported structural network data (Bern-
hardt et al., 2019, 2011; Besseling et al., 2014; Bonilha et al., 2012; 
Jiang et al., 2017; Liu et al., 2014; Park et al., 2018; Rodríguez-Cruces 
et al., 2020; Vaessen et al., 2012; Widjaja et al., 2015; Xu et al., 2014; Yu 
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et al., 2019). There were no significant differences in average clustering 
coefficients between patients and controls. The SMD of the functional 
average clustering coefficient was estimated at 0.076 (95 % CI − 0.178 to 
0.330; p-value 0.558) based on 761 epilepsy and 816 control networks 
(Fig. 3A). Separate analyses for fMRI and neurophysiological data yiel-
ded comparable results (Supplementary Table 3). Pooling the network 
data from other frequency bands than the theta band showed a statis-
tically significant lower beta band clustering coefficient for patients with 
epilepsy (p-value 0.026) (Supplementary Table 4). The SMD for the 
structural average clustering coefficient was -0.093 (95 % CI − 0.426 to 
0.241; p-value 0.587) based on 461 epilepsy and 357 control networks 
(Fig. 3B). Both the functional and structural data were highly hetero-
geneous, with I2 being 82.0 % and 79.8 %, respectively. 

3.2.2. Average path length 
Summary estimates of the functional average path length were based 

on eighteen functional MRI studies (Besseling et al., 2014; Chiang et al., 
2014; Doucet et al., 2015; Garcia-Ramos et al., 2016b; Haneef et al., 
2015; He et al., 2017; Ji et al., 2017; Jiang et al., 2017; Liao et al., 2010; 
Liu et al., 2019; Park et al., 2017; Pedersen et al., 2015; Ridley et al., 
2015; Songjiang et al., 2020; Vaessen et al., 2013; Výtvarová et al., 
2017; Wang et al., 2014; Xiao et al., 2015) and eleven neurophysio-
logical studies (Adebimpe et al., 2016, 2015; Choi et al., 2019; Horst-
mann et al., 2010; Jeong et al., 2014; Li Hegner et al., 2018; Mazzucchi 
et al., 2017; Niso et al., 2015; van Dellen et al., 2012; van Diessen et al., 
2013c, 2016). Twelve studies reported structural data (Bernhardt et al., 
2019, 2011; Besseling et al., 2014; Bonilha et al., 2012; Jiang et al., 
2017; Liu et al., 2014; Park et al., 2018; Rodríguez-Cruces et al., 2020; 
Vaessen et al., 2012; Widjaja et al., 2015; Xu et al., 2014; Yu et al., 
2019). The functional average path length, based on 903 patient and 
895 control networks, was comparable between patients and controls, 
with an estimated SMD of − 0.081 (95 % CI − 0.239 to 0.076; p-value 

0.312) (Fig. 4A). Separate functional analyses for the fMRI and neuro-
physiological data yielded the same results (Supplementary Table 3). 
Also did the analyses on frequency band data other than the theta band 
(Supplementary Table 4). The structural average path length was 
significantly higher in patients as compared to controls, with an esti-
mated SMD of -0.334 (95 % CI − 0.631 to − 0.038; p-value 0.027), based 
on 461 patient and 357 control networks (Fig. 4B). There was moderate 
heterogeneity across the functional and structural studies, with an I2 of 
59.5 % and 74.0 %, respectively. 

3.2.3. Modularity 
Since only two studies reported structural data on network modu-

larity (Garcia-Ramos et al., 2019; Jiang et al., 2017), we only aggregated 
functional data from seven studies (Doucet et al., 2015; Garcia-Ramos 
et al., 2016b; Jiang et al., 2017; Pedersen et al., 2015; Ridley et al., 2015; 
Vaessen et al., 2013; van Dellen et al., 2012). There was no difference in 
functional network modularity between patients with focal epilepsy and 
controls, with an estimated SMD -0.096 (95 % CI − 0.588 to 0.396; 
p-value 0.702), based on 188 patient and 162 control networks (Fig. 5). 
Studies were highly heterogeneous with I2 being 78.7 %. Separate an-
alyses for fMRI and neurophysiological data were not performed as only 
one study provided neurophysiological data. For this reason, we were 
also not able to analyze data from other frequency bands than the theta 
band. 

