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Abstract

The rapid evolution of the flow cytometry field, currently allowing the measurement of

30–50 parameters per cell, has led to a marked increase in deep multivariate informa-

tion. Manual gating is insufficient to extract all this information. Therefore, multivariate

analysis (MVA) methods have been developed to extract information and efficiently ana-

lyze the high-density multicolour flow cytometry (MFC) data. To aid interpretation, MFC

data are often logarithmically transformed before MVA. We studied the consequences

of different transformations of flow cytometry data in datasets containing negative

intensities caused by background subtractions and spreading error, as logarithmic trans-

formation of negative data is impossible. Transformations such as logicle or hyperbolic

arcsine transformations allow linearity around zero, whereas higher (positive and nega-

tive) intensities are logarithmically transformed. To define the linear range, a parameter

(or cofactor) must be chosen. We show how the chosen transformation parameter has

great impact on the MVA results. In some cases, peak splitting is observed, producing

two distributions around zero in an actual homogeneous population. This may be mis-

interpreted as the presence of multiple cell populations. Moreover, when performing

arbitrary transformation before MVA analysis, biologically relevant and statistically signif-

icant information might be missed. We present a new algorithm, Optimal Transformation

for flow cytometry data (OTflow), which uses various statistical methods to optimally

choose the parameter of the transformation and prevent artifacts such as peak splitting.

Arbitrary or unconsidered transformation can lead to wrong conclusions for the MVA

cluster methods, dimensionality reduction methods, and classification methods. We rec-

ommend transformation of flow cytometry data by using OTflow-defined parameters

estimated per channel, in order to prevent peak splitting and other artifacts in the data.
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1 | INTRODUCTION

The flow cytometry field has evolved rapidly. Nowadays commonly used

flow cytometers measure up to 17 parameters per cell [1] and the most

recently developed flow cytometers can potentially measure 30 to

50 parameters [2]. With this increase in measured variables per single cell,

the information in the resulting datasets also increases tremendously.

Analysis of flow cytometry datasets by manual gating has essential

drawbacks due to the lack of reproducibility, the subjectivity and bias,

the inefficiency for large panels and the fact that it is time-consuming for

large datasets [3]. To overcome these drawbacks various multivariate

analysis (MVA) methods have been developed for automated analysis of

multicolour flow cytometry (MFC) data in the past decade. MVA

methods can be classified into methods which use dimensionality reduc-

tion like the broadly used method viSNE [4]. Next to viSNE, other types

of dimensionality reduction methods exist, which were developed to per-

form specific tasks in analyzing and quantifying flow cytometry data like

FLOOD [5], DAMACY (for the classification of ‘control samples’ or

‘patient samples’ based on discriminative expression patterns between

these groups) [6], and ECLIPSE (for automated gating of [rare] disease-

related cell populations) [7]. Clustering methods like SPADE [8],

FlowSOM [9] and Citrus [10] belong to a second type of MVA methods

and are frequently used by researchers to identify and characterize new

(disease-related) cell subsets in a fast and unbiased way. Before one can

use these methods, the MFC data should be adequately preprocessed.

There are many preprocessing options, and the preprocessing steps can

have considerable effects on the results of the analysis. For an overview

of optional preprocessing steps, we refer to the review of Saeys et al. [3].

Up until recently, logarithmically transformed axes were used when

analyzing marker expressions from MFC data using conventional gating

analysis software. Log transformations perform a nonlinear conversion of

the output of the analog-to-digital converter. It is useful to correct for

heteroscedasticity and to change skewed distributions into more sym-

metric, Gaussian distributed peaks [11]. In MFC, logarithmic transforma-

tion has been very useful in coping with the wide dynamic range of

emissions between fluorophores. The log scale provides an informative

and proper display of populations in the higher intensity range as well as

of populations in the lower intensity regions. Populations with low fluo-

rescent intensities which may be hardly discerned on a linear scale are

well visible and separated on a logarithmic scale. However, negative

intensities cannot be properly displayed on a logarithmic scale, since cal-

culating the logarithm of a negative value is undefined for real numbers

and only allowed for complex numbers.

Negative fluorescence intensities are physically and biologically

meaningless. Nevertheless, negative values in MFC data can occur in

the process of data acquisition due to adjustment of original measure-

ments by the instrument hardware and software. Negative values

might emerge from background subtractions performed by the

hardware of some flow cytometers (e.g. Becton Dickinson). PMT sig-

nals can contain high levels of background signal from fluorescent

light from unbound fluorophores, PMT dark current and ambient light

[12]. The background signal is measured in between two events and

this signal intensity is subtracted from the next event measured. In

the case of a negative or dim cell, the measured fluorescence can be

smaller than the background signal, due to the measurement errors.

This then leads to negative values. In BD FACS Diva software, the

user of the flow cytometer cannot influence the background subtrac-

tion. Additionally, compensation of spectral overlap among fluoro-

chromes can lead to fluorescent intensities below zero [12, 13].

Another source of negative values is caused by data spreading. At a

somewhat deeper level, statistical variation originates from measure-

ment errors such as photon counting errors and binning errors [14].

Photon counting errors are associated with the quantum mechanical

nature of the emitted light. The photons that are emitted by the fluo-

rophore, will arrive at the detector at different time points, in a

Poisson-distributed manner, as it is a stochastic process. This causes

the signal to be heteroscedastic, having higher variance when fluores-

cence intensity is higher, and leads to a nonlinear spreading of prop-

erly compensated MFC data. Attempts to represent data with

negative values on a logarithmic scale lead to an apparent mean that

is too high, and negative data points that are squeezed onto the axes

[15]. Therefore, alternative transformation methods have been devel-

oped. The logicle [15] and hyperbolic arcsine (arcsinh) [16] transfor-

mations are the most commonly used in modern flow cytometry. Both

transformation methods use a combination of linear transformation

for values close to zero and a logarithmic scale for larger (negative and

positive) values. The transition of the linear to the logarithmic part is

smoothed out. Importantly, next to visualization of MFC data in bi-

plots, logarithmic or bi-exponential transformations are performed as

a preprocessing step for the previously mentioned MVA methods. In

the viSNE and SPADE algorithms hyperbolic arcsine transformation is

used with a standard parameter for the entire dataset [17], despite

various reports which have shown that the choice of the parameter

for transformation should be dependent on the dataset, and thus may

vary per fluorescence channel [16, 18].