3.3. Subgroup analyses 

3.3.1. Temporal lobe epilepsy (TLE) 
Eleven functional studies (Chiang et al., 2014; Doucet et al., 2015; 

Garcia-Ramos et al., 2016b; Haneef et al., 2015; He et al., 2017; Jiang 
et al., 2017; Liao et al., 2010; Liu et al., 2019; Park et al., 2017; 
Výtvarová et al., 2017; Wang et al., 2014) and nine structural studies 

Fig. 2. Flowchart. 
Flowchart of the literature search and study identification. 
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Table 2 
Characteristics of included studies reporting functional network data.   

Study population characteristics Network characteristics 

Study GroupA Group 
size 

Sex 
(M:F) 

Age (years)B Duration 
(years)B 

Structural 
lesion (%)C 

AED 
use 
(%)D 

Modality Field strength 
(T) or sampling 
frequency (Hz) 

Network 
size 

Binary or 
weighted 
networks 

Bartolomei 
et al., 2006 

Focal epilepsy 17 8:9 41.1 (11.7) NR 100 NR 
MEG 312.5 149 Binary  

Control 15 8:7 31.0 (8.0) – – – 
Bosma et al., 

2009 Focal epilepsy 17 NR 42.7 (11.2) NR 100 94 MEG 312.5 149 Binary  
Control 17 NR 42.6 (12.7) – – – 

Horstmann 
et al., 2010 

Focal epilepsy 21 9:12 37.0 (11.5) 
21.3 
(11.7) 

NR 100 
EEG 254.31 29 Weighted  

Control 23 12:11 33.0 (9.0) – – – 

Liao et al., 2010 TLE 18 11:7 23.9 (8.5) 13.2 
(10.0) 

100 94 
fMRI 1.5 90 Binary  

Control 27 20:7 25.6 (NR) – – – 
Van Dellen 

et al., 2012 Focal epilepsy 35 20:15 42.2 (9.5) 7.4 (6.5) 100 94 MEG 625 136 Weighted  
Control 36 18:18 43.9 (11.9) – – – 

Quraan et al., 
2013 

TLE 9 7:2 42.1 (13.3) 23.8 
(19.0) 

100 100 
EEG 500 64 Binary  

Control 15 NR 33.0 (10.0) – – – 
Vaessen et al., 

2013 FLE 28 NR 11.3 (1.5) NR 0 NR fMRI 3.0 82 Weighted  
Control 37 NR 10.5 (1.3) – – – 

van Diessen 
et al., 2013c 

Focal epilepsy 35 24:11 10.1 (3.4) 0.0 (-) 23 0 
EEG 512 17 Weighted  

Control 35 12:11 9.9 (3.1) – – – 
Besseling et al., 

2014 E BECTS 22 14:8 11.3 (2.0) NR 0 66 
fMRI NR 137 Weighted  

Control 22 11:11 10.5 (1.6) – – – 
Chiang et al., 

2014 TLE 25 9:16 38.6 (13.0) 
20.7 
(18.9) 80 100 fMRI 3.0 NR Binary  

Control 12 NR NR – – – 
Jeong et al., 

2014 
Focal epilepsy 35 18:17 30.0 (8.6) NR 100 NR 

MEG 600 102 Weighted  
Control 23 12:11 24.7 (4.1) – – – 

Wang et al., 
2014 TLE 26 18:8 24.2 (5.6) 10.3 (8.3) 100 NR fMRI 1.5 90 Weighted  

Control 25 17:8 24.3 (5.3) – – – 
Adebimpe et al., 

2015 BECTS 9 NR 9.0 (0.2) NR 0 NR EEG 256 63 Binary  
Control 8 NR 9.0 (0.2) – – – 

Doucet et al., 
2015 

TLE 50 20:30 42.0 (12.0) 18.0 
(12.0) 

50 NR 
fMRI 3.0 116 Binary  

Control 14 5:9 39.0 (8.0) – – – 
Haneef et al., 

2015 TLE 24 13:11 38.4 (11.3) 
18.1 
(12.6) 87 100 fMRI 3.0 90 Binary  

Control 24 16:8 32.5 (9.3) – – – 
Niso et al., 2015 FLE 15 8:7 32.0 (16.0) 9.6 (NR) 73 100 MEG 1000 204 Weighted  

Control 15 8:7 24.0 (6.0) – – – 
Pedersen et al., 

2015 
Extratemporal 
epilepsy 

15 7:8 31.3 (11.7) 18.3 (NR) 47 100 
fMRI 3.0 278 Binary  

Control 26 12:14 31.4 (9.6) – – – 
Ridley et al., 

2015 Focal epilepsy 31 15:16 34.8 (11.7) 
22.4 
(12.2) 71 NR fMRI 3.0 84 Binary  

Control 15 9:6 30.5 (NR) – – – 
Xiao et al., 2015 BECTS 73 41:32 9.7 (2.2) 0.8 (0.3) 0 41 fMRI 3.0 90 Weighted  

Control 73 47:26 9.9 (2.3) – – – 
Adebimpe et al., 

2016 
BECTS 11 NR 9.6 (2.4) NR 0 91 

EEG 256 84 Binary  
Control 12 NR 9.3 (1.7) – – – 

Garcia-Ramos 
et al., 2016b TLE 11 2:9 36.5 (10.9) 15.9 (NR) 100 100 fMRI 3.0 235 Binary  

Control 15 7:8 36.8 (14.0) – – – 
Van Diessen, 

2016 
Focal epilepsy 62 42:20 9.1 (3.4) 0.6 (NR) 44 0 

EEG 512 17 Weighted  
Control 179 92:87 8.5 (4.2) – – – 

Wang and 
Meng, 2016 Focal epilepsy 20 8:12 12.1 (3.5) 7.7 (3.6) NR NR MEG 6000 90 Weighted  

Control 20 10:10 9.0 (5.6) – – – 

He et al., 2017 TLE 56 30:26 40.3 (12.8) 
17.3 
(13.3) 

52 100 
fMRI NR 90 Binary  

Control 28 14:14 38.8 (12.6) – – – 
Ji et al., 2017 BECTS 23 12:11 10.2 (2.1) 2.9 (3.0) 0 74 fMRI 3.0 200 Weighted 

(continued on next page) 
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(Bernhardt et al., 2019, 2011; Bonilha et al., 2012; Jiang et al., 2017; Liu 
et al., 2014; Rodríguez-Cruces et al., 2020; Widjaja et al., 2015; Xu et al., 
2014; Yu et al., 2019) were included for analyses on TLE. Functional 
analyses revealed no differences in the average clustering coefficient, 
average path length, and modularity (Supplementary Fig. 5). The 
structural average clustering coefficient did also not significantly differ 
between TLE patients and controls. The structural average path length, 
however, was significantly higher in TLE patients as compared to con-
trols, with an estimated SMD of -0.448 (95 % CI − 0.726 to − 0.169; 
p-value 0.002) (Supplementary Fig. 6). Structural modularity was not 
assessed since it was reported by only one study (Jiang et al., 2017). 
There was moderate to high heterogeneity between studies, with an I2 of 
52.9 %–81 %. Results are summarized in Table 4. 

3.3.2. Benign epilepsy with centrotemporal spikes (BECTS) 
A total of six functional (Adebimpe et al., 2016, 2015; Besseling 

et al., 2014; Choi et al., 2019; Ji et al., 2017; Xiao et al., 2015) and two 
structural studies (Besseling et al., 2014; Garcia-Ramos et al., 2019) 
reported data on BECTS patients. We only aggregated functional data. 
The functional average clustering coefficient and average path length 
did not significantly differ between patients and controls. Modularity 
data was not available. Heterogeneity between studies was low to 
moderate, with I2 being 0.0 % and 43.3 % for the path length and 
clustering coefficient, respectively. Results are summarized in Supple-
mentary Table 5 and Supplementary Fig. 7. 

3.3.3. Recent studies 
Results of meta-analyses ran with studies published after 2013 were 

largely comparable with the results of the analyses including all studies, 
but additionally yielded a significant decrease in the functional average 
clustering coefficient in the epilepsy group and TLE subgroup. Hetero-
geneity between study data remained moderate to high, except for the 

functional and structural clustering coefficient data in the TLE subgroup 
(Supplementary Table 6). Analyses on BECTS studies were not repeated, 
since all BECTS studies included were published after 2013. 

3.3.4. Study group sizes 
Study groups sizes, in terms of the number of patients and controls 

included, modestly increased over years (Supplementary Fig. 8). 