Here we present an algorithm for Optimal Transformation of flow

cytometry data, called OTflow. OTflow is an automated and validated

algorithm for optimization of transformation parameters for both visu-

alization and MVA of flow cytometry data. The algorithm combines

properties of normality of the signal and stabilization of the variances

among the peaks to best represent MFC data on a bi-exponential

scale. Improving the flowVS method by Azad et al [18] we combined

variance stabilization [19] together with Bartlett's test [20] to define

the optimal parameter for transformation based on the flow cyto-

metry dataset itself. Variance stabilization dissociates the existing cor-

relation between the mean intensity of a cell population and the
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variance, which is typical of MFC measurements. Bartlett's test [20] is

used as statistics to select the arcsinh transformation cofactors which

leads to homogenous variances per fluorescent channel measured. As

a result, cell populations with different intensities are better discerned

and the corresponding peaks resemble more normal distributions. This

enables comparison of phenotypical similar cell populations across

multiple samples [21]. However, variance stabilization by flowVS can

be performed only when two or more peaks are present per channel.

In the case of a single peak per channel, the flowVS algorithm may not

be suitable to find optimal cofactor transformation. In the novel algo-

rithm OTflow, in addition to Bartlett's statistics for multiple peaks, we

integrated the possibility to estimate optimal parameters for transfor-

mations also when a single peak per channel is present. In this case,

Jarque-Bera statistics test [22] for normality of the peak is applied.

Moreover, OTflow specifically prevents peak-splitting in its parameter

optimization process. This is very important in flow cytometry data

with negative values to avoid misleading interpretation of the trans-

formed populations. As far as our knowledge goes, no other transfor-

mation method for MFC data takes this last feature into account.

In this paper we show the versatility of OTflow by applying the

algorithm to complementary datasets and performing PCA [23], viSNE

[4], flowSOM [9] and Citrus [10] analyses. Additionally, we compare

these MVA results to the results from the same datasets transformed

using hyperbolic arcsine with the default cofactor 150, or using the

recently published flowVS algorithm [18]. Also, in Appendix S1, we

compare the MVA results after logicle transformation with the opti-

mized W parameters from OTflow to those obtained after logicle

transformation with a calculated W value as proposed by Parks et al.

[15] We demonstrate that suboptimal transformations by a poorly

chosen or calculated parameter can lead to misleading MVA results

that may subsequently invoke incorrect immunological conclusions.

2 | METHODS

2.1 | Transformations

We considered two of the most widespread transformations used to

process flow cytometry data: inverse hyperbolic sine function [16] and

the logicle function [15]. They both belong to the class of bi-exponential

functions and have the characteristics of being linear and symmetric near

zero and becoming exponential for higher values, with a smooth transi-

tion between the linear and exponential regions [24]. Note that both

transformations deal with negative numbers. For detailed description of

both functions we refer to the Supplementary Material I.

2.2 | Variance stabilization and normality of flow
cytometry peaks

Bi-exponential function-based transformations perform variance stabili-

zation of the signals, as they remove the correlation between data vari-

ability and mean, which is typically present in MFC data. If the variance

between the signals is not stabilized, cell populations with higher signal

intensity will have a larger variance which does not necessarily reflect

the true marker variability. For accuracy in MVA, optimally transformed

MFC data is characterized by peaks resembling normal distributions

with homogenous variances (homoscedasticity), which are not depen-

dent on the fluorescence intensity. The variance between distributions,

after optimal transformation, will therefore reflect the true variability in

protein expression of the cell subsets. This facilitates the comparison of

cell populations with different marker expression levels. Checking for

variance stabilization between multiple peaks for one marker can be used

as measure of how well (bi-exponential) functions transform the MFC

data. This may be evaluated by using Bartlett's likelihood-ratio test, com-

monly chosen in statistics to check for homoscedasticity among multiple

groups. The Bartlett's test is adopted in the flowVS algorithm [18, 20].

Also in OTflow, we use Bartlett's test to assess the homogeneity of vari-

ance between peaks per measured marker across all the individuals.

However, when a single cell population is present per marker, variance

stabilization cannot be applied to peaks within the same sample, but only

to peaks across all the individuals. With a single peak per sample and a

low number of samples present, optimizing Bartlett's statistics is not pre-

ferred, since biologically relevant variance between different samples

might be removed. Alternatively, optimal transformation of the single

peak can be evaluated by how well the transformed peak resembles a

normal distribution. The Jarque-Bera test is used to determine the nor-

mality of the single peaks. The test is based on estimation of kurtosis and

skewness of the peak, which are schematically represented in Figure S2.

These are properties related to the shape of distributions and they are

commonly used to check the deviation from normality.

2.3 | The algorithm step by step

A schematic overview of the algorithm is shown in Figure 1.

We describe below the process to choose an optimal cofactor for

arcsinh transformation (Equation S1) for each channel measured. The

same process can be applied to the optimization problem of

the parameter W for logicle transformation (Equation S2).

Step 0: Multiset structure of MFC data. The OTflow algorithm is

simultaneously applied to all the MFC samples present in the study.

Single MFC samples can be arranged in the ‘multiset’ matrix X, of sizePI
1
Ni� J

� �
, where Ni is the number of cells of the ith-individual and J

corresponds to the markers measured, 1…j…J.

Step 1: Data transformation. The matrix X is transformed by the

arcsinh function as described in Equation S1. We define Xlogi ¼
arsinh Xi

c

� �
the arcsinh transformed matrix of the i-th sample, of size

Ni� Jð Þ. The value of cofactor c is progressively increased by assuming

values ea, with a ranging from 0 to 10, in steps of 0.05, corresponding

to 201 cofactor values.