3.4. Meta-regression analyses 

A significant relation was found between the standardized mean 
difference of the structural path length and the percentage of patients 
using anti-epileptic drugs in the total epilepsy group (p-value 0.003, 
based on five studies). No other significant relations were found between 
the network metrics of interest and the mean epilepsy duration, the 
percentage of patients using anti-epileptic drugs, and the percentage of 
patients having a structural brain lesion in the epilepsy group, nor in the 
TLE subgroup (Table 5). Brain lesions included: tumors, hippocampal 
damage, gliosis, vascular malformations, cortical dysplasia, atrophy, 
and aspecific lesions. None of the included papers provided information 
on the size of the brain lesion. Therefore, we were not able to take this 
into account in our regression analyses. Due to a lack of data, no separate 
meta-regression analyses were performed for the BECTS group. 

4. Discussion 

In this systematic review with meta-analyses, we pooled data of all 
available studies on the functional and structural interictal brain 
network organization in patients with focal epilepsy. In contrast to most 
individual studies reporting significant network alterations, aggregation 
of these results yielded only modest effect sizes. We found a significantly 
increased structural path length in patients with focal epilepsy as one 

Table 2 (continued )  

Study population characteristics Network characteristics 

Study GroupA Group 
size 

Sex 
(M:F) 

Age (years)B Duration 
(years)B 

Structural 
lesion (%)C 

AED 
use 
(%)D 

Modality Field strength 
(T) or sampling 
frequency (Hz) 

Network 
size 

Binary or 
weighted 
networks  

Control 28 15:13 10.0 (2.3) – – – 
Jiang et al., 

2017 E 
TLE 18 9:9 26.4 (6.1) 8.7 (6.0) NR 100 

fMRI 3.0 90 Weighted  
Control 19 9:10 26.5 (3.8) – – – 

Mazzucchi 
et al., 2017 

Focal epilepsy 22 9:13 42.6 (17.4) 11.0 
(15.5) 

0 68 
EEG 128 19 Weighted  

Control 22 16:6 40.9 (15.7) – – – 

Park et al., 2017 TLE 48 17:31 41.4 (12.6) 17.0 
(12.7) 

NR 100 
fMRI 3.0 90 Binary  

Control 45 22:23 41.2 (13.5) – – – 
Výtvarová et al., 

2017 Focal epilepsy 46 21:25 
32.3 
(19.3− 65.1) 17 (3− 57) 50 96 

fMRI 1.5 90 Weighted  
Control 20 14:6 29.5 

(26.7− 40.4) 
– – – 

Li Hegner et al., 
2018 

Focal epilepsy 20 11:9 32.6 (11.3) 14.8 (NR) 0 100 
MEG 586 72 Weighted  

Control 20 11:9 33.0 (10.0) – – – 
Choi et al., 2019 BECTS 30 17:13 8.7 (NR) 0.2 (NR) NR 0 

EEG 200 19 Weighted  Control 30 17:13 8.8 (NR) – – – 
Liu et al., 2019 TLE 40 16:24 31.5 (8.7) NR NR NR 

fMRI 3.0 90 Binary  
Control 20 8:12 30.6 (7.2) – – – 

Songjiang et al., 
2020 

Focal epilepsy 54 32:22 10.8 (2.6) 2.3 (2.1) NR 100 
fMRI 3.0 160 Binary  

Control 42 24:18 12.0 (2.7) – – – 

AED: anti-epileptic drugs; BECTS: benign epilepsy with centrotemporal spikes; EEG: electroencephalography; F: female; FLE: frontal lobe epilepsy; fMRI: functional 
MRI; Hz: hertz; M: male; MEG: magnetoencephalography; NR: not reported; T: tesla; TLE: temporal lobe epilepsy; -: not applicable. 

A Focal epilepsy is noted when studies did not further specify the epilepsy type or included a group of patients with various focal epilepsies. 
B In mean (SD) or median (min-max). 
C Percentage of patients in a study having a structural brain lesion causing epilepsy. 
D Percentage of patients in a study using anti-epileptic drugs, irrespective of the number of drugs. 
E Study also reported structural network data (see Table 3). 
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group, and in the subgroup of those with TLE, pointing at a lower level of 
structural integration. When looking at functional networks, we did not 
find any network differences between patients and controls, except for 
the clustering coefficient in the beta frequency band, which was 
significantly lower in epilepsy. No network metric differences at all were 
found for patients with BECTS. The individual studies’ data were 
heterogeneous. 

An accurate quantification of the interictal brain network organiza-
tion in epilepsy can provide valuable insights into the development of 
epilepsy and its comorbidities in addition to conventional neuroimaging 
and neurophysiological techniques (Garcia-Ramos et al., 2016a; Kem-
motsu et al., 2014; Paldino et al., 2017; Vaessen et al., 2012; Vlooswijk 

et al., 2011). In a previous systematic review and meta-analysis, we 
concluded that the interictal brain network organization in patients with 
focal epilepsy is characterized by a lower level of integration and a 
higher level of segregation as compared to controls, with similar results 
for functional and structural networks. Modularity was not assessed. In 
the present effort, we were able to include a more than tripled number of 
studies (n = 45) and participants (n >1400) and found comparable re-
sults for the network’s integration, albeit only in the structural analyses. 
We were not able to reproduce the significantly increased average 
clustering coefficient in focal epilepsy patients using fMRI and theta 
band data. Instead, we found a significantly decreased clustering coef-
ficient in the beta band, that has not been evaluated previously (van 

Table 3 
Characteristics of included studies reporting structural network data.   

Study population characteristics Network characteristics 

Study GroupA Group 
size 

Sex 
(M:F) 

Age 
(years)B 

Duration 
(years)B 

Structural 
lesion (%)C 

AED 
use 
(%)D 

Modality Field 
strength 
(T) 

Network 
size 

Binary or 
weighted 
networks 

Bernhardt et al., 
2011 

TLE 122 52:70 36.0 
(10.5) 

20.5 (12.0) 84 NR 

MRI (CT) 1.5 52 Binary  
Control 47 23:24 

32.0 
(12.0) – – – 

Bonilha et al., 2012 TLE 12 4:8 37.5 (9.8) NR 100 NR 
MRI (DTI) 3.0 20 Binary  Control 26 10:16 34.3 (8.8) – – – 

Vaessen et al., 2012 
Focal 
epilepsy 

39 19:20 
40.0 
(12.0) 

17.7 (11.4) 0 NR 
MRI (DTI) 3.0 90 Weighted  

Control 23 9:14 40.4 
(13.5) 

– – – 

Besseling et al., 2014 
E BECTS 22 14:8 11.3 (2.0) NR 0 66 MRI (DTI) NR 137 Weighted  

Control 22 11:11 10.5 (1.6) – – – 
Lemkaddem et al., 

2014 
TLE 22 9:13 

33.7 
(10.2) 

16.3 (NR) 68 NR 
MRI (DSI) 3.0 84 Weighted  

Control 21 18:8 31.2 (4.8) – – – 

Liu et al., 2014 TLE 16 8:8 38.0 
(13.0) 

26.0 (14.0) 100 NR 
MRI (DTI) 1.5 78 Weighted  

Control 21 NA 
37.0 
(12.0) – – – 

Xu et al., 2014 TLE 14 10:4 
24 (NR- 
NR) NR 100 100 

MRI (DTI) 1.5 1024 Weighted  
Control 22 13:9 25.4 (NR- 

NR) 
– – – 

Widjaja et al., 2015 Focal 
epilepsy 

45 NA 13.6 (3.0) 5.1 (3.2) 0 100 
MRI (DTI) 3.0 82 Weighted  

Control 28 NA 13.8 (3.1) – – – 
Jiang et al., 2017 E TLE 18 9:9 26.4 (6.1) 8.7 (6.0) NR 100 

MRI (DTI) 3.0 90 Weighted  Control 19 9:10 26.5 (3.8) – – – 

Park et al., 2018 
Focal 
epilepsy 

66 33:33 
36.9 
(14.5) 

12.3 (13.1) 0 73 
MRI (DTI) 3.0 NR Weighted  

Control 84 42:42 38 
(19− 74) 

– – – 

Bernhardt et al., 
2019 TLE 44 17:27 33.0 (9.0) 18.0 (11.0) 100 NR MRI (DTI) 3.0 90 Weighted  

Control 25 12:13 32.0 (8.0) – – – 
Garcia-Ramos et al., 

2019 BECTS 19 13:6 10.5 (1.9) 0.6 (0.3) 0 55 MRI (CT) 1.5 85 Weighted  
Control 22 10:12 11.3 (2.0) – – – 

Yu et al., 2019 TLE 30 14:16 31.4 
(13.5) 

6.5 (7.3) 0 NR 
MRI (DTI) 3.0 90 Weighted  

Control 15 7:8 
32.0 
(10.8) – – – 

Rodríguez-Cruces 
et al., 2020 TLE 33 11:22 

29.9 
(11.2) 15.2 (12.1) 48 NR MRI 

(DWI/ 
SIFT) 

3.0 165 Weighted  
Control 25 7:18 32.8 

(12.7) 
– – – 

AED: anti-epileptic drugs; BECTS: benign epilepsy with centrotemporal spikes; CT: cortical thickness; DSI: diffusion spectrum imaging; DTI: diffusion tensor imaging; 
DWI: diffusion weighted imaging; F: female; M: male; NR: not reported; SIFT: spherical-deconvolution informed filtering of tractograms; T: tesla; TLE: temporal lobe 
epilepsy; -: not applicable. 