Step 2: Each marker is analyzed per individual. Each sample Xlogi is

randomly subsampled (without replacement) to 1000 cells. The

subsampling is repeated 100 times by a Monte-Carlo cross-validation.

If the sample size is smaller than 1000 cells, then the nonsubsampled

set is used. For each subsample, the algorithm is applied to each

marker individually, included in the column vector xlogi,j , representing

the arcsinh-transformed jth-channel of the ith-individual.
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Step 3: Peak detection. Peaks or cell subpopulations are determined

for each separate marker per measurement. First univariate probability

density is estimated with kernel density estimate (KDE) [25] by using

Gaussian function as kernel. The probability density function (PDF) is

used to describe the probability that a cellular marker expression

assumes a certain value, which can be established by KDE. The estimate

basically fits a smooth curve (specifically a Gaussian) on the data as a

kind of continuous replacement for the discrete histogram.

Then a peak finding algorithm (findpeak function in Matlab [26]) is

applied to the resulting density estimate. Peaks are identified by using

a minimal peak prominence of 0.1% of the density estimate. The

prominence of a peak measures how much the peak emerges due to

its absolute height (e.g. number of cells) and its location or distance

relative to other peaks. If this is bigger than the chosen threshold for

the prominence, separate peaks will be identified.

Step 3a: Detection and removal of noise/artifacts. Peaks containing

less than 5 cells will be disregarded from further analysis. This will pre-

vent inclusion of very small peaks in the analysis which might be asso-

ciated with outliers or noise in the data.

Step 3b: Detection of peak splitting. The mean of each leftmost

peak is estimated. In case a negative mean is detected, a penalty is

given to the measurement, as this suggests the presence of peak split-

ting due to the transformation.

Step 4: Peak counting and penalties. Subsequently, the number of

peaks is checked per measurement for each marker. Depending on

the number of peaks found, different statistics or penalties are

applied. a) If no peaks are present (which means all the detected

peaks contained less than 5 cells), a penalty is given; b) if only one

peak is present, Jarque-Bera statistics are applied; c) Samples con-

taining multiple (two or more) peaks are grouped together; Bartlett

statistics are then applied to check variance stability of all the peaks

from the merged samples.

Step 5a: Jarque-Bera statistics. When a single peak per marker is

found, the Jarque-Bera (JB) statistical method [27] is applied to opti-

mize the normality of the peak. For each value of the cofactor c, the

score JB cð Þ is estimated as shown in Equation 1.

að ÞS cð Þ¼
1
n

Xn

i¼1
xi�xð Þ3

1
n

Pn
i¼1 xi�xð Þ2

� �3
2

0
BB@

1
CCA

bð ÞK cð Þ¼
1
n

Xn

i¼1
xi�xð Þ4

1
n

Pn
i¼1 xi�xð Þ2

� �2
0
B@

1
CA

cð Þ JB cð Þ¼ n
6

S2þ K�3ð Þ2
4

 !
ð1Þ

F IGURE 1 Schematic step-by-step representation of the OTflow algorithm. Steps 2–6, included in the light gray sector, are repeated through the
100 monte-carlo iterations. The validated final score is calculated as average of the score obtained each repetition. The score is a result of Jarque-Bera
statistics (estimated for single peak), Bartlett statistics (estimated for 2 or more peaks) and Penalty. A penalty is given when a negative peak is found (peak
splitting-Step 3b) or no peak is detected (Step 4). The optimal cofactor or W parameter (Step 7) is the one that produces the lowest mean score per marker
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Where S cð Þ and K cð Þ represent skewness and kurtosis of the distribu-

tion of the peak, respectively. The smaller the value of the

JB(c) statistics, the more likely the peak resembles a normal

distribution.

Step 5b: Bartlett statistics. Subsamples with multiple peaks per

marker are bundled together. Bartlett statistics test for equal variance

across all the peaks from all the merged subsamples against the alter-

native hypothesis that variances are unequal across the peaks. The

Bartlett statistics are calculated for each of the 201 values of c (see

Equation 2), as follow:

Bartlett cð Þ¼ N�kð Þln σp2
� ��Pk

i¼1 n1�1ð Þln σi2
� �

1þ 1
3 k�1ð Þ

Pk
i¼1

1
ni�1

� �
� 1

N�k

� � ð2Þ

where N is the number of cells included in all the found peaks, k is the

number of peaks, σp2 the pooled variance of peaks, σi2 is the variance

of the ith-peak. When the variances between the peaks are equal, the

Bartlett (c) assumes the lowest value.

Step 6–7: Final score and optimal cofactor. For each Monte-Carlo

iteration a score is calculated as contribution of penalties, Jarque-Bera

and Bartlett statistics. The two statistical tests are weighted to assure

that both statistics have similar impact in determining the final score.

Mean and standard deviation of the scores of the 100 Monte-Carlo

iterations are estimated. The optimum cofactor is the value

corresponding to the lowest mean scores for each marker.

2.4 | OTflow code online

The algorithm is shared online: https://surfdrive.surf.nl/files/index.

php/s/zTzLY1YlPzKuNWo.

2.5 | Data sets used to test OTflow

The parameter optimization algorithm OTflow was applied to a HIV

dataset consisting of seven healthy control samples and 18 patient

samples, of the patients 14 were treated with anti-retroviral therapy

and four were untreated. Peripheral blood samples were obtained

from individuals in the context of standard diagnostic care. Residual

blood not used for the standard diagnosic tests was used for research,

with Informed Consent from patient according to protocols of the

UMC Utrecht.

The MFC panel comprised 10 fluorescently labeled antibodies:

CD123, CD14, CD16, CD3, CD4, CD8, CD56, CD20, CD193, CD62L

for identification of different leukocyte subsets in the peripheral

blood. After measuring single stains per antibody and a negative con-

trol using white blood cells and Compensation beads (BD CompBead

Anti-Mouse Ig,κ/ Negative Control Particles Set) a compensation

matrix was generated using Flowjo analysis software (Tree Star Inc.,

Ashland, Oregon). Per sample between 250,000–500,000 cells were

measured on a BD LSR-II Fortessa. Prior to MVA, the single cells

were selected, and debris was excluded from the analysis (Figure S7)

using manual gating (Flowjo analysis software, Tree Star Inc., Ashland,

Oregon). The gated fcs files were exported.