A Focal epilepsy is noted when studies did not further specify the epilepsy type or included a group of patients with various focal epilepsies. 
B In mean (SD) or median (min-max). 
C Percentage of patients in a study having a structural brain lesion causing epilepsy. 
D Percentage of patients in a study using anti-epileptic drugs, irrespective of the number of drugs. 
E Study also reported functional network data (see Table 2). 
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Diessen et al., 2014). Some studies, however, selectively reported fre-
quency band data (e.g. only beta or theta band data) which might have 
given rise to reporting bias. Whether the beta band differences truly 
represent a pathophysiological mechanism thus remains unclear. 

4.1. Challenges of network studies 

Despite the inclusion of more sophisticated network metrics in recent 
network studies, the majority of studies are still primarily focused on the 
path length and clustering coefficient – two highly correlated metrics (Li 

Fig. 3. Meta-analyses of the functional (A) and 
structural (B) average clustering coefficient. 
The forest plots display the standardized mean 
differences of the average clustering coefficient 
[C] between focal epilepsy patients and con-
trols, with 95 % confidence intervals. No dif-
ference is indicated with the black vertical line 
at 0.0. The pooled standardized mean differ-
ences were: 0.076 (95 % CI − 0.178 to 0.330; p- 
value 0.558) (functional analysis, panel A) and 
− 0.093 (95 % CI − 0.426 to 0.241; p-value 
0.587) (structural analysis, panel B). The 
following studies were outliers and excluded 
from analysis: Wang and Meng (2016) (func-
tional) and Lemkaddem et al. (2014), Gar-
cia-Ramos et al. (2019) (structural).   

Fig. 4. Meta-analyses of the functional (A) and 
structural (B) average path length. 
The forest plots display the standardized mean 
differences of the average path length [L] be-
tween focal epilepsy patients and controls, with 
95 % confidence intervals. No difference is 
indicated with the black vertical line at 0.0. The 
pooled standardized mean differences were: 
− 0.081 (95 % CI − 0.239 to 0.076; p-value 
0.312) (functional analysis, panel A) and -0.334 
(95 % CI − 0.631 to − 0.038; p-value 0.027) 
(structural analysis, panel B). The following 
studies were outliers and excluded from anal-
ysis: Bartolomei et al. (2006), Quraan et al. 
(2013), Wang and Meng (2016) (functional) 
and Lemkaddem et al. (2014), Garcia-Ramos 
et al. (2019) (structural).   
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et al., 2011) – for network characterization. Since these metrics do not 
take into account the essential modular and centrality characteristics of 
the brain network, informative network data could be neglected. Some 
of the included studies reported centrality measures, but these were too 
few to be pooled in a meta-analysis. A related issue comprises the sub-
jective methodological decisions made throughout the network analysis 
pipeline that can directly influence network metrics and thereby the 
studies’ conclusions (Bastiani et al., 2012; van Diessen et al., 2015; van 
Wijk et al., 2010). 

Most studies use traditional statistical approaches to investigate 
differences in brain network topology between patients and controls. 
Previous work by our group revealed that in certain cases no single brain 
network metric is significantly altered, but instead a combination of 

metrics (van Diessen et al., 2013c). This not only advocates the inclusion 
of more network metrics in the analyses but also the use of more so-
phisticated statistical approaches. Here, machine and deep learning al-
gorithms might be of use (Paulus et al., 2019; Roy et al., 2019). Another 
limitation is the group size of most studies. Although group sizes 
modestly increased over time, the chance of studies being unpowered 
remained high, which may hamper the interpretation of results. 