The OTflow algorithm was tested on two additional flow cyto-

metry datasets with varying number of cell subpopulations per

dataset, as described in the Supplementary Material I.

2.6 | Simulation study to test OTflow

A simulation study was performed with univariate data to visualize

and quantify the behavior of the OTflow algorithm, and compare it

with flowVS. The simulation study is further described in the Supple-

mentary Material V.

2.7 | MVA

Here the way different multivariate analysis methods were applied is

shortly explained. For background information about the methods we

refer to the Supplementary Material II or the original papers about the

methods (see references).

2.7.1 | Principal component analysis

Principal component analysis [23] (PCA) is a dimensionality reduction

technique which has been widely used for analysis of MFC data [6,

7, 28, 29]. After arcsinh transformation, the data were mean centered

and scaled over all the samples, prior to the PCA analyses.

2.7.2 | viSNE

viSNE analyses were performed in Cytobank [17] with the following

parameters: perplexity 30, random seed, # Iterations 1000, Theta 0.5.

To perform the viSNE analysis on the HIV dataset, each individual

was randomly down-sampled to 2000 events. This enabled decrease

of the running time and thereby computational burden and crowding

effects were avoided.

2.7.3 | FlowSOM

The flowSOM [9] algorithm was performed by running the R code

available at Bioconductor. The algorithm was trained on the MFC data

using suggested (default) parameters: 100 as number of nodes, Euclid-

ean distance to find nearest neighbor, and a training length of

10 epochs. A minimum spanning tree was then built to visualize the

clusters detected by the algorithm. The FlowSOM algorithm was run

by using a fixed random seed (=25), this will allow to get the same

exact flowSOM minimum spanning tree when repeating the analysis

on the same data. Thereby, differences found in flowSOM results
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between the differently transformed datasets are with certainty cau-

sed by the transformations, and are not a consequence of the stochas-

tic nature of the method.

2.7.4 | Citrus

Citrus [10] was run using the online platform Cytobank [17] with the

following default parameters: minimum cluster size of 5% and a cross-

validation fold of five.

3 | RESULTS

3.1 | Flow cytometry datasets contain a
considerable amount of negative values, requiring
careful attention when transforming the data

The datasets used in this article have a percentage of cells displaying

one or more negative intensities ranging between 39% and 96%;

these negative intensities vary by eight or nine orders of magnitude

(Table S1).

As explained in the introduction, subtraction of the background

signal may be one of the causes of negative values in a dataset. If a lot

of unbound fluorophores are present in the solution, the background

signal can be higher than the signal of a particle or cell to which no

such antibody has bound, again leading to negative values (Figure S3).

Another cause of the appearance of negative intensities in a flow

cytometry dataset, is data spreading. Cell populations that are nega-

tive for a certain marker (low fluorescence intensity), but positive for

another marker (high fluorescence intensity) with spectral overlap in

the channel of the negative marker, can cause data spreading for the

negative marker. When compensation is applied, the intensities for

the negative marker will be decreased and part of the lowest values

are shifted into the negative range (Figure S4) [30].

For flow cytometry data, the log scale provides an informative

and proper display of populations in the higher intensity range as well

as of populations in the lower intensity regions. Populations with posi-

tive low fluorescent intensities which may be hardly discerned on a

linear scale are well visible and separated on a logarithmic scale (-

Figure S5). However, negative values cannot be logarithmically trans-

formed. In Figure S6 differently transformed scales are shown for the

visualization of flow cytometry data. When data which contains nega-

tive intensities are represented on a logarithmic scale, the originally

negative values are plotted onto the axes or lost in the representation

(Figure S6B). To overcome this problem, it might be suggested to shift

the whole dataset to positive values and then apply log transforma-

tion. Doing so, events in the lower region are overly dispersed and the

ratio between values changes. This would lead to incorrect estimation

of signal means (Figure S6C). As a solution bi-exponential transforma-

tions are used, e.g. arcsinh or logicle transformation. For both func-

tions, the width of the linear region is determined by a parameter.

When this parameter is not carefully chosen, artifacts can arise at the

transition point of the linear part to the logarithmic part [31].

Figure S6D–G shows logicle and arcsinh transformed flow cytometry

data with different parameters. Homogeneous populations with a

mean intensity close to zero can be split into two distinct populations

when the value for the parameter is too low. We refer to this phe-

nomenon as peak splitting. In Figure S6D,F suboptimal parameters

were used for arcsinh and logicle transformation, respectively. In

these plots 6 and 4 or 5 cell populations can be discerned, respec-

tively, while in the figures with an optimally defined parameter for

transformation (Figure S6E,G) 3 cell populations are found. The newly

developed algorithm, named OTflow, enables to define the optimal

co-factor or W value for arcsinh or logicle transformation, respec-

tively, with the aim to prevent artifacts such as peak splitting. The

algorithm has been described in the methods section step by step.

3.2 | Transformation applied to a real dataset: HIV
Patient data

The HIV patient and control dataset comprises of blood samples

obtained from seven healthy controls and 18 HIV patients. The

patient group is heterogeneous, as it includes both treated and

untreated patients. The MFC panel used contained 10 surface

markers, mostly differentiation markers, aimed to identify the most

common leukocyte subsets in the peripheral blood. Doublets and cel-

lular debris were excluded from the dataset by manual gating (-

Figure S7). OTflow was used to identify the optimal cofactor for the

arcsinh transformation for each of the 10 fluorescence channels in

the HIV patient and control dataset. Bartlett or Jarque-Bera statistics

were estimated by the OTflow algorithm depending on the number of

peaks found per cofactor tested, ranging between e0 and e10 (=1 and

�22,026). Additionally, a penalty was given when no peaks were pre-

sent or when negative peaks were found in the transformed data. The

average final score and standard deviation obtained per marker for

varying cofactors are shown in Figure S8. For most of the markers,

higher scores are obtained when very low and very high values of the

cofactor are used for the arcsinh transformation, while for

the medium values a dip in the curves is present between e4 and e7

(≈54.6–1097). An exception to this trend is observed for marker

CD20 having maximum score value for central cofactors. By investi-

gating the contribution of the different statistics (Bartlett's and

Jarque-Bera) to the average score (Figure S9), we observed that such

trend is due mainly to Bartlett's statistics, meaning that variances

between peaks in this range of cofactors are not well stabilized.