4.2. Opportunities and limitations of meta-analyses 

Meta-analyses provide a unique opportunity to overcome the limi-
tations of smaller and explorative studies but face limitations. Group 
analyses often are restricted to the mean values reported per study and 
are of limited use when the variability between studies is high. We also 
observed this in our analyses, despite correcting for heterogeneity using 
random-effects models and the SMD as a summary estimate. High het-
erogeneity could be an explanation for not having found robust changes 
in network metrics in patients with epilepsy as compared to controls. A 
solution to the highly variable between-study-summary estimates is the 
pooling and re-analysis of individual participant data (IPD). This IPD 
meta-analysis approach is known to provide more reliable estimates 
than the standard aggregated data meta-analysis but requires the 
collection of the original datasets across studies, which is very time 
consuming and depends on the active participation of corresponding 
authors in the sharing of data (Simmonds et al., 2005; Stewart and 
Parmar, 1993; Tudur Smith et al., 2016). 

4.3. Where do we go from here? 

While focal epilepsy was traditionally thought of as a local brain 
disorder, growing evidence exists that brain abnormalities extend 
beyond the epileptic zone. This is clearly illustrated by two recent 
studies from the ENIGMA consortium that reported widespread white 
matter abnormalities and brain atrophy to be present in focal epilepsy 
(Hatton et al., 2020; Larivière et al., 2020). Our meta-analyses add to 
this evidence from a network perspective by showing global alterations 
in the organizational structure of epileptic brain networks. Since we only 
assessed the global network organization, it remains unclear to what 
extent the global alterations are the result of regional network distur-
bances in and near the epileptogenic zone. Previous studies suggested 
connectivity patterns and network disturbances to be partly lateralized, 
with both hemispheres being affected but the most significant distur-
bances being present in the hemisphere of the epileptogenic focus 
(Englot et al., 2016; Pourmotabbed et al., 2020). The mechanism(s) 
underlying global interictal network disturbances in focal epilepsy are 
poorly understood and might be related to underlying white matter 
damage (Kim et al., 2008; Otte et al., 2012) or recurrent network inhi-
bition resulting from seizures, as conceptualized in the ‘network inhi-
bition hypothesis’ (Englot et al., 2016). This latter hypothesis is 
supported by studies reporting a significant association between brain 
network disorganization and duration of epilepsy (Haneef et al., 2015; 
Park et al., 2018; van Dellen et al., 2009). We were not able to confirm 
this hypothesis with our meta-regression analyses. Due to missing data, 
we could not take into account seizure type and frequency, which might 

Fig. 5. Meta-analysis of the functional modularity. 
The forest plot displays the standardized mean differences of the modularity 
[Q] between focal epilepsy patients and controls, with 95 % confidence in-
tervals. No difference is indicated with the black vertical line at 0.0. The pooled 
standardized mean difference was: − 0.096 (95 % CI − 0.588 to 0.396; p- 
value 0.702). 

Table 4 
Summary of meta-analyses on TLE studies alone.  

Metric  SMD 95 % CI p-value Studies (n) Epilepsy (n) Control (n) I2 (%) 

Clustering coefficient Functional 0.239 − 0.097 0.575 0.164 9 234 176 62.1 
Structural − 0.213 − 0.649 0.222 0.337 9 305 228 81.0 

Path length Functional − 0.052 − 0.351 0.248 0.736 11 338 249 66.5 
Structural − 0.448 − 0.726 − 0.169 0.002 ** 9 305 228 52.9 

Modularity 
Functional 0.477 − 0.160 1.113 0.142 3 79 48 61.5 
Structural – – – – – – – 

CI: confidence interval (left column = lower bound, right column = upper bound); I2: heterogeneity statistic; n: number; SMD: standardized mean difference; TLE: 
temporal lobe epilepsy; -: not performed; ** p-value < 0.01. 
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be as important as net epilepsy duration. Sub-analysis for specific epi-
lepsy types revealed distinct and more homogenous network alterations 
in TLE and BECTS. Further in-depth characterization of the brain 
network organization in different epilepsy types might enable network 
analysis to be clinically useful for predicting disease severity and patient 
counseling. 

Other clinical applications of network analysis in epilepsy have also 
been proposed. It might support early-stage epilepsy diagnosis in both 
children and adults (Douw et al., 2010; van Diessen et al., 2013c) and is 
proposed to be useful in identifying patients at risk for developing 
cognitive impairments (Vaessen et al., 2012; Vlooswijk et al., 2011). 
Furthermore, network analysis might be helpful in epilepsy manage-
ment, as previous studies found that network dynamics and connectivity 
patterns could predict patients’ responsiveness to certain anti-epileptic 
drug treatment (Anderson et al., 2020), epilepsy surgery planning 
(Barron et al., 2015; Chiang et al., 2015), and the outcomes of epilepsy 
surgery (Di et al., 2019; Gleichgerrcht et al., 2018; Wilke et al., 2011). 
Although these studies together frame the clinical potential of network 
analysis at the group level, none of the proposed applications has made 
it towards individual clinical use yet. 