Table 1 compares the optimal cofactors found by OTflow with

the results obtained by applying flowVS on the same dataset.

Running the flowVS algorithm on the dataset led to significantly

lower cofactors for marker CD123, CD16, CD56 and CD20 compared

to the results of OTflow and to the default cofactor 150. Figure2 A-C

shows the distribution of these four representative surface markers

on leukocytes of healthy controls (blue) and HIV patients (red), after

transformation with a default cofactor 150 (Figure 2A), or with the

cofactors determined by flowVS (Figure 2B) or OTflow (Figure 2C),
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respectively. Arcsinh transformation with the default cofactor of

150 for all markers, produces spurious splits of the cell population

around 0 for CD56 and CD20 (Figure 2A, marked with green rectan-

gles), creating 2 peaks which are partly overlapping. When using the

cofactors calculated by flowVS, negative intensities, resulting from

peak splitting, were present for all the four selected markers

(Figure 2B, marked in green). The emergence of the extra peaks in the

data could lead to the conclusion that there are three populations pre-

sent: a cell population not expressing the marker; a cell population

with a weak expression of the marker and a cell population which

strongly expresses the marker. Transformation with OTflow-defined

cofactors did not lead to peak splitting (Figure 2C). For the remaining

markers no peak splitting was present after transformation with

default cofactor 150 and cofactors determined by flowVS, as shown

TABLE 1 Cofactors for arcsinh transformation calculated per marker by flowVS and OTflow algorithms

CD123 CD14 CD8 CD4 CD3 CD16 CD62L CD193 CD56 CD20

flowVS 20 1233 150 1164 186 12 359 132 0.3 90

OTflow 116 944 314 665 245 735 632 172 572 734

F IGURE 2 In contrast to OTflow based transformation, arcsinh transformation with default cofactor 150 and flowVS based transformation
leads to peak splitting and OTflow performs better regarding stabilization of the fluorescence signal. (A–C) Histograms of the leukocyte
expression levels of CD123, CD16, CD20 and CD56 per sample after applying various transformation methods – (A) transformation with default

cofactor 150, (B) with flowVS defined cofactors, (C) with OTflow defined cofactors. Blue lines represent the 7 control samples, while the red lines
represent the 18 patient samples. Negative peaks originated due to suboptimal transformation, resulting into peak splitting, are marked with a
green box. (D–E) The standard deviation of the peaks plotted against the rank of MFI for arcsinh transformation with (D) default cofactor
150, (E) with flowVS defined cofactors, (F) with OTflow defined cofactors
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in Figure S10. When using the optimal cofactors from OTflow for the

transformation, the variance between the peaks is stabilized more

evenly for all the measured markers, especially compared to the trans-

formation with the default cofactor.

Stability of variance performed by the transformation methods

used was quantitatively evaluated and the results are shown in

Figure 2D–F. In a similar way as done in [18], we calculated the stan-

dard deviation of the peaks identified for marker CD123, CD16,

CD56 and CD20, after transformation and range normalization. The

standard deviations per marker were then plotted against the rank of

the mean fluorescence intensity of the peak. The rank of the means

instead of actual means was used, to distribute the points evenly

along the x-axis. For most of the markers, all the three transformation

methods show a small and stable standard deviation for most of the

peaks, meaning that transformations are able to correct for peak

heteroscedasticity (standard deviation is not dependent on the fluo-

rescence intensity of the peak). Exceptions are present for marker

CD56 and CD20 when arcsinh transformation is applied using stan-

dard cofactor 150, which shows large differences in the standard

deviation for the different peaks. flowVS and OTflow methods are

overall comparable in stabilizing the variance of the peaks, with

OTflow performing slightly better in stabilizing the variance of marker

CD20. Importantly to mention, as shown already in Figure 2B, in con-

trast to OTflow transformation, flowVS-based transformation leads to

peak-splitting and more peaks are thus identified.

The runtimes for both flowVS and OTflow transformation on the

HIV dataset were compared (Table 2). The fact that the OTflow transfor-

mation is more time consuming than the flowVS algorithm, is mostly due

to the validation step of the OTflow transformation (per sample and per

fluorescence channel 20 Monte Carlo iterations are performed).

OTflow was applied also to find the optimal W parameter for the

logicle transformation. The OTflow-based transformation results can

be found in the Supplementary Material III. These were compared to

the results obtained by using the calculated W with Equation S2b,

which is the same function used in the estimatelogicle in the flowCore

package [32, 33]. From this, we concluded that also for logicle trans-

formation peak splitting is prevented when using the OTflow calcula-

tion, leading to more reliable results. The OTflow-based

transformation results were also compared with the results obtained

when using the W as estimated by the FCStrans method [34] (-

Figure S12C). FCStrans-based transformation also shows peak split-

ting of the left-most peak for CD56 expression. Secondly, FCS

transformation leads to over transformation of some markers,

resulting in very spiky peaks (Figure 12C CD123, CD8, CD3, CD193).

Finally, when comparing the three methods, FCStrans performs worse

in variance stabilization of CD3 expression levels.

3.3 | Multivariate analysis

We evaluated the effect of the arcsinh transformation using the

default cofactor 150 and cofactors determined by OTflow and flowVS

algorithms on the HIV dataset by applying various multivariate analy-

sis methods which enable visualization of MFC data. These methods

include the dimension reduction techniques Principal Component

Analysis (PCA) [23] and viSNE [4]; the clustering method flowSOM [9]

and the classification method Citrus [10].