5. Conclusion 

Increased sample sizes and methodological standardization are 
needed to better grasp the specific network alterations in epilepsy. This 
is in line with the conclusions of a recent systematic review on network 
alterations in particularly generalized epilepsy (Pegg et al., 2020). The 
increasing level of experience with network analysis – coming with time 
– might already have started to pay off with regard to methodological 
harmonization, since we observed less between-study heterogeneity 
when aggregating only the more recent studies’ results. The slightly 
increasing sample sizes over time might also have positive impact here. 
Secondly, the inclusion of a greater variety of metrics to characterize the 
brain network organization might better underpin the complex brain 
network nature and its alterations in epilepsy. The choice for a combi-
nation of network metrics requires careful consideration and should, 
ideally, not be researcher-dependent. As for the application of advanced 
statistical methods to imaging or neurophysiological data, deep learning 
algorithms might be of use here. Machine and deep learning approaches 

could, for instance, help to select from a predefined set of metrics which 
of these are most distinguishing between people with and without epi-
lepsy (van Diessen et al., 2013c). One step further and transcending 
network analysis, strategies can also be built to classify patients with 
epilepsy and controls with raw imaging and neurophysiological datasets 
where no data is predefined or no labels are available (Roy et al., 2019). 
Thirdly, since the brain is in a constant state of change, characterization 
of the brain network organization does not only require the calculation 
of static network metrics but may benefit from taking the dynamic 
properties into account (Pedersen et al., 2017; Rosch et al., 2018). 
Combining the dynamics of brain regions and their interconnectedness 
could lead to a more comprehensive understanding of 
epilepsy-associated network abnormalities. Taken together, we call for 
the deepening of network analysis and a continuous critical evaluation 
of its yield as a first step to enhance the field’s clinical value for the 
individual epilepsy patient. 
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Table 5 
Meta-regression results.  

Group β SMD C 95 % CI p- 
value 

n β SMD L 95 % CI p-value n β SMD Q 95 % CI p- 
value 

n  

Mean duration of epilepsy (in years) 
Focal epilepsy, 

functional 
− 0.025 − 0.062 0.011 0.170 19 0.003 − 0.019 0.025 0.792 22 − 0.020 − 0.134 0.095 0.734 6 

Focal epilepsy, 
structural 

− 0.039 − 0.095 0.017 0.169 9 0.004 − 0.055 0.063 0.893 9 – – – – – 

TLE, functional − 0.003 − 0.099 0.094 0.957 7 0.043 − 0.047 0.133 0.347 9 – – – – – 
TLE, structural − 0.042 − 0.104 0.021 0.191 7 0.003 − 0.045 0.050 0.917 7 – – – – –   

Percentage of patients with brain lesion causing epilepsy 
Focal epilepsy, 

functional 
− 0.484 − 1.117 0.148 0.134 22 0.096 − 0.412 0.605 0.710 23 0.208 − 1.214 1.630 0.775 6 

Focal epilepsy, 
structural 

− 0.518 − 1.288 0.252 0.187 11 − 0.409 − 1.064 0.247 0.222 11 – – – – – 

TLE, functional − 1.107 − 2.836 0.621 0.209 6 − 1.048 − 2.601 0.504 0.186 7 – – – – – 
TLE, structural − 0.41 − 1.654 0.834 0.519 8 − 0.807 − 1.063 0.449 0.426 8 – – – – –   

Percentage of patients using anti-epileptic drugs 
Focal epilepsy, 

functional 
− 0.160 − 0.984 0.665 0.704 21 − 0.068 − 0.575 0.439 0.792 22 – – – – – 

Focal epilepsy, 
structural 

− 0.709 − 2.217 0.800 0.357 5 − 3.777 − 6.262 − 1.292 0.003** 5 – – – – – 

TLE, functional 14.20 − 5.121 33.51 0.150 6 − 1.573 − 20.92 17.78 0.873 8 – – – – – 
TLE, structural – – – – – – – – – – – – – – – 

β: beta coefficient; C: clustering coefficient; CI: confidence interval (left column = lower bound, right column = upper bound); L: path length; n: number of studies 
included in regression analysis; SMD: standardized mean difference; TLE: temporal lobe epilepsy; Q: modularity; -: not performed; ** p-value < 0.01. 
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