3.3.1 | Principal component analysis on the
transformed HIV dataset

When analyzing the PCA results of the differently transformed data,

differences were observed in the distribution of the loadings and in the

cell score distributions (Figure 3). The order in the loadings of CD123,

CD56 and CD16 differs, with the greatest differences in direction for

CD123 and CD56. Focusing on the scores, in the PCA models of the

flowVS-transformed data, two putatively CD3brightCD4bright and two

CD3brightCD8bright cell subsets were identified next to each other in

healthy controls by using the vectors of the markers as a compass for

marker co-expression level (Figure 3B). When analyzing the PCA model

of the optimally transformed data by OTflow, also 2 types of

CD3brightCD4bright populations and 2 types of CD3brightCD8bright

populations were found (Figure 3C), one major population and below

the major population one minor population attached to it. The PCA

results of the datasets transformed with default cofactor 150 shows no

additional population of CD3brightCD4brightcells or CD3brightCD8bright

cells (Figure 3A). All these (sub-)populations were further explored

through backgating which revealed a different marker co-expression of

the CD3brightCD4bright and CD3brightCD8bright subsets, depending on

the transformation method used.

The backgating results of the population of the flowVS trans-

formed data are shown in Figure S13. The two CD3brightCD4bright sub-

sets differed only based on CD56 expression levels: one of the

subsets having almost only negative intensities for CD56 while the

other subset mostly consisted of positive intensities for CD56 (-

Figure S13A,B). The same difference accounts for the two

CD3brightCD8bright subsets (Figure S13A,C). The separation of cells

with positive and negative expression levels for CD56 is caused by

peak splitting. A very low cofactor of 0.3 was defined by the flowVS

algorithm (Table 1), leading to a wide linear range around 0 after

transformation and thus resulting into peak splitting when visualizing

the data in a biexponentional graph. In contrast, the CD3brightCD4bright

and CD3brightCD8bright cells of the data transformed with cofactor

150, or with cofactor 572 as defined by OTflow (Table 1), both have

low expressions for CD56 (data not shown).

The cells with positive intensities for CD56 after using the flowVS

defined cofactor could be interpreted as CD3brightCD4brightCD56bright

and CD3brightCD8brightCD56bright NKT-like cells based on the loading

position of CD56 and on the backgating of these populations. The pres-

ence of these cell subsets in the peripheral blood of healthy subjects has

TABLE 2 Runtime comparison of flowVS and OTflow algorithm
for the HIV dataset

Runtime (s)

flowVS 409

OTflow 6466
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been described [35], but not in these high proportions (38% of total

CD3brightCD4brightCD56bright cells and 55% of total CD3bright

CD8brightCD56bright cells, respectively). MVA results from these inade-

quately transformed data could result into misleading interpretations of

the findings, when drawing conclusions about percentages of

CD3brightCD4brightCD56bright and CD3brightCD8brightCD56bright

populations in healthy controls vs HIV patients.

Importantly, besides the appearance of artificial cell populations,

suboptimal transformation can also lead to loss of biologically relevant

information. In contrast to the flowVS transformed data, the two

CD3brightCD4bright populations in the OTflow transformed analysis

expressed CD56 to the same level (CD56low, data not shown). The two

CD3brightCD4bright populations differed from each other based on

expression levels of CD62L. Naïve T cells express CD62L at high levels,

F IGURE 3 PCA of differently transformed HIV datasets. PCA plots of PC1 vs PC2 of the HIV data after arcsinh transformation with default
cofactor 150 (A), flowVS determined cofactors per channel (B), and channelspecific cofactors as calculated by OTflow (C). The cells are plotted
based on the PC1 and PC2 scores and the loadings (vectors), representing the marker expressions, are projected within the PC models. The left
panels represent all healthy controls and the right panels represent the HIV patients (100,000 cells are shown per plot)
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while memory T cells display low levels of CD62L expression. When

gating these cell subsets it appeared that HIV patients had significantly

higher percentages of CD3brightCD4brightCD62Llow cells compared to

healthy controls (Figure S14, p = 0.018), as has been reported before

[36–38]. This difference was missed in the PCA model of the flowVS

transformed data because of the more notable but artificial difference

in CD56 expression for the CD3brightCD4bright cells caused by peak

splitting. Also in the PCA model of the transformed data with the

default cofactor 150 this information was not represented, since we

did not find two separate CD3brightCD4bright cell populations.

3.3.2 | viSNE analysis on the transformed HIV
dataset

The viSNE algorithm [4] was also applied to the differentially trans-

formed HIV dataset. This showed that the deceptive results were inher-

ent to suboptimal transformed data, and not specific for a certain type of

MVA technique. The resulting viSNE maps, colored based on the expres-

sion levels of CD3, CD4, CD8, CD62L, CD14 and CD56, are shown in

Figure 4. When comparing the viSNE maps of the differently trans-

formed data, the flowVS transformed dataset contains more ‘cell
populations’ than the datasets transformed with the default cofactor or

with the cofactors defined by OTflow. Comparable to the PCA results,

the viSNE map of the flowVS transformed data shows CD3brightCD4bright

cells and CD3brightCD8bright cells divided over two clusters, of which one

seems to be CD56bright and the other CD56low (Figure 4B). In addition to

these putative T-cell sub-clusters, also monocytes (CD14bright expression)

appear to be split in two separate clusters, based on high and low CD56

expression levels. Furthermore, the CD56 heat map shows a clear pat-

tern with only CD56low or CD56high cells, while for the transformation

with both the default cofactor 150 and OTflow-based cofactors, the

CD56 expression levels gradually range from low to high. Both for the

default 150 and OTflow transformed viSNE results the CD4bright and

CD8bright T-cell populations and monocyte population are represented

by a more homogeneous cell cluster, not subdivided based on CD56

diverse expression levels (Figure 4A,C–CD56 plot). In line with the PCA

results, the viSNE analysis of the data transformed by flowVS also shows

less distinct cell populations based on CD62L expression (Figure 4B –

CD62L plot) when compared to the data transformed with default cofac-

tor 150 or the OTflow transformed data (Figure 4A,C–CD62L plot).

viSNE is a stochastic algorithm, which means different results are

generated on the same dataset when the analysis is performed twice.

To show that the differences found in expression levels between the

transformation methods in Figure 4 are not caused by

the stochasticity of the algorithm, two additional viSNE runs were

performed per transformed dataset (Figure S15). Similar expression

levels of cell clusters per transformation method were found, the cell

clusters are merely located at different locations in the tSNE plots.

From this can be concluded that the differences observed in Figure 4

are truly caused by the differences in transformation methods.

In summary, viSNE analysis of poorly transformed data results

into a more complicated viSNE map with cell populations that mani-

fest due to peak splitting.

3.3.3 | flowSOM on the transformed HIV dataset

Next to PCA and viSNE analyses, which both employ dimension reduc-

tion techniques to visualize MFC data, we performed cluster analysis

using the flowSOM algorithm [9]. The algorithm produces self-organizing

maps to visualize MFC data in clusters/nodes represented either in a

F IGURE 4 viSNE maps of default transformed cofactor 150 (A), flowVS transformed (B) and OTflow transformed (C) HIV datasets. The colour
coding of the cells represents the expression levels for the specific marker named in the title of the plots. The viSNE maps of the variously
transformed datasets differ greatly from each other
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minimum spanning tree or in a two dimensional grid. Cells with similar

phenotypes are clustered together in the same node. For conciseness

we only show the result of the flowVS and OTflow transformed HIV

datasets, which differed the most from each other (Figure 5AB).

In the FlowSOM results of the flowVS transformed HIV dataset

(Figure 5A) we identified branches containing nodes with similar

phenotypes, only differing based on CD56 expression. Monocyte

(CD14bright), neutrophil (CD16bright) and CD4bright and CD8bright T-cell

(CD3bright) subpopulations were divided into CD56low and CD56bright

nodes (Figure 5C). As an example, the putative CD4bright and CD8bright

T-cell subpopulations show differential expression of (mainly) marker

CD56 due to peak splitting. This is in contrast to the OTflow

F IGURE 5 (A–F) Leukocyte
populations in flowVS
transformed flowSOM map are
divided over CD56bright and
CD56low nodes. (A) flowSOM
results of HIV data transformed
with flowVS-defined cofactors.
The mean marker expressions are
visualized in each node by a pie
chart. The size of the nodes
corresponds to the relative
amount of cells in each node.
Some nodes of interest have been
encircled with ellipses. Dark blue
encircled nodes comprise
CD14bright monocytes. Green
encircled nodes comprise
neutrophils
(CD16brightCD62Lbright). Red
encircled nodes comprise
CD3brightCD8bright T cells. Light
blue encircled nodes comprise
CD3brightCD4bright T cells;
(B) flowSOM minimum spanning
tree built on the OTflow
transformed HIV data. Nodes
containing cells corresponding to

the selected nodes in A have
been encircled with the same
colour coding. Dark blue encircled
nodes comprise CD14bright
monocytes. Green encircled
nodes comprise neutrophils
(CD16brightCD62Lbright). Red
encircled nodes comprise CD3
brightCD8bright T cells Light blue
encircles nodes comprise
CD3brightCD4bright T cells. The
orange encircled nodes comprise
CD56brightCD16dim NK cells.
(C–D) CD56 expression levels
projected onto the flowSOM map
of flowVS (C) and OTflow
(D) transformed HIV data. The
encircled nodes correspond to the
encircled nodes in A and B. (E,F)
Nodes to which NK cells were
assigned are highlighted by
orange circles in the flowVS
(E) and OTflow transformed
(F) flowSOM maps
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transformed flowSOM map, where these cell populations all have low

CD56 expressions (Figure 5D). The seven nodes with a CD56bright

phenotype (Figure 5D, orange circle) in the OTflow map are also

CD16dim, fitting with the NK cell phenotype (Figure 5B, orange circle).

When peak splitting occurs due to suboptimal transformation with

poorly-defined cofactors, the appearing negative cell populations may

occupy unique nodes at the expense of biologically distinct cell

populations which may then be clustered together in the same node.

This is indeed what we found. In the flowVS transformed flowSOM

map CD56brightCD16dim NK cells were not easily identified. We manu-

ally gated CD56brightCD16dim NK cells in our flowSOM analysis to

retrieve the flowSOM cluster numbers to which the cells were

assigned. NK cells were not clustered together in a separate branch

like the other cell types, but they were found back in the main central

branch, overlapping with nodes which mainly occupied neutrophils

(Figure 5E). This is in contrast to OTflow transformed flowSOM map,

where the gated NK cells were all assigned to nodes in the same

branch or to the nodes in the closest proximity of this branch. From

this, we can conclude that suboptimal transformation of flow cyto-

metry data, leading to peak splitting, results into less interperable

flowSOM results which may lead to false conclusions.

3.3.4 | Citrus on the transformed HIV dataset

Citrus analysis [10], which is a classification method, was performed

to identify which cell population-specific features were found to be

discriminant for certain cell populations in the dataset were specific

for healthy control individuals or for HIV patients. The results can be

found in Appendix S1. Strikingly, we found different results when

applying the method on the differently transformed datasets.

4 | RESULTS FROM OTHER DATASETS

Two additional datasets were used to show the effect of suboptimal

transformations, one originating from a Lean vs Obese study and one

from a Tuberculosis (TBC) study. The results are shown in the Supple-

mentary Material IV. The PCA results of the suboptimal flowVS trans-

formed lean vs obese dataset caused peak splitting, which resulted in

the rise of nonexistent cell populations in a multidimensional analysis,

potentially leading to misinterpretations. When OTflow was per-

formed on the same dataset, the nonexistent cell populations were

not present in the PCA results. Secondly, suboptimal transformation

was shown to affect the outcome of viSNE results for the TBC

dataset, producing artifacts due to peak splitting and, at least as

important, hiding immunologically relevant information.

5 | SIMULATION STUDY RESULTS

A simulation study was performed with univariate data to visualize

and quantify the behavior of the OTflow algorithm, and compare it

with flowVS. See Supplementary Material V. From this study can be

concluded that the OTflow algorithm performs well for all scenario's

tested. In general, transformation of flow cytometry data might lead

to relative deviations from reality. However, a shift of peaks as might

be imposed by OTflow, does not lead to misleading biological conclu-

sions. OTflow can deal with negative values in the data, and does not

lead to peak splitting. This is in contrast to flowVS, for which negative

values in the data may result in peak splitting, leading to misinterpre-

tations of the data.

6 | DISCUSSION

MFC data transformation, required before multivariate methods such

as PCA, viSNE and flowSOM can be applied, is often performed by bi-

exponential transformations, such as arcsinh and logicle. We demon-

strate that bi-exponential transformations can introduce artifacts in

multivariate analysis results. An optimal display of the MFC data

in both univariate and multivariate data representation greatly relies

on the choice of the transformation parameter(s).

A cofactor of 150 for the arcsinh function, suggested by default

in various methods and in Cytobank, rarely leads to proper represen-

tation of the cell populations in the data for all the markers. A disad-

vantage of the use of a single co-factor (of for instance 150) consists

of the fact that different markers may necessitate different cofactors

because the fluorescence intensities depend on the dye used, on the

background fluorescence per dye, on marker expression, and on

the compensation used to correct for spill-over. Notably, all these fac-

tors may vary per channel. Visual inspection of the transformed data

per channel (not performed here) would be highly subjective, time-

consuming and inefficient, especially with large panels.

The novel OTflow algorithm enables an automated, data-driven

and validated estimation of channel-specific optimal parameters for

both arcsinh and logicle transformations. As the number of parame-

ters measured per cell continues to increase with the development of

new flow cytometers [39], automated data-driven transformation

becomes crucial. OTflow avoids artifacts such as merging two pheno-

typically different cell populations into one population by condensing

two separate peaks into one spiky peak. OTflow also accurately pre-

vents artifacts at low intensities by disregarding cofactors which lead

to over-dispersion of the leftmost peak by splitting it in two cell

populations (i.e. ‘peak splitting’). This key feature of the algorithm rep-

resents one of the innovative and essential steps of OTflow compared

to other methods developed to estimate transformation parameters

such as flowVS and the calculation for the W parameter for the logicle

function [15, 18].

As a result, OTflow outperforms methods such as flowVS and

default-cofactor arcsinh transformation in properly displaying cell sub-

populations and subsequent multivariate analyses. We showed with

various MFC datasets (as shown for the HIV dataset in the main text

and for two additional datasets in Supplementary Material IV) that

unintentional peak splitting in one or more channels caused by flowVS

defined cofactors or default cofactors dramatically propagates to
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higher dimensions when applying multivariate analysis methods.

Moreover, these artifacts are independent to the type of MVA

method used as it affects PCA, viSNE, flowSOM and Citrus results.

For instance, in the HIV data, homogenous CD4brightCD56low and

CD8brightCD56low T-cell populations showed differential expression in

CD56 in the PCA space and they were over-fragmented in the viSNE

map, due to transformation-induced peak splitting of CD56low cells, as

confirmed by backgating. Suboptimal transformation greatly compli-

cates multivariate analysis because the phenotypically identical

populations are separated into multiple seemingly phenotypically dif-

ferent populations. This generates confusion and it is highly detrimen-

tal to subsequent immunological interpretation and conclusions. Also,

we showed how the additional variability introduced by peak splitting

may overshadow the more subtle but relevant biological information

in the data. This was the case in PCA as well as flowSOM. In the

flowSOM map peak splitting caused homogeneous cell populations to

be divided over multiple nodes at the expense of ‘real’ phenotypes
that were clustered together in one node. Citrus also indicated the

negative peaks as most discriminant between the two groups consid-

ered. Next to the results from the HIV analysis, also the results from

TBC analysis (Supplementary material IV) exemplify that peak splitting

causes both the gain of false information in a dataset and the loss of

immunologically relevant information.

We demonstrated that OTflow also aids in finding the optimal

value for the W parameter for logicle transformation (Figure S12). The

calculation of the optimal W as proposed by Parks et al [15] may not

always lead to proper transformation of all the channels. Also here

artifacts may be introduced, because the W is highly dependent on

the negative intensities in the data. Secondly, because it focuses only

on the first peak with the lowest expression, logicle transformation

may not stabilize variance between the other cell populations with

higher expressions.

For a widespread application of OTflow, some assumptions con-

sidered in the algorithm's steps are here discussed. The algorithm

works by identifying uni-dimensional peaks in the iteratively trans-

formed channels. By using a very sensitive function, OTflow can also

detect very small peaks. However, some threshold in ‘finding’ peaks
has to be imposed (Figure 1, Step 3). This is done to circumvent the

detection of too large numbers of peaks not necessarily having biolog-

ical meaning but associated to noise. OTflow thus removes peaks con-

taining <5 cells, corresponding to 0.5% of the subsample considered

(Figure 1, Step 3a). Especially in the extreme ends of the fluorescence

range these are likely to be associated to noise or machine artifacts

and therefore not to be introduced in the variance stabilization step.

In some studies, however, very small cell populations may be

expected. In this case it may be advisable to reduce this limit to 0.01

or 0.02% to avoid loss of relevant information, with the associated

drawback of reducing the computational speed of the algorithm.

7 | CONCLUSION

Transformation of MFC data is an essential step before applying many

types of univariate and multidimensional data analysis method.

Suboptimal transformation due to poorly defined parameters can

highly complicate the analysis results by introducing artifacts in the

data and thus lead to misleading interpretations. The algorithm

OTflow, here introduced, is a robust method for automated data-

driven bi-exponential transformation of flow cytometry data. Most

importantly, OTflow prevents split peaks to arise in the data, thereby

preventing directly the false interpretation of distinct cell populations

and/or the indirect failure (due to domination by transformation-

induced variance) to observe phenotypically different cell subsets.

The versatility of the algorithm allows its application to any type

of MFC dataset for the estimation of parameters for both arcsinh and

logicle transformation. Integration of the algorithm in MFC analysis

methods will facilitate rapid optimized transformation of the data and

minimize the risk of misinterpretation.
